

Computer Science Department

Technical Report
NWU-CS-03-16

November 24, 2003

Tsunami: A Wavelet Toolkit for Distributed Systems

Jason A. Skicewicz Peter A. Dinda

Abstract

This paper describes the design and implementation of Tsunami, a wavelet-based
library built to encompass the range of research from offline analysis of computer
generated resource signals to the construction and deployment of online systems.
Wavelet analysis has proven to be an invaluable analysis technique for discovering
characteristics of signals and has been applied to many areas related to computer
systems research. Tsunami is created mostly for use in distributed systems, domains
where sensors are deployed to sample resource signals related to hosts and networks,
and are used for making run-time decisions in applications. From the analysis of
computer generated resource signals, online systems may be deployed using our
toolkit to provide performance gains in user applications. With Tsunami, a user can
seamlessly transition from simulation to deployment of a wavelet-based online
system. The toolkit design is extremely general in that the provided interfaces can be
used for almost any type of application that may benefit from wavelet approaches. It
is also extensible and flexible, allowing users to customize their analysis using the
coarse- and fine-grain building blocks provided in the toolkit. In this paper, we
summarize the techniques of wavelet analysis for use in computer systems and
provide implementation details of the library to provide a user with the power to
wavelet-enable their application. We describe how the toolkit can be extended, how it
performs in terms of sample rates and scalability, and how it can be used with the
RPS toolkit to build distributed wavelet systems. Conclusions and future directions of
our research related to this toolkit will be discussed. Tsunami is available from
http://www.cs.northwestern.edu/~RPS.

Effort sponsored by the National Science Foundation under Grants ANI-0093221, ACI-0112891, ANI-
0301108, EIA-0130869, and EIA-0224449. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author and do not necessarily reflect the
views of the National Science Foundation (NSF).

Keywords: wavelet analysis, signal processing, distributed systems, resource monitoring

Tsunami: A Wavelet Toolkit for Distributed Systems

Jason A. Skicewicz Peter A. Dinda
{jskitz, pdinda}@cs.northwestern.edu

Department of Computer Science
Northwestern University

November 24, 2003

Abstract

This paper describes the design and implementation of Tsunami, a wavelet-based library
built to encompass the range of research from offline analysis of computer generated resource
signals to the construction and deployment of online systems. Wavelet analysis has proven
to be an invaluable analysis technique for discovering characteristics of signals and has been
applied to many areas related to computer systems research. Tsunami is created mostly for use
in distributed systems, a domain where sensors are deployed to sample resource signals related
to hosts and networks, and are used for making run-time decisions in applications. From
the analysis of these computer generated resource signals, online systems may be deployed
using our toolkit to provide performance gains in user applications. With Tsunami, a user
can seamlessly transition from simulation to deployment of a wavelet-based online system.
The toolkit design is extremely general in that the provided interfaces can be used for almost
any type of application that may beenefit from wavelet approaches. It is also extensible and
flexible, allowing users to customize their analysis using the coarse- and fine-grain building
blocks provided in the toolkit. In this paper, we summarize the techniques of wavelet analysis
for use in computer systems and provide implementation details of the library to provide a
user with the power to wavelet-enable their application. We describe how the toolkit can be
extended, how it performs in terms of sample rates and scalability, and how it can be used with
the RPS toolkit to build distributed wavelet systems. Conclusions and future directions of our
research related to this toolkit will be discussed.

Tsunami can be downloaded from http://www.cs.northwestern.edu/∼RPS.

Effort sponsored by the National Science Foundation under Grants ANI-0093221, ACI-0112891, ANI-0301108, EIA-
0130869, and EIA-0224449. Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the views of the National Science Foundation (NSF).

1

1 Introduction

Distributed systems are becoming increasingly adaptive, and scheduling and other adaptation deci-
sions are being made at application, middleware, and OS levels. These decisions are made accord-
ing to the availability and load of machines, and also the network conditions that prevail between
the machines. Resource monitoring systems provide this information, typically in the form of
appropriately sampled 1 periodic measurements, or discrete-time resource signals.

There are many uses of resource signals and operations than can be applied to them, but the
following are, in our view, most significantly impacted by wavelet analysis:

• Characterization. Characterizing the dynamic behavior of classes of signals provides us
with insights into the behavior of resources, their schedulers, and their human users.

• Summarization. Summarizing one or a collection of signals makes it easier for a human or a
software system to answer questions.

• Dissemination. Conveying a resource signal or collection of resource signals from sensors
to a collection of users should be done with as little network traffic as possible.

• Prediction. Adaptive systems care about the future behavior of the resource signal.

To further our (and others’) research along these and other directions, we have developed Tsunami,
a wavelet toolkit for use with resource signals in distributed systems. Tsunami’s design is general,
and extentsible, making it useful in other domains as well.

Why wavelet analysis? While there are many analysis techiniques applicable to resource sig-
nals, most have difficulties when faced with non-stationary or non-periodic behavior. Wavelet
techniques overcome these deficiencies, and have been shown to be a powerful analysis tool for
understanding signals in general and, more specifically, computer resource signals such as host
load [21] and network bandwidth [16]. A wavelet transform converts a periodically sampled, time-
domain signal into two dimensions representing time and scale (like frequency). The outputs of
the wavelet transform are called the wavelet coefficients, and can be studied in lieu of the origi-
nal signal for they contain all the information in it. Often a more flexible analysis of the signal,
called a multi-resolution analysis (MRA), is preferred. Characterization, summarization, dissemi-
nation, and prediction in wavelet domain exposes opportunities that do not exist in time-domain or
frequency-domain. A wavelet domain signal can be readily converted back to time-domain without
loss of information.

Why Tsunami? Many implementations of wavelet analysis exist. However, none of them is
tuned for use in resource monitoring in a distributed system, where we require inexpensive stream-
ing operation at low sample rates and efficient communication over lossy channels. In addition,
few provide generality, allowing the user to construct essentially arbitrary transforms in pursuit of
research goals. The Tsunami toolkit can build arbitrary transforms and can adaptively shape its
transforms at run-time. None that we have found, can be readily used for both offline and online
analysis. In addition, it is difficult to find efficient wavelet tools that are not just built for use on
digital signal processors and many tools that will run on PCs are built for offline analysis using

1To the best of our knowledge, no one has studied the problem of determining an appropriate rate of sampling for
resources in distributed computing. This is in our future plans.

2

scripting languages and are therefore not efficient for use in deploying online systems. Finally, the
toolkit’s design is optimized to fit nicely into the RPS system [5] for communication, prediction
and monitoring.

The Tsunami toolkit is built using the C++ programming languange and the Standard Template
Library (STL) generic container types. Tsunami can run with many different input data types, and
can be easily extended for use in systems research and system building.

The remainder of the paper is as follows. In Section 2, we begin by discussing related research
and differentiating Tsunami from other wavelet-based systems. Section 3 describes the deficiencies
of other analysis techniques, and details the mathematical foundations of the wavelet transform and
the theory of multi-resolution analysis. Section 4 lays out the goals and requirements of Tsunami,
working from the perspective of a researcher using our system.

Of particular interest to a researcher already familiar with wavelets, Section 5 describes how
to get started using Tsunami: downloading, compiling, using the command-line tools, and writing
new tools. Section 6 continues by describing the design and implementation of the toolkit, while
Section 7, describes advanced uses of Tsunami and how to extend it.

Performance is a critical goal in a system designed for use in online environemnts, such as
Tsunami. In Section 8, we measure the performance of the Tsunami toolkit in terms of how the
system scales and performs at high sampling rates. We also discuss real-time system delays, a
property that is fundamental to wavelet systems based on causal filters.

We generally use Tsunami along with the Resource Prediction System (RPS) toolkit [5]. RPS
provides communication services, prediction services, sensors, and many other tools. Section 9
details the interface of Tsunami to RPS. Using the interface, we have built a number of RPS
components that include wavelets. Using the combination, we have explored using the predictive
models that RPS offers on the wavelet coefficients as an approach to reducing real-time system
delay. We have also built a proof-of-concept resource signal dissemination and query system in
which applications can subscribe to a stream of samples at a rate and resolution that is right for
their application. Finally, in Section 10 we provide concluding remarks and the roadmap of our
future work.

2 Related work

We are not the first to see the usefulness of using wavelet-based techniques for studying the be-
havior of signals and building online systems. Researchers have applied wavelet-based techniques
to understand network traffic and packet traces for some time. The self-similar nature of network
traffic was an important discovery in the early 90s. Abry, et al, have developed wavelet-based
techniques to estimate the Hurst parameter, the degree of self-similarity [1]. Feldmann, et al have
extensively used wavelets to characterize network traffic as multi-fractal [6] and to study the im-
pact of this property on control mechanisms such as TCP congestion control [7]. Riedi, et al
have shown how to use wavelets to synthesize network traffic [17], computing results in an effi-
cient manner that appear to match real Ethernet traces visually and statistically. Qiao, et al have
empirically studied the predictability of wavelet coefficients of real network traffic for use in de-
terming message transfer times [16]. Several wavelet systems also exist. For example, WIND uses
wavelet-based scaling analysis to detect network performance problems [9]. Another relevant sys-

3

tem estimates the Hurst parameter at the router to make adaptive changes in congestion control, or
to provide up to date information about traffic dynamics without storing all of the data for offline
analysis [18]. We have proposed another online wavelet system for the dissemination of resource
information in an accurate and scalable fashion to applications of various granularity [21], a goal
achieved through use of the Tsunami toolkit. This proposal is discussed further in Section 9.

In this report, we detail Tsunami, a wavelet library that we have constructed to help better
understand the dynamics of computer generated resource signals. From this, we hope to create
and deploy distributed, online components for applications that can benefit from having wavelet
enabled applications for use in scheduling and other domains. The library has been built to satisfy
many of our research needs that have not been met elsewhere. There are many offline wavelet anal-
ysis tools available that provide wavelet decompositions and transformations related to wavelets.
Tools that we have used include the Wavelet Toolbox in Matlab [24] and the Matlab scripts cre-
ated by D. E. Newland in his book on spectral analysis [15]. However, many of the goals of our
research are of a more dynamic, more adaptable, and general nature necessitating the enhanced
functionality and flexibility over existing tools.

In order to address generality, we have built the tool with fine-grain building blocks in order
to create any type of decomposition, not limited simply to the structure of the wavelet transform
and wavelet packets. The toolkit is composed of filters (FIR, IIR, etc.), coefficients for filters,
downsamplers and upsamplers parameterized by the rate, and stages that aggregate the fine-grain
blocks into two-band structures. From the building blocks, we create many standard wavelet trans-
formations, and have included interfaces for multi-resolution analysis (MRA) for obtaining the
approximation and detail signals. MRA will be discussed in more detail in Section 3. In addi-
tion, we provide interfaces for getting combinations of these signals including the well known
transform, consisting of one coarse approximation signal and a set of detail signals, and any other
possible mix of MRA signals. This arms the users of our toolkit with the power to look at many
different types of signals that may be useful to their research, not limiting the user to standard
transforms. This has proven invaluable in our study of the predictability of network bandwidth,
where we have shown that binning and MRA analysis on approximation signals are similar [16].

Many of the existing offline tools are not as run-time friendly as we think necessary to adapt
to quick changing resource signals. In the Tsunami toolkit, we provide interfaces to dynamically
adapt the transform and the decomposition to the characteristics of the input resource signal. We
find that the static transformations that are typically found in offline toolboxes are insufficient to
properly study how to adapt the analysis to the changes in a given input signal. We envision a
user of the toolbox dynamically adding or removing levels in the decomposition based on epoch
changes detected in the resource signal. At this time, the toolbox does not contain mechanisms
for detecting epoch changes, but is something that we plan to look into in our future research. In
addition to dynamic structural changes, the toolkit allows for dynamically changing the wavelet
basis functions at run-time. This can lessen computational complexity of the system when a lower
order basis function can provide as much benefit as a higher order one. This typically occurs when
a particular frequency band has low energy and therefore the filtering of this band is not showing
anything interesting. The idea of time-varying operation, adapting parameters of the transform to
the signal characteristics at run-time, is a very appealing area of research that we hope may lead
to performance gains in prediction and scheduling in distributed systems. Many of the dynamic
interfaces that have been created in Tsunami is informed by the work of Sodagar et al [23].

4

The Tsunami library can also be used to build online, wavelet-enabled systems. One appli-
cation that we have thought about in detail is in resource dissemination and resource prediction
in distributed applications. However, the library can be used for building other types of online
systems as well. An extremely powerful benefit of the toolkit, is that the transition from analy-
sis/simulation, to building online systems is virtually effortless. The library can be used in either
mindset right out of the box. This is a powerful advantage over Matlab even though Matlab con-
tains utilities for compiling ”m-file” scripts into executables.

Additionally, if a user wants to use Tsunami in conjunction with the Resource Prediction Sys-
tem (RPS), the Tsunami toolkit will be included with the next RPS version release. The RPS
release code contains interface classes between Tsunami and RPS so that researchers can extend
current applications to use wavelets with time-series analysis and RPS communication constructs.

3 Wavelet discussion

In order to motivate the reasons for why wavelets are a powerful tool for signal analysis, it is
informative to highlight the deficiencies of other analysis techniques. The Fast Fourier Transform
(FFT), a technique used for analyzing the frequency content of a signal, only provides frequency
information, showing nothing about how a signal changes in time. Due to this limitation, the time-
domain representation cannot be exactly reconstructed from the FFT output unless the input is
periodic in time. The Short-term Fourier Transform (STFT) attempts to solve this limitation by
analyzing signal changes in both time and in frequency. The STFT performs an FFT over a fixed
size window that slides over time. The time dynamics are captured by viewing the signal in a fixed
size window, and the frequency by the computation of the FFT over that window. This technique
provides an estimate of how the signal changes in both time and frequency, but is limited by the
window size. If the window size is made small, the analysis provides fine-grain time resolution and
coarse-grain frequency resolution. As the window size increases, the converse is true. Therefore it
is said that the STFT suffers from the Heisenberg Uncertainty Principle between exact knowledge
of either time or frequency. The wavelet analysis overcomes both limitations of the FFT and the
STFT, and is therefore an extremely useful technique for analyzing signals that change rapidly in
both time and frequency, a characteristic that computer generated signals tend to exhibit.

In Figure 1, we describe the general symbols used in this section to describe the signal pro-
cessing aspects of wavelet analysis. In Figure 2, we describe symbols specific to the MRA wavelet
analysis.

In what follows, we provide an overview of wavelets as a tool for analysis, and what it means
to provide a multi-resolution view of a signal. In our work, we take one-dimensional resource
signals, periodically sampled, and trasform them into two-dimensions, representing time and scale
(like frequency). The signal is decomposed into a number of levels representing not only bands of
frequency information, but also the time dynamics that occur in each frequency band. The wavelet
technique is the superior method to view how a signal changes in a frequency band at a particular
time, and is said to exhibit good time-frequency locality.

As an example of a wavelet decomposition, in Figure 3 (a), we show a trace of the load on
a host machine spanning 8192 seconds (approximately 2 1/2 hours) sampled at a 1Hz rate. The
host load signal is then input into a wavelet transform block, thus decomposing the signal into

5

Symbol Description

General signal processing
∆T Interval of time between subsequent samples.
n Represents the short form of nT , but since the signals that we

encounter in our work are periodically sampled, T is implied.
f Frequency in Hz and f = 1/T .
fs The sampling frequency in Hz and fs = 1/∆T .
ω Angular frequency in radians/sec and ω = 2πf
ωs The sampling angular frequency in radians/sec and ωs = 2πfs.
x(n) or xn Input resource signal indexed by n.
M The number of two-band filter banks used to decompose a signal. It is

also the number of individual approximation and detail signals available.
ga(n) The filter coefficients of the low-pass analysis filter.
Ga(z) The Z-transform of the low-pass analysis filter (frequency response).
ha(n) The filter coefficients of the high-pass analysis filter.
Ha(z) The Z-transform of the high-pass analysis filter (frequency response).
yi(n) Subband signals that are output from the process of filtering and down

sampling.
gs(n) The filter coefficients of the low-pass synthesis filter.
Gs(z) The Z-transform of the low-pass synthesis filter (frequency response).
hs(n) The filter coefficients of high-pass synthesis filter.
Hs(z) The Z-transform of the high-pass synthesis filter (frequency response).
c A constant scaling factor to compare xn with x̂n.
x̂(n) or x̂n The reconstructed signal from the subband signals yi(n).
nd Integer-valued system delay. Value of delay is dependent on structure and

filter order.

Figure 1: Table of general signal processing symbols used to describe the mathematical foundation
of wavelet analysis.

14 levels yielding the wavelet coefficients. In (b), the squared wavelet coefficients are shown in
three dimensionions. The brightness of each block then corresponds to the energy of each wavelet
coefficient. The y-axis corresponds to the scale of the transform, and the x-axis corresponds to
time. Peering into this picture qualatatively, the impulses in time that represent a sharp increase in
system load are seen. As an example, the impulse that occurs around sample 4000 in (a) is shown
at many scales in the energy plot of the wavelet coefficients. Each level captures the same amount
of time, but each level has fewer coefficients by a factor of two. To make this point more concrete,
in Figure 4 we show by level number the period between coefficients (∆T), the number of samples
in each scale, and the frequency content that is captured in each band if we assume that the input
signal is band-limited to a frequency of fs/2. This figure is directly matched to the information in
Figure 3.

As we learn more about wavelets, the information described in the previous paragraph will
become more clear. Next we describe the basic building blocks of a wavelet analysis.

6

Symbol Description

Multi-resolution analysis
approxj The jth approximation signal in the decomposition.
detailj The jth detail signal in the decomposition.
j Subspace indice that ranges from 0, . . . ,M , and represents which scale.
n Sample indice that ranges from 0, . . . , 2j and represents which coefficient.
ψ0 The mother wavelet function.
φ0 The scaling function.
ψj,n The band-pass wavelet function at scale j, coefficient n.
φj,n The low-pass scaling function at scale j, coefficient n.
t Represents time in seconds.
{Vj} A collection of nested subspaces.
ax(j, n) The approximation coefficients produced from input signal x at scale j and

coefficient n.
dx(j, n) The detail coefficients produced from input signal x at scale j and

coefficient n.
ProjXY The projection of signal X into subspace Y .

Figure 2: Table of multi-resolution analysis symbols used to describe the mathematical foundation
of wavelet analysis.

3.1 The basic building blocks and structures

To start our discussion, we will detail the building blocks of the wavelet transform, the two-channel
digital filter bank shown in Figure 5. From this, all other representations from uniform filter banks
to non-uniform filter banks and the wavelet decomposition follow naturally. In the most simple
case, an input resource signal, x(n), a bandlimited signal with typical input spectrum shown in (a),
periodically sampled at a rate of ωs = 2π, is decomposed into two bands using digital filters. As
shown in (b), x(n) is input into the filtersGa(z), a low pass filter, andHa(z), a high pass filter. The
magnitude response of these two filters are shown in (c). The purpose of these two filters is to split
the underlying resource signal into two half band signals representing the high and low frequency
information. Since the low and high frequency information now only contain half the information
as before the operation, each output can be resampled down by a factor of two without loss of
information. The operation of resampling down by a factor of two is known as decimation. The
outputs of the filter are typically called the subband signals. These signals, designated by y0(n)
and y1(n), are resampled to half the original sample rate, and represent two orthogonal slices of
frequency in the input resource signal.

The subband signals can be manipulated in some way based on the application. For example,
a compression application might look for the band with less tonal information, and reduce the
amount of information in this band appropriately. Once an application does the appropriate ma-
nipulation of the subband signals, it is then appropriate to expand the signal by two to obtain the
original sampling rate, and then reconstruct the resource signal using the synthesis filters Gs(z)
and Hs(z). If the analysis and synthesis filters are designed accordingly, the reconstructed signal,
x̂(n), can be exactly the input signal neglecting quantization noise and delay due to causal filters.
The system is said to have the perfect reconstruction (PR) property if x(n) = c · x̂(n − nd) for

7

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Lo
ad

n

(a)

Le
ve

l

Wavelet coefficients
500 1000 1500 2000 2500 3000 3500 4000

1

3

5

7

9

11

13

(b)

Figure 3: Example wavelet decomposition for resource signal host load: (a) host load trace for
8192 seconds, (b) mean square energy of the wavelet coefficients (black indicates low energy, light
indicates higher energy).

some c �= 0 and some integer nd [25]. Much work has gone into designing the properties of per-
fect reconstruction for structures of this type. Most notably is the method known as the conjugate
quadrature filter (CQF) method by Smith and Barnwell in 1984 and later published as a journal
article in 1986 [22]. We use the CQF method in the Tsunami toolkit to derive from the filterGa(z),
the coefficients for the other three filters, Ha(z), Gs(z) and Hs(z).

From the general structure of the two-band filter bank, many other signal decompositions can
be constructed. The most notable decomposition represented in our toolkit is that of the tree-
structured wavelet decomposition. This is shown in Figure 6. In (a), the structure is shown as
a tree whose nodes grow in one direction, where the lowest frequency component of the two-
band split is input into another two-band filter bank. This continues up the tree until the signal
has been decomposed into the proper number of bands, designated by M + 1. In many systems,
the multiscale representation is manipulated in some clever way or sent over the network to be
reconstructed by various distributed applications. The reconstruction part of the structure has the

8

Decomposition Period Number of Frequency Frequency
level in seconds points low high

Input = 1Hz 1 n 0 fs/2
0 2 n/2 fs/4 fs/2
1 4 n/4 fs/8 fs/4
2 8 n/8 fs/16 fs/8
3 16 n/16 fs/32 fs/16
4 32 n/32 fs/64 fs/32
5 64 n/64 fs/128 fs/64
6 128 n/128 fs/256 fs/128
7 256 n/256 fs/512 fs/256
8 512 n/512 fs/1024 fs/512
9 1024 n/1024 fs/2048 fs/1024

10 2048 n/2048 fs/4096 fs/2048
11 4096 n/4096 fs/8192 fs/4096
12 8192 n/8192 fs/16384 fs/8192
13 8192 n/8192 0 fs/16384

Figure 4: Following the diagram of Figure 3 (b), we show the decomposition level, the period
(∆T), the number of points at each level (n = number of points at 1Hz rate) and the frequency
range information at each level in the decomposition.

reverse tree with pairs of synthesis filter banks matched up with the various levels of the analysis
filter banks. This tree structured filter bank has a non-uniform decomposition of the input resource
signal and is shown (not exactly to scale) in (b). An equivalent structure to that represented in
(a) is shown in Figure 7 (a). In this figure all the various filters of the tree have been convolved
into a single filter followed by a single down sampling component of the appropriate rate. Since
the operation is dyadic, non-uniform, and logarithmically decomposed, the downsampling rates
increase from bottom to top by powers of two. In (b), the general structure of filter banks are
shown, representing both non-uniform and uniform decompositions. In a uniform decomposition,
each of the ri are equivalent to the number of bands in the decomposition. For example, if we use
a 10 level decomposition, ri = 10 for all i.

There are numerous tradeoffs between the structures, and the types of filters that are used in
the analysis and synthesis stages. A major tradeoff is the system delay between the input resource
signal, x(n), and the reconstructed system output, c · x̂(n−nd). Because in all cases it is beneficial
to minimize the real-time system delay, the type of structure and the order of filter coefficients
must be chosen carefully. Later in this report, Section 8, we provide an analytical analysis of
the real-time system delay based on the non-uniform structure, the operation type and the order
of the filter coefficients. Real-time system delay is an important issue that must be addressed to
realize interactive, wavelet-based distributed system application building. It is an important design
consideration that is typically based on the delay signature of the application.

9

π
ω

0

)(jweX

(a)

Ga(z)

Ha(z) Hs(z)

Gs(z)

2

2

2

2

+
x(n) x(n)^

Analysis filters Decimators Expanders Synthesis filters

Reconstructed
signal

Input
signal

y0(n)

y1(n)

Subband
signals

(b)

π2π
ω

0

)(jw
a eH

)(jw
a eG

(c)

Figure 5: Simple discussion of wavelets: (a) typical spectrum of resource signal, (b) the two-
channel digital filter bank, (c) typical filter responses of two-band filter bank.

3.2 Multi-resolution analysis

It is important to describe to the reader what is meant by a wavelet-based multi-resolution analysis.
Figure 8 shows this qualitatively. The figure shows an input signal xn, representing an appropri-
ately sampled, fine-grain resource signal, the binning of a network bandwidth trace. The input
signal is being decomposed into three resolution stages composed of approximation and detail
signals. By traversing the approximation tree (approxj , j increasing), we observe that each of
the plots not only have fewer points, but describe a coarser approximation of the underlying input
signal. Each successive approximation contains half the number of points and captures half of the
frequency content of the previous approximation. Even though as j increases each approximation
has fewer points, each graph is still covering the same period of time. By observing the details,
we can qualitatively see that the amount of information taken away from each approximation at
subsequent levels is the detail. That is, approxj = approxj−1 − detailj . The filters ψ and φ are
derived from the wavelet basis function.

The following discussion is informed by the work of Mallat [12], Daubechies [4], and Abry, et
al [2]. The structure shown in the figure is the discrete wavelet transform (DWT), a mathematical
transformation for representing a 1-dimensional discrete time signal xn. Intuitively, the DWT splits

10

Xn

Level 0
Level1

Level M-2
Level M-1
Level M

Level M+1

Network

Sensor
App

Xn^

2LPF

HPF 2

2LPF

HPF 2

2LPF

HPF 2

2LPF

HPF 2

2LPF

HPF 2

Level M+1

Level M
Level M-1
Level M-2

Level 1
Level 0

2

2

LPF

HPF
+

2

2

LPF

HPF

+

2

2

LPF

HPF

+ 2

2

LPF

HPF
+

2

2

LPF

HPF

+

f

Level M - 2
Level M+1

Level M Level M - 1

2
sf

4
sf

Level 0Level 1

M
sf

2 12 −M
sf

22 −M
sf

32 −M
sf

8
sf

(a)

(b)

Tree Structured Analysis Bank (Transform) Tree Structured Synthesis Bank (Reconstruction)Multi-scale Representation

Figure 6: Tree structure filter bank system: (a) diagram of the system, (b) frequency representation.

a 1-dimensional signal into a 2-dimensional signal representing time and scale (like frequency)
information. The input signal is represented in terms of shifted and dilated versions of a prototype
bandpass wavelet function ψj,n and shifted versions of a low pass scaling function φj,n, based on
the scaling function, φ0 and the mother wavelet basis function, ψ0. The relationship between these
functions are

{φj,n(t) = 2−j/2φ0(2
−jt− n), n ∈ Z}

and
{ψj,n(t) = 2−j/2ψ0(2

−jt− n), n ∈ Z}.
To generate an accurate multi-resolution view of the input signal, the functions ψ0 and φ0 are

chosen so that they are of sufficiently high order (typically determined empirically) and constitute
an unconditional Riesz basis. More details on the properties of the wavelet and scaling functions
can be found in Daubechies [4] and Newland [15, Chapter 17]. Multi-resolution analysis (MRA)
first coined by Mallat [12], consists of a collection of nested subspaces {Vj}j∈Z such that:

Vj ⊂ Vj−1.

Multi-Resolution analysis projects the signal xn into each of the approximation subspaces Vj . The
approximation signal is then given by the following relationship:

approxj(t) = (ProjVj
xn)(t) =

∑

n

ax(j, n)φj,n(t).

The coefficients ax(j, k) are defined through the inner product of the input signal xn with φj,n,

ax(j, n) = 〈xn, φj,n〉.

11

GM-1(z)

G0(z) H0(z)

HM-1(z)

2 2

2M-1

+
x(n) x(n)^

Analysis filters Decimators Expanders Synthesis filters

Reconstructed
signal

Input
signal

yM-2(n)

y1(n)
G1(z)

GM-2(z)

4

HM-2(z)

H1(z)

2M-1

4

2M-1

2M-1

y0(n)

yM-1(n)

(a)

GM-1(z)

G0(z) H0(z)

HM-1(z)

r0 r0

rM-1

+
x(n) x(n)^

Analysis filters Decimators Expanders Synthesis filters

Reconstructed
signal

Input
signal

yM-2(n)

y1(n)
G1(z)

GM-2(z)

r1

HM-2(z)

H1(z)

rM-2

r1

rM-2

rM-1

y0(n)

yM-1(n)

(b)

Figure 7: Filter bank structures: (a) the equivalent non-uniform structure of the tree, (b) the general
filter bank structure.

Similarly, the detail signal is given by the following relationship:

detailj(t) = (ProjWj
xn)(t) =

∑

n

dx(j, n)ψj,n(t),

where the coefficients dx(j, n) are defined through the inner product of the input signal with ψj,n,

dx(j, n) = 〈xn, ψj,n〉.

Based on the above, a resource signal can be represented without loss of information using the
coarsest grain approximation signal and the underlying details. This is shown in the following
relationship:

ResourceSignal, xn = approxJ(t) +
J∑

j=0

detailj(t)

The MRA analysis provides us with great flexibility. With this type of analysis, combinations
of approximations and details can be studied together to better understand the dynamics of resource
signals. As discussed earlier in the related work section of this paper, we performed an empirical
study of the predictability of network bandwidth traces [16] using the Tsunami toolkit. In this

12

ϕ

φ

Detail 0

Detail 2

Detail 1

Approx 0

Approx 2

Approx 1

Input

φ

ϕ

ϕ

φ

Figure 8: Multi-resolution analysis of three scales.

work, we first looked at the predictability of the detail signals and found that these signals are dif-
ficult to predict because they resemble that of white noise, a process lacking correlation structure.
For an input signal that is mostly long-range dependent (LRD), a characteristic that binned network
bandwidth traces tend to exhibit, it has been shown that the detail signals are mostly that of white
noise, making it difficult to predict [8]. This work showed this for fractional brownian motion, an
LRD process. However, this property is not true in general, and empirical studies can shed light
on the predictability of the detail signals for an unspecified random process. From the failure of
predictability on the detail signals, we looked into the predictability of the approximation signals
and found that there exists some predictability. Many times there is a particular scale that proves
to be the most predictable, a phenomenon that we coin the predictability sweet spot. The wavelet
approximation signals are closely related to binning, a technique commonly employed to look at
the multi-scale, multi-fractal properties of network bandwidth traces. The flexibility of an MRA
analysis is extremely beneficial to analyzing the properties of resource signals, and may also prove
to be important in online system building.

4 Goals and requirements

The goal of Tsunami is to facilitate two aspects of the construction of wavelet-based systems for
use in distributed systems. The first is to provide a general wavelet system for analyzing resource
signals using many different types of decompositions and basis functions. The second is to use
the toolkit in building online components in distributed systems that lead to performance gains in
prediction, dissemination and scalability.

4.1 Designing a wavelet system for research

In order to address the goals of the Tsunami toolkit, we must first understand the steps that a re-
searcher would follow to use wavelets as a tool for analyzing resource signals and then proceeding

13

to the building of online componenets. In what follows, we describe the steps a researcher would
follow to accomplish the task of constructing an online system using wavelet based techniques.

1. Construct a sensor to measure the resource signal of interest. The measurements must be
periodically sampled at a fine-grain rate such that all important characteristics of the resource
is captured. If the rate is not fine-grain enough, a strange sort of aliasing may occur, in that
the information captured will not be ground truth. The rate at which a resource is measured
should be resource appropriate.

2. Create a trace file from the sensor output in order to facilitate offline analysis of the resource.
This is important since one may go through many trials of analysis.

3. Decide upon the initial parameters of the offline wavelet analysis. These include the type
of transform, the type of decomposition, the number of levels in the decomposition and the
type of wavelet filter. This step may be repeated multiple times since there are degrees of
freedom.

4. Qualitatively or quantitatively analyze the wavelet coefficients using other offline plotting
tools and analysis tools such as Tsunami, Matlab, gnuplot or RPS to study the properties of
the output representation.

5. Manipulate the wavelet coefficients using any technique that one sees fit. Examples are
noise thresholding by zeroing out low energy coefficients, discarding various levels in the
decomposition that are deemed unimportant, or performing various types of compression
techniques.

6. Reconstruct the time-domain resource signal using a synthesis structure that matches the
analysis structure in an appropriate way. Parameters between the analysis and synthesis
structures should be matched in order to avoid unnecessary error.

7. Determine the success of the analysis by comparing the reconstructed time-domain signal
with that of the original resource signal to obtain various performance metrics.

8. Construct an online system using the parameters of the study which had yielded the best
results, and customize the system using home-grown solutions. Customized components
are placed in front of the analysis section, between the analysis and synthesis sections or at
the back of the synthesis section depending strongly on the application and the goals of the
system.

A flowchart diagram of the process is shown pictorially in Figure 9.
To address 1, there are many sensors that exist today to measure resource signals in distributed

systems. The RPS toolkit provides sensors which measure host load, network bandwidth, Windows
performance data and /proc resource signals. The Remos [11] and the Network Weather Service
(NWS) [26] systems provide sensors that measure available bandwidth between two endpoints. If
the system is to be used under the Windows operating system, the Watchtower [10] system can be
employed to measure hundreds of performance counters for generating multi-variate, periodically

14

Construct a sensor to
measure resource

signal

Create trace file from
sensor output for
offline analysis

Choose parameters
for the study

Reconstruct from
wavelet coefficients

Success?

Construct an online
system

No

Yes

Research

Analyze results
using performance

metrics

Analyze the wavelet
coefficients and

manipulate
appropriately

Figure 9: A flowchart of the steps of research using Tsunami.

Parameter Description

Transform type The transform type decides what kind of decomposition is performed. This can
be a DWT, streaming wavelet transform, wavelet packets with entropy, uniform
filter banks, or optimized low-delay filter banks. The transform can also be
dynamically changing based on the signature of the incoming resource signal.

Number of levels The number of levels in the decomposition is typically a function of the
transform type and the frequency characteristics of the resource signal to be
analyzed.

Wavelet basis function Which basis function to use is typically decided upon empirically. However,
high order basis functions increase the system delay, and therefore one would
like to use the lowest order basis function while still achieving good results.

Figure 10: The degrees of freedom of a wavelet offline analysis.

15

sampled resource signals. Each of these utilities can write the measurements of the environment to
file to be used for offline analysis, addressing item 2.

In item 3, there are many types of parameters that can be manipulated during wavelet offline
analysis. Figure 10 lists what we believe to be the degrees of freedom in offline analysis. One
must first decide what type of transform is to be used. Among the most common transforms are
the DWT, wavelet packets, or any other type of frequency decomposition ranging from uniform
to non-uniform and combinations between. The next parameter to be determined is the number
of levels used in the decomposition. A resource signal which contains high energy in the low
frequency bands will typically want to increase the number of levels in the decomposition, leading
to narrow low-frequency bands. The basis function used, which represents the filter type and
coefficients, are typically determined empirically. One can start with a Haar wavelet (DAUB2)
and increase the filter order linearly to obtain the type of smoothing required for a given application.
There are many degrees of freedom in a wavelet analysis, and researchers demand the flexibility to
experiment with each of these parameters in their work.

In order to evaluate the parameters under test listed in 4, the output of the analysis (i.e. wavelet
coefficients or reconstructed signals) are imported into other offline tools for performing statistical
analysis or to look at the output of the decomposition in qualitative fashion. Tools that we have
used for evaluating our parameter choice include Tsunami, Matlab, gnuplot and RPS. Gnuplot is
a tool that can be used to perform simple graphing of data. However, a more powerful tool for
graphing and also performing time-series analysis in a complete package is the Matlab software
from Mathworks. Tools such as RPS can be used to analyze the predictability of wavelet coef-
ficients to try and find performance gains in scheduling message transfers over network links or
scheduling computation on a set of candidate hosts. Predictors can also be employed to attempt to
reduce real-time system delay in the system.

As stated in items 5 and 6, the typical use of the wavelet transform is to manipulate the coef-
ficients for a given application, and then perform the reconstruction. When building systems that
use the wavelet transform, applications are typically placed between the transform block and the
reconstruction block that solves some a-priori purpose. This application manipulates the coeffi-
cients in a way dictated by the application. The manipulated coefficients are then reconstructed,
producing an estimate of the original resource signal.

As listed in 7, to determine the success of the simulation, a researcher will evaluate the per-
formance of a given application or study by comparing the original input resource signal and the
reconstructed resource signal in terms of some performance metric. If the metric deems the study
unsuccessful, then step 3 can be repeated with different parameters guided by the value of the per-
formance metrics under test. If the study is successful, then as step 8 suggests, a researcher may
decide to build an online system to provide enhancements to their application by the inclusion of
wavelet techniques.

Our goal is to provide a toolbox that accomodates the above steps. In order to create a tool
for facilitating research using wavelets, we have come up with many design requirements of a
wavelet-based research toolkit.

16

4.2 Design requirements of a wavelet-based system

To provide researchers with a powerful wavelet-based tool for furthering research in the under-
standing of resource signals and how they effect performance in distributed systems, we have
compiled the following design requirements. The requirements are not ordered by importance, but
rather from low-level to high-level abstractions.

Generality: The toolkit is designed so that many different communities can use Tsunami by
simply creating a domain-based sample type based on their application. This sample abstraction
should extend to blocks of samples so that samples may be aggregated and worked on in chunks.
Communities that might benefit from this tool include graphics, robotics, network systems, inter-
active art and music.

Fine-granularity objects: The building blocks of the toolkit should be fine-grained so that
many different types of structures can be constructed by appropriately connecting objects together.
The tool must allow for arbitrary decompositions from uniform to non-uniform, and also tree-
structures by the cascading of two-band filter-banks.

Extensibility in filtering: Many different types of wavelet basis functions (filter coefficients)
should be supported, as well as different types of filters such as finite impulse response filters (FIR)
and infinite impulse response filters (IIR). It should be easy to add new filters to the toolkit as the
need arises.

Multiplicity in operation: Operations in the toolkit should run in sample by sample mode, or
in block mode by the aggregation of samples into blocks. Mechanisms should be created which
allow the user to aggregate samples into a block and call block operations, or clock samples into
sample operation methods. In the transformations, state should be kept so that a user can switch
between sample and block operation at execution time by calling the correct member function.

Streaming operation: We define streaming operation as the ability to clock samples or blocks
of samples into the structure of the decomposition as soon as they are ready and have them clock
out as they have been processed. Streaming operation treats the wavelet structure as a filter bank
instead of just an algorithm as is the case with the DWT. When building online systems using
wavelets, streaming operation is an invaluable technique when delay constraints are such that it is
inappropriate to wait for a block of samples. This situation arises frequently in interactive systems
and many times in distributed systems with real-time constraints.

Compatibility with other tools: The discrete wavelet transform (DWT) and the inverse dis-
crete wavelet transform (IDWT) should be supported. In this type of transform, an input buffer is
provided, length 2M , yielding an output signal consisting of M + 1 levels, length 2M . The param-
eter M is the number of two-band filter banks, a structure that we loosely term a stage, used in the
transformation. Since it is undefined to run the DWT/IDWT in streaming sample operation, this
will only support block operations.

Flexibility in MRA: Interfaces should be constructed to obtain the approximation and detail
signals. Any combination of the two types of signals should also be supported.

Adaptability: Time varying operation should be easily achieved through mechanisms of the
design. The Tsunami design should support changing the number of bands in the decomposition,
changing the decomposition type, and changing the type of filters used in the decomposition at
run-time. This allows a researcher to adapt the structure of the analysis based on input signal
dynamics.

17

Interoperability: The Tsunami toolkit must correctly interface to RPS, implying that the sen-
sor outputs from RPS must be converted to samples that Tsunami can understand, and then back
again. The interfaces must have the ability to be serialized over the network using RPS’s mirror
abstraction.

Jitter insensitivity: The tool should be able to recover from jitter and lost samples due to
the infallability of the network. Recovery should attempt to do something reasonable such as
interpolation (essentially averaging) or simply zeroing lost samples. If samples that arrive late
have already been accounted for, the information in the late arriving sample can be used in the next
jitter action event that takes place.

In the next section, we show how to obtain, compile and use Tsunami immediately as an
analysis tool. Readers who wish to understand the software implementation before using the tool,
can skip to Section 6 and later return to the next section for usage details.

5 Using Tsunami out of the box

We have built many command line utilities that allow researchers to immediately use Tsunami after
it has been downloaded and compiled. Tsunami is made available through the release of RPS 2.
Once the release package has been downloaded and extracted from the tar file into the user defined
root directory, all documentation related to the system build is located in the directory doc. The
file BUILD provides an explanation on how to set the environment for an RPS build and how to
compile the code for a given build environment. The Tsunami toolkit is highly dependent on the
RPS build environment, and the steps outlined in the BUILD document must be followed initially.
Once these steps are completed, README.Wavelets provides an explanation on how to build
the Tsunami toolkit after all other build dependencies have been satisfied.

The Tsunami library is built from the Wavelets directory located as a sub-directory of the RPS
root directory. The directory structure located in this directory follows from the build environment
of RPS. The source code for the toolkit is located in the include and src directories. After
successful compilation, the command line utilities will be in the directory

Wavelets/bin/$RPS_ARCH/$RPS_OS

accessed from the root directory of the release. The environment variables $RPS ARCH and
$RPS OS describe the architecture of the machine and the operating system respectively. These
environment variables are artifacts of releasing Tsunami with RPS and may be changed in future
releases to its own independent project.

In this section, we provide examples of how to get started using Tsunami without learning most
of the details needed to extend and build advanced applications with our toolkit. For a discussion
on more advanced usage and extensions to the toolkit, we refer the reader to Section 7. In Figure 11
we list the statically structured, streaming utilities that we provide. Among these, we have utilities
that compute the forward transformations providing wavelet coefficients and MRA coefficients
as well as the reverse transformations that perform the reconstruction from wavelet coefficients.
Each of these utilities can be run on individual samples or on a block of samples. Also, a mix

2To download the latest version of Tsunami, please visit the RPS website located at
http://www.cs.northwestern.edu/∼RPS/

18

Utility Name Description

Streaming Static Forward Transforms
sample static sfwt Forward static transform utility that provides approximation,

detail and transform signals in sample operation
block static sfwt Same as above in sample block operation
sample static mixed sfwt Forward static transform that provides a mix of approximation

and detail signals based on a signal specification
block static mixed sfwt Same as above in sample block operation
Streaming Static Reverse Transforms
sample static srwt Reverse static transform utility that reconstructs the time-

domain signal from wavelet coefficients
block static srwt Same as above in sample block operation
sample static mixed srwt Reconstructions using a mix of approximation and detail

signals based on a signal specification. May produce error
between input signal and reconstruction based on mix of input
signals

block static mixed srwt Same as above in sample block operation
Streaming Static System Tests
sample static streaming test This utility performs a static forward transform and then

reconstructs using a delay block and a reverse transform. An
error signal is generated to show the system is working
correctly. Error should be negligible

block static streaming test Same as above in sample block operation

Figure 11: Tsunami streaming static transform command line utilities

of approximations and details can be requested by using the mixed signal utilities. Test code is
provided for determining whether the routines are working correctly after the build, and really
provide no analytical benefits. The test routines compute the error between an input signal and the
reconstructed signal. The error should be negligible if the toolbox has been installed correctly.

In Figure 12 we list the dynamic streaming utilities. The dynamic transforms are similar to the
static transforms except that the structure of the decomposition and the coefficients used can be
changed dynamically at runtime. The utilities listed here are extremely simple in that the changes
happen at periodic points in time in terms of the number of samples. A more sophisticated ap-
plication might detect epoch changes in the input signal and shape the structure or change the
coefficients accordingly. This is an area that we have given some thought to, but we do not provide
signal detection functionality in the current release of the toolkit.

In Figure 13 we list the discrete wavelet transform utilities. These utilities are a bit different
from the others in that the transform is only to be run in block mode, and the block size is a function
of the input signal length. Operations such as forward, reverse and mixed are supported in a similar
manner to that of the static streaming and dynamic streaming transforms.

The arguments of each of these utilities are different based on the type of operation. We have
recognized seven classes of command line arguments. These are basic static streaming, mixed
static streaming, basic dynamic streaming, mixed dynamic streaming, basic discrete, zerofill dis-
crete and mixed discrete command line arguments. In Figure 14, we compile a list of which utilities

19

Utility Name Description

Streaming Forward Dynamic Transforms
sample dynamic sfwt Forward dynamic transform utility that provides

approximation, detail and transform signals in
sample operation. Structure and filter changes
specified as a sample interval upon which to adapt

block dynamic sfwt Same as above in sample block operation
sample dynamic mixed sfwt Forward dynamic transform that provides a mix of

approximation and detail signals based on a signal
specification. Changes occur based on sample change
interval.

block dynamic mixed sfwt Same as above in sample block operation
Streaming Reverse Dynamic Transforms
sample dynamic srwt Reverse dynamic transform utility that reconstructs

the time-domain signal from the forward transform.
Upon a forward transform dynamic change, the reverse
transform must change similarly. Change interval is
passed as an argument

block dynamic srwt Same as above in sample block operation
sample dynamic mixed srwt Reconstructions using a mix of approximation and

detail signals based on a signal specification.
Change interval is passed as an argument. May produce
some error based on input signals

block dynamic mixed srwt Same as above in sample block operation
Streaming Dynamic System Tests
sample dynamic streaming test The system test performs a forward dynamic

transform followed by the appropriate
delay component and the reverse dynamic
transform. The structures of the forward and
reverse change according to a sample interval
passed as an argument.

block dynamic streaming test Same as above in sample block operation

Figure 12: Tsunami streaming dynamic transform command line utilities

belong to which class. The class designations are represented hierarchically in Figure 15.
The basic command line arguments for the streaming static transforms in the forward and

reverse direction follow the form

./basic_static_streaming [input-file] [wavelet-type-init]
[numstages-init] [transform-type] [flat] [output-file].

When the command is of a mixed signal type, a combination of approximation and detail
signals, an additional signal specification file is required in the argument list. The format of the
signal specificiation file is simple, and as an example we show the syntax for a user requesting five
approximation signals and five detail signals. The signal specification file has the form:

20

Utility Name Description

Discrete Transforms
discrete forward transform This utility performs the discrete wavelet transform on a block

of samples length 2M . It can provide the approximation,
detail and transform signals from the operation

discrete reverse transform This utility converts the encoded block of wavelet coefficients
back into the time-domain signal.

discrete reverse zerofill transform Same as above, but zerofills levels according to a zero
specification

discrete forward mixed This utility performs the discrete wavelet transform and
provides a mix of approximation and detail signals based on the
signal specification

discrete reverse mixed This utility converts back into the time-domain signal using a
mix of approximation and detail signals. There may be some
error involved in this operation

Discrete Transform System Tests
discrete transform test Performs a discrete wavelet transform followed by a reverse

discrete wavelet transform. The input and output of this
operation should be equivalent

Figure 13: Tsunami discrete wavelet transform command line utilities

Signal Specification File Format
Signal type followed by whitespace followed by the number of
levels in the specification and the level numbers. This is
used for mixed signal transforms. Comments are designated
by the ’#’ sign. The form is:
TYPE NUMLEVELS LEVELNUMBERS
APPROX 5 0 1 2 3 4 # set of approximation levels
DETAIL 5 0 1 2 3 4 # set of detail levels

If the requested signal levels do not make sense based on the total number of stages input to the
command line utility, then the levels that can be satisfied are returned to the user. In these types
of operations, the transform type has been excluded since an MRA analysis is assumed by the
addition of the signal specification. The command line arguments for a mixed transform has the
form

./mixed_static_streaming [input-file] [wavelet-type-init]
[numstages-init] [specification-file] [flat] [output-file].

The streaming dynamic transforms have additional arguments over the static transforms in
order to specify the frequency with which the structure and filter coefficients should change. The
command line arguments for the dynamic utilities follow the form

./basic_dynamic_streaming [input-file] [wavelet-type-init]
[numstages-init] [transform-type] [wavelet-type-new]
[numstages-new] [change-interval] [flat] [output-file].

21

Argument class and list of utilities

Basic static streaming
sample static sfwt
block static sfwt
sample static srwt
block static srwt
sample static streaming test
block static streaming test

Mixed static streaming
sample static mixed sfwt
block static mixed sfwt
sample static mixed srwt
block static mixed srwt

Basic dynamic streaming
sample dynamic sfwt
block dynamic sfwt
sample dynamic srwt
block dynamic srwt
sample dynamic streaming test
block dynamic streaming test

Mixed dynamic streaming
sample dynamic mixed sfwt
block dynamic mixed sfwt
sample dynamic mixed srwt
block dynamic mixed srwt

Basic discrete
discrete forward transform
discrete reverse transform
discrete transform test

Zerofill discrete
discrete reverse zerofill transform

Mixed discrete
discrete forward mixed
discrete reverse mixed

Figure 14: Argument classes and corresponding Tsunami utilities

As above, if the transform is of the mixed type and dynamic, then the command line arguments
for these type of utilites follow the form

./mixed_dynamic_streaming [input-file] [wavelet-type-init]
[numstages-init] [specification-file] [wavelet-type-new]
[numstages-new] [change-interval] [flat] [output-file].

The dynamic mixed transforms could have an additional signal specification for each structure
interval, but at this time we have provided just the base dynamic operation. It is a simple extension
that requires very little additional code to add this functionality.

22

Command line classes

Discrete Streaming

Basic Mixed

Static DynamicStatic Dynamic

Basic MixedZerofill

Figure 15: Command line utility class hierarchy.

The discrete wavelet transforms actually require less arguments than the streaming transforms.
This is due to the fact that the number of stages are inferred from the length of the input file. The
command line arguments for transforms of this type follow the form

./basic_discrete [input-file] [wavelet-type-init]
[transform-type] [flat] [output-file].

A reverse transformation with some of the levels zero-filled is supported by the toolkit. This
type of reverse transform requires a zero-fill specification file that designates which levels are to
be zero filled before performing the reverse transformation. The file format is similar to that of
the signal specification file shown earlier. It contains a zero-fill designator, the number of levels to
zero and the level numbers. An example of zeroing out levels 0, 1, 4 and 5 are shown as follows:

Zero-fill Specification File Format

This is the zero specification file for performing
zero fill reverse transforms. The form is:
ZERO_DESIG NUMLEVELS LEVELNUMBERS
Z 4 0 1 4 5 # Zero out levels 0, 1, 4 and 5

When using the discrete reverse transform with the zero-filling of specific designated levels, the
command line arguments follow the form

./zerofill_discrete [input-file] [wavelet-type-init]
[zerospec-file] [transform-type] [transform-type] [flat]
[output-file].

The discrete transform can also be run in mixed mode, which in that case it would be run
with the addition signal specification argument. The command line arguments for mixed signal
commands of this type follow the form

./mixed_discrete [input-file] [wavelet-type-init]
[specification-file] [flat] [output-file].

In Figure 16, a description of the arguments that we support for static and dynamic streaming
transforms and the discrete block transforms are shown. The figure lists the argument classes and

23

Streaming Discrete
Static Dynamic

Argument Description Basic Mixed Basic Mixed Basic Mixed Zerofill

input-file Formatted input file yes yes yes yes yes yes yes
of samples

wavelet-type-init The wavelet basis yes yes yes yes yes yes yes
function to use

numstages-init The number of levels yes yes yes yes no no no
in the decomposition

transform-type Approximation only yes yes yes yes yes yes yes
(APPROX), Detail only
(DETAIL), or Transform
(TRANSFORM)

specification-file Used for mixed signals no yes no yes no yes no
to specify which
approximations and
details to output

zerospec-file Used for zero-filling no no no no no no yes
levels in discrete
reverse transforms

output-file Formatted output file yes yes yes yes yes yes yes
of wavelet coefficients
or reconstructed
samples

flat Designates whether the yes yes yes yes yes yes yes
output should be human
readable or not

wavelet-type-new The wavelet basis no no yes yes no no no
function to dynamically
switch into place

numstages-new The new number of no no yes yes no no no
stages to dynamically
switch to

change-interval The amount of time in no no yes yes no no no
samples before
changing to the new
wavelet types and
number of stages

Figure 16: Tsunami command line arguments

which arguments belong to each class. In the class list, yes implies that the argument is required for
that class of input arguments while no implies the opposite. From the two figures, it is important to
note that our system test codes and reverse transforms belong to the basic argument classes but only
take TRANSFORM as the transform-type. The test utility is to observe the perfect reconstruction
property of the transform, and for the reverse transform utilities it doesn’t make much sense to

24

reconstruct using only detail or approximation signals.

To provide the reader with a flavor of a sample utility, in the following we show the source
code of one of the basic system tests, the sample static streaming test module. We choose to show
this code because it demonstrates how to use the streaming forward transforms, the delay block
required for perfect reconstruction in a streaming transform and the streaming reverse transforms.
This utility as well as all other utilities are written in the C++ programming language.

Usage for utility
void usage()
{

char *tb=GetTsunamiBanner();
char *b=GetRPSBanner();

cerr << " sample_static_streaming_test [input-file] [wavelet-type-init]\n";
cerr << " [numstages-init] [transform-type] [output-file]\n\n";
cerr << "--\n";
cerr << "\n";
cerr << "[input-file] = The name of the file containing time-\n";
cerr << " domain samples. Can also be stdin.\n";
cerr << "\n";
cerr << "[wavelet-type-init] = The type of wavelet. The choices are\n";
cerr << " {DAUB2 (Haar), DAUB4, DAUB6, DAUB8,\n";
cerr << " DAUB10, DAUB12, DAUB14, DAUB16, DAUB18,\n";
cerr << " DAUB20}. The ’DAUB’ stands for\n";
cerr << " Daubechies wavelet types and the order\n";
cerr << " is the number of coefficients.\n";
cerr << "\n";
cerr << "[numstages-init] = The number of stages to use in the\n";
cerr << " decomposition. The number of levels is\n";
cerr << " equal to the number of stages + 1.\n";
cerr << "\n";
cerr << "[transform-type] = The transform type may only be of type\n";
cerr << " TRANSFORM for this test.\n";
cerr << "\n";
cerr << "[output-file] = Which file to write the output. This\n";
cerr << " may also be stdout or stderr.\n\n";
cerr << tb << endl;
cerr << b << endl;
delete [] tb;
delete [] b;

}

25

Parse input arguments and define types
int main(int argc, char *argv[])
{

if (argc!=6) {
usage();
exit(-1);

}

istream *is = &cin;
ifstream infile;
if (!strcasecmp(argv[1],"stdin")) {
} else {
infile.open(argv[1]);
if (!infile) {

cerr << "sample_static_streaming_test: Cannot open input file "
<< argv[1] << ".\n";

exit(-1);
}
is = &infile;

}

WaveletType wt = GetWaveletType(argv[2], argv[0]);

int numstages = atoi(argv[3]);
if (numstages <= 0) {
cerr << "sample_static_streaming_test: Number of stages must be "

<< "positive.\n";
exit(-1);

}

if (toupper(argv[4][0])!=’T’) {
cerr << "sample_static_streaming_test: For streaming tests, "

<< "only TRANSFORM type allowed.\n";
exit(-1);

}

ostream *outstr = &cout;
ofstream outfile;
if (!strcasecmp(argv[5],"stdout")) {
} else if (!strcasecmp(argv[5],"stderr")) {
outstr = &cerr;

} else {
outfile.open(argv[5]);
if (!outfile) {

cerr << "sample_static_streaming_test: Cannot open output file "
<< argv[5] << ".\n";

exit(-1);
}
outstr = &outfile;

}

26

Read input data from filestream
// Read the data from file into an input vector
vector<wisd> samples;
FlatParser fp;
fp.ParseTimeDomain(samples, *is);
infile.close();

Instantiate classes and setup result containers
// Instantiate a static forward wavelet transform
StaticForwardWaveletTransform<double, wosd, wisd> sfwt(numstages,wt,2,2,0);

// Parameterize and instantiate the delay block
unsigned wtcoefnum = numberOfCoefs[wt];
int *delay = new int[numstages+1];
CalculateWaveletDelayBlock(wtcoefnum, numstages+1, delay);
DelayBlock<wosd> dlyblk(numstages+1, 0, delay);

// Instantiate a static forward wavelet transform
StaticReverseWaveletTransform<double, wisd, wosd> srwt(numstages,wt,2,2,0);

// Create result buffers
vector<wosd> outsamples;
vector<wosd> delaysamples;
vector<wisd> finaloutput;
vector<wisd> outsamp;

Perform operations
for (unsigned i=0; i<samples.size(); i++) {
sfwt.StreamingTransformSampleOperation(outsamples, samples[i]);
dlyblk.StreamingSampleOperation(delaysamples, outsamples);
if (srwt.StreamingTransformSampleOperation(outsamp, delaysamples)) {

for (unsigned j=0; j<outsamp.size(); j++) {
finaloutput.push_back(outsamp[j]);

}
}

outsamp.clear();
outsamples.clear();
delaysamples.clear();

}

27

Produce the output
for (unsigned i=0; i<MIN(finaloutput.size(), samples.size()); i++) {
*outstr << i << "\t" << samples[i].GetSampleValue() << "\t"

<< finaloutput[i].GetSampleValue() << endl;
}
*outstr << endl;

// Calculate the error between input and output
double error=0;
unsigned sampledelay =
CalculateStreamingRealTimeDelay(wtcoefnum,numstages) - 1;

unsigned i=0, j;
for (j=sampledelay; j<MIN(finaloutput.size(), samples.size()); i++, j++) {
error += samples[i].GetSampleValue() - finaloutput[j].GetSampleValue();

}

*outstr << "Mean error: " << error/(double)i << endl;

Clean up
// Destruct allocated memory
if (delay != 0) {
delete[] delay;
delay=0;

}

return 0;
}

Most utilities that we have created, have a similar structure to the code example listed above.
Most of the difference occurs because of dynamic, mixed signal or discrete operation. Each other
streaming utility that is provided in the Tsunami toolkit is a subset of what we have shown above.
The discrete transforms are block mode transforms, and are different than what is shown.

The structure of the code will become more clear after we have discussed the software imple-
mentation and design in the next section. The reader may want to come back to the above code
example after reading the next section.

6 Design and Implementation

In this section, we discuss the software design and implementation of the Tsunami toolkit. In order
to lead the discussion, Booch diagrams [3] are shown with the important attributes listed for each
class. Hierarchical representations are provided when needed.

The overall software structure of the Tsunami toolkit is shown in Figure 17. The figure shows
the objects that are created in order to create wavelet type transforms and arbitrary decompositions
from these blocks. What is not shown in the figure is the sample and sampleblock representations
used for shipping around periodic samples, and the discrete type of transforms. The discrete trans-
forms can be looked at as tree structured, but in our design, the discrete transforms are all inclusive.
It simply executes the algorithm for performing the DWT and the IDWT. We would like to direct
the reader to the similarity between this figure, and that shown earlier in Figure 6(a).

28

Periodic Sampled
Resource Signal

Ts

ForwardWavelet
Stage

To input of
ForwardWaveletStageForwardWavelet

Stage

ForwardWavelet
Stage

ForwardWaveletTransform (Static or Dynamic)

lowest_outlvl

lowest_outlvl + 1

lowest_outlvl + numstages -
1

lowest_outlvl + numstages

ReverseWavelet
Stage

ReverseWavelet
Stage ReverseWavelet

Stage

To low frequency input
of ReverseWaveletStage

ReverseWaveletTransform (Static or Dynamic)

FIRFilter
(LPF)

Down
Sample

FIRFilter
(HPF)

Down
Sample

� Wavelet coefficients
� Delay l ine

� Down sample rate

FIRFilter
(LPF)

Up
Sample

Up
Sample

FIRFilter
(HPF)

+

� Up sample rate � Wavelet coefficients
� Delay line

X[n]

Delay Block
(Optional)

Parameterized by the
number of levels and the

delay values
(used for adjusting for PR)

JitterProtectMultiStream
(Optional)

JitterProtect
Stream

(Optional)

Essential ly consists of a
JitterProtectStream for

each incoming level and
has a backlog threshold

for each level

Parameterized by a
backlog threshod

that once exceeded
indicates action
must be taken

Figure 17: System software design.

Sample<SAMPLETYPE>

• SAMPLETYPE Value;
• unsigned index;

InputSample OutputSample

WaveletInputSample WaveletOutputSample
• int level;

Figure 18: The sample class hierarchy.

A listing of the class interfaces with a description of the member functions that each provide is
in Appendix A.

6.1 Generic design starting with samples

In order to allow the design to be general for many types of users and communities, the toolkit is
built using the C++ generic class mechanisms and inheritance. In Figure 18 we show the sample
class hierarchy. At the lowest level of the toolkit there is the Sample base class that is generically
typed by a sample type. This class provides many operators to manipulate samples, such as adding
two samples together, setting the values of the sample, and getting the value of a sample. The data
attributes of this class include the sample value, and the sample index. The sample index assumes
that each sample is equally spaced apart. Typically output samples are resampled to a lower sample
rate than that of the input sample rate in order to reduce redundancy in the representation. This
was discussed in more detail in Section 3.

Inherited from the Sample base class, are two classes called InputSample and OutputSample.
In most situations, when performing wavelet transform operations the input samples and output
samples are annotated differently. For instance, the output samples of a wavelet transform have
some notion of level of the decomposition unless the level is encoded in the block ordering of the

29

SampleBlock<SAMPLETYPE>

• deque<SAMPLETYPE> samples;
• unsigned blockindex;

InputSampleBlock OutputSampleBlock

WaveletInputSampleBlock WaveletOutputSampleBlock

• int block_level;

Figure 19: The sample block class hierarchy.

samples. The input and output sample classes serve as the split between the two types of samples.
One level down in the hierarchy, are the classes WaveletInputSample and WaveletOutputSam-

ple. The WaveletInputSample class is subclassed from InputSample<SAMPLETYPE>. In our
applications, the SAMPLETYPE is of type double. The WaveletOutputSample class is a sub-
class of OutputSample<SAMPLETYPE> where the SAMPLETYPE is also of type double. The
output samples have the additional level annotation. The level of the output sample is set once
wavelet transformations are perfomred, and is meaningless until then. The level of the output sam-
ple is assigned starting with the highest frequency band designated by lowest outlvl, a parameter
of the transform operation. The level number increases as the sample represents lower frequency
information. This is explicitly shown in Figure 17.

If a user would like to create their own sample type, this is done by subclassing from the
InputSample and OutputSample classes.

6.2 Aggregating samples into blocks

Since one of the requirements of the toolkit is to perform block operations on aggregated samples,
we have created the SampleBlock data type and its subclasses. This is shown in Figure 19.

The SampleBlock class serves as the base class of the block datatypes. In the typical sense
but not restricted to, the SampleBlock class is typed by our Sample class discussed previously.
It uses the C++ Standard Template Library (STL) deque container class for aggregating blocks
of samples. The reason for using the deque data structure, is due to the fact that some of the
transformations and algorithms implemented in the toolkit contain data access patterns that add
samples to the beginning and to the end. The other data member of the SampleBlock class is the
block index. Even though samples as represented by the Sample class contain a data member for
indexing, it is much more efficient when working with sample blocks to have a block index instead
of having to peer in at the samples directly. There is an underlying assumption to using sample
blocks, and that is that each of the samples contained within the block are in order and there are no
missing samples within the block.

The SampleBlock class provides many interfaces for working with blocks of samples. These
include member functions for obtaining specific samples, obtaining a subset of the samples, push-
ing and popping samples into and out of the block, and adding two blocks together. These abstrac-
tions make it easy to work with blocks in the context of filtering, re-sampling and transforming

30

JitterProtectStream<INSAMPLE, JITTERACTION>

JitterProtectMultiStream<INSAMPLE, JITTERACTION>

• unsigned backlog_threshold;
• unsigned current_index;
• list<INSAMPLE> jitter_buffer;

• unsigned numlevels;
• unsigned *backlogs;

1

number_of_streams

Figure 20: The jitter protection classes.

blocks into the wavelet domain.
The structure of the SampleBlock hierarchy follows similarly to that of the Sample class hier-

archy. There are two subclasses of SampleBlock. These are the InputSampleBlock and the Out-
putSampleBlock. Subclassed from these are the WaveletInputSampleBlock and the WaveletOut-
putSampleBlock. The WaveletInputSampleBlock is an InputSampleBlock, but parameterized by
the sample class WaveletInputSample<double>. The WaveletOutputSampleBlock is an Output-
SampleBlock, but it contains the extra attribute to designate the level of the decomposition the
block of samples represent.

Like the sample classes, if one wants to make a different sampleblock type for a different
purpose than our specific purpose, they may simply subclass off of InputSampleBlock and Out-
putSampleBlock to address their particular needs. We believe that the sample and sample block
structure that we have created is generic to the extent that any type of sample for any type of
purpose can be created within the framework that we provide.

An example of how to work with these classes as related to our community of analyzing re-
source signal samples in distributed computing is shown as follows

// Create a type definition for input and output samples
typedef WaveletInputSample<double> wisd;
typedef WaveletOutputSample<double> wosd;

//Create some input and output blocks of samples
WaveletInputSampleBlock<wisd> inputblock;
WaveletOutputSampleBlock<wosd> outputblock;

Once the wisd and wosd types have been created, it is very easy to type other operations that we
will discuss in the following class descriptions.

6.3 Jitter protection

Because Tsunami is a system built for use in distributed computing and because, in this domain,
samples are typically sent over an unreliable network, the system must appropriately deal with
loss, corruption and samples arriving late. In order to deal with these problems, Tsunami provides
jitter components for handling all of these cases.

31

ZeroFillAction<INSAMPLE>

• unsigned JitterAction(list<INSAMPLE> &samples,
const unsigned current_indx)

InterpolateFillAction<INSAMPLE>

• unsigned JitterAction(list<INSAMPLE> &samples,
const unsigned current_indx)

Figure 21: The jitter action classes.

If Tsunami is used with TCP, corruption and loss is dealt with appropriately in the TCP protocol
stack. However, the sample arrival times are not guaranteed in TCP and therefore the system must
deal with the samples that arrive late. The varying arrival times of samples is known as jitter. In
addition, if used with UDP, there is no guarantee that samples will arrive at all, and the system will
need to deal with lost samples also. To deal with these types of reliability problems, the toolkit
provides a set of classes to handle jitter and loss in the network in the appropriate manner.

The jitter protection classes that we provide are shown in Figure 20. The class JitterPro-
tectStream can protect streams of samples or streams of blocks being sent over the network for
processing. This is typically the case when the machine running the sensor simply collects mea-
surements and sends them off to another machine for computing the transformations. This class
contains a jitter buffer for reordering the samples, an index of the sample that is next expected
from the network, and a backlog threshold that determines when to take the appropriate action for
fixing the jitter problem. The class JitterProtectMultiStream protects multiple streams of samples
by using level information and sample or block indices. This class simply uses the class JitterPro-
tectStream for each of its multiple streams. The JitterProtectMultiStream has an array of backlog
thresholds for each stream that it is protecting. When a particular threshold has been exceeded,
missing samples must be filled appropriately before processing can continue. Because there is a
notion of perfect reconstruction in wavelet analysis, jitter recovery is important for reducing the
error between the input resource signal and the reconstructed signal.

When either of these components sense jitter and or an extreme loss of samples, the jitter action
routines are called in order to keep the system moving forward. The jitter action classes are shown
in Figure 21. The first action class, ZeroFillAction, zero fills missing samples so that the system
can progress. The second action class, InterpolateFillAction, will fill in samples according to an
average over the samples received thus far. Users can extend the toolkit by adding other jitter action
classes by parameterizing JitterProtectStream and JitterProtectMultiStream by a jitter action class.
Each new jitter action class that is built, will create a JitterAction member function that takes as
arguments the current index and an STL list data structure for the newly created output samples.
As an example, to protect WaveletInputSamples from jitter as they are shipped to another machine
for transformation processing, and using the ZeroFillAction class for sample recovery, one would
instantiate a stream by the following:

// Instantiate a jitter protection class on a
// WaveletInputSample stream using ZeroFillAction

32

FIRFilter<SAMPLETYPE, OUTSAMPLE, INSAMPLE>

• vector<double> coefficients;
• deque<Sample<SAMPLETYPE> >* delayline;
• unsigned number_of_coefs;
• GetFilterOutput(Sample<SAMPLETYPE> &out,

Sample<SAMPLETYPE> &in);
• GetFilterBufferOutput(SampleBlock<OUTSAMPLE> &out,

SampleBlock<INSAMPLE> &in);

Figure 22: The FIR filter class.

UpSample<SAMPLETYPE>

DownSample<SAMPLETYPE>

• unsigned rate;
• unsigned samplecount;
• bool ZeroSample();
• void UpSampleBuffer(SampleBlock &out,

SampleBlock &in);

• unsigned rate;
• unsigned samplecount;
• bool KeepSample();
• void DownSampleBuffer(SampleBlock &out,

SampleBlock &in);

Figure 23: The up and down sample classes.

typedef WaveletInputSample<double> wisd;
JitterProtectStream<wisd, ZeroFillAction<wisd> > jps;

Although jitter protection is a much bigger requirement for Tsunami than for RPS, this set of
classes can be used for jitter protection for standard RPS communication as well.

6.4 Fine-grain building blocks

To address the goal of fine-grain building blocks, we chose to split up each of the processing com-
ponents into fine-grained modules so that many different types of structures can be constructed.
The objects that we discuss next are shown in the simple two-band filter bank example in Fig-
ure 5(b). In order to create the structure shown in the figure, we need to implement filters of
various characteristics including low-pass and band-pass responses, decimators and expanders. In
this report, we use decimators and downsamplers, and expanders and upsamplers interchangeably.

In Figure 22, we show an FIR filter implementation parameterized by the sample types con-
tained in the delay line of the filter, and the input and output sample types of the operation. At-

33

tributes of the FIR filter include the coefficients that characterize the filter, the delay line of the
filter, and the number of coefficients used in the particular filter. Since the system is based on
wavelets and we have only implemented the Daubechies designed filters [4], we currently only
have support for FIR filters. The filter class can be used in sample operation or block operation,
following the overall goal of multiplicity in operation.

In Figure 23, we show the up and down sampling classes. The decimator section of the structure
is implemented in the DownSample class and is parameterized by the type of sample that will be
input and later output. The assumption with the DownSample class, is that whatever sample type
is input will also be output. The down sample operation can be run at any down sample rate which
is typically a function of the type of decomposition. In the two-band structure shown in the figure,
we down sample by two. The operation can be run on samples by using the member function
KeepSample() or in block mode with the function DownSampleBuffer().

The expander section is implemented in the UpSample class and is parameterized by the type
of sample, similar to the DownSample class. It contains the same assumptions related to the
parameterization of input and output samples as the DownSample class. The up sample class
can be run at any rate and is also a function of the type of structure. In the two-band figure
decomposition, the up sample rate is two. Similarly to the DownSample class, the UpSample class
can be run on samples or on blocks of samples.

6.5 Support for many filters

In order to support the goal of extensibility in filtering, we would like to support many different
types of filters. At this time, however, we have only implemented the FIR filter type. Other
types of filters that we may like to have in the future include infinite impulse response (IIR) filters
and paraunitary block filters that provide for greater computational efficiency. Due to the generic
structure of our filter design, and how these objects fit into the overall structure of a transformation,
any type of filtering operation can be performed on input or output samples.

We currently have support for the wavelet coefficients designed by Daubechies, from DAUB2
(the Haar wavelet) to DAUB20. Since the Daubechies coefficients are constrained to even order, we
currently provide ten different types of wavelet filters. As the Daubechies wavelet filters increase
in order, the decomposition tends to smooth. However, there is a tradeoff between smoothness and
system delay, which we will discuss further in Section 8.

We have also implemented two examples of low-delay filter bank filters with different delay
signatures copied directly from the work done by K. Nayebi et al [14]. We primarily took examples
of low-delay filters from this paper to validate its claims. Our future plans is to implement the
low-delay filter bank algorithm in the Tsunami toolkit in order to provide the same functionality
with low-delay. Low-delay operation is extremely important in general for many applications, but
especially for interactive applications. The algorithm designs uniform and non-uniform low-delay
filter banks based on the number of bands required in the decomposition, the number of coefficients
in each filter, the frequency response of the analysis filters, and the overall system delay. These
parameters are then input into an optimization procedure which, after convergence, provides the
filter coefficients for the analysis and synthesis filters. There are other types of extensions that
might also prove beneficial, such as the modulated filter bank techniques found by G. Schuller and
T. Karp [20].

34

FIRFilter

DownSample

WaveletCoefficients

• WaveletType
• StageType

WaveletStageHelper
ForwardWaveletStage

ReverseWaveletStage

UpSample

2

1 1

1

1 1

1

1

1

2

1
2

Figure 24: The stage relationships.

Our hope is that the interfaces that we have provided and the general organization of the toolkit
is such that other users of the system find it easy to implement their own types of filters to fit
their needs. This is done by simply adding coefficients to the source file coefficients.cpp, and
instantiating the appropriate filter type with the newly added coefficients. More elaborate details
are given on how to add filters and filter types in Section 7.

6.6 Stages

From the implementation of filters, decimators and expanders, many different types of structures
can be built. We have built forward stages and reverse stages for use in tree-structured decom-
positions from these fine-grained objects. The Booch diagram of a stage is shown in Figure 24.
Each stage class, ForwardWaveletStage and the ReverseWaveletStage each contain one helper ob-
ject WaveletStageHelper. This helper class contains the commonality of both the forward and
reverse stages, namely FIR filters and the coefficients of these filters. The class ForwardWavelet-
Stage customizes the wavelet stage helper to provide the analysis filters and also contains the two
down samplers. The stage abstraction also provides a notion of the output level numbers that it
is responsible for in order to avoid ambiguity when we chain stages together to create various de-
compositions. The class ReverseWaveletStage contains one wavelet stage helper customized with
the synthesis filters and also two up samplers. This stage type does not need any notion of level at
the output, because it is typically used to convert back to a one-dimensional time-domain resource
signal.

From the stages, we then create tree-structured decompositions as shown in Figure 6(a), or
other more balanced tree structures for other decompositions of the resource signal. Currently,
Tsunami supports classes for creating the tree-structure types shown by the chaining of two-band
stages together. However, the design is general enough for any other type of structure that one
might want to create.

6.7 Transforms

All decompositions except for the DWT and IDWT operations have been created to handle run-
ning transforms in sample or in block transform mode, thus satisfying the goal of multiplicity in

35

StaticForwardWaveletTransform StaticReverseWaveletTransform

ForwardWaveletStage ReverseWaveletStage

• numlevels
• output_indices

• numlevels
• output_indices

1 1

Numlevels – 1 Numlevels – 1

Figure 25: The static transform classes.

operation. In the sections that follow, we discuss the various types of transforms provided in the
toolkit.

6.7.1 Static transforms

Figure 25 shows how static transforms in forward and reverse direction are constructed. Forward
directed transforms take as input a one-dimensional resource signal and produce as output the
wavelet coefficients. Reverse directed transforms take as input the wavelet coefficients and pro-
duce as output the reconstructed one-dimensional signal. Each transform contains numlevels− 1
stages, producing a total of numlevels of approximation and detail signals. The number of lev-
els in the decomposition is highly dependent on the dynamics of the input resource signal. The
StaticForwardWaveletTransform class, is instantiated with the number of stages, the wavelet basis
function type, the down sample rates and the lowest output level in the decomposition. Once the
structure has been instantiated, the transform can be run in sample or block operation mode by
calling the correct member function.

The StaticReverseWaveletTransform, is instantiated with the number of stages, the wavelet
basis type, the up sample rates and the lowest input level of the samples or blocks streaming into
the structure. Once instantiated, the reverse transforms can be run in sample or block operation, and
also contains functions for zeroing out levels that are deemed unimportant in the reconstruction.

A more detailed description of the member functions for the static transform classes are listed
in Appendix A.

6.7.2 Dynamic transforms

As shown in Figure 26, the dynamic transforms are subclassed from the static transforms. These
transforms are constructed to specifically address the requirement for time-varying operation, and
have additional member functions over the static transforms for this. Each of the dynamic trans-
forms, the DynamicForwardWaveletTransform and the DynamicReverseWaveletTransform, con-
tain member functions for adding and removing stages and changing the wavelet basis functions
at various stages. These changes in structure and operation can be made at run-time by calling
the appropriate operations. At this time, when a stage is added or removed or the wavelet basis
function is changed, there is an associated transition error seen between the output of the reverse
wavelet transform and the input resource signal. In order to combat this transitional error, the work

36

DynamicForwardWaveletTransform DynamicReverseWaveletTransform

StaticForwardWaveletTransform StaticReverseWaveletTransform

• AddStage()
• RemoveStage()
• ChangeBasisFunction()

• AddStage()
• RemoveStage()
• ChangeBasisFunction()

Figure 26: The dynamic transform classes.

DelayBlock<SAMPLE>

• unsigned numlevels;
• int *delay_values;
• vector<deque<SAMPLE>* > dbanks;
• StreamingSampleOperation();
• StreamingBlockOperation();

Figure 27: The delay block class.

implemented by I. Sodagar, K. Nayebi and T. P. Barnwell on time-varying filter banks and wavelets
should be implemented [23].

6.7.3 The delay block

Figure 17 shows where the delay block is placed in the software diagram, and Figure 27 describes
the implementation of the class. The delay block is required to phase align the various levels of
the streaming transform in order to achieve the perfect reconstruction property. This block is not
required for the discrete transforms. Without this block, the low level, high frequency bands, are
filtered through the structure faster then the higher level, low frequency bands, and are not properly
phase aligned. This block does the re-aligning required to achieve perfect reconstruction.

6.7.4 Discrete wavelet transforms

Figure 28 shows the discrete transforms that are currently supported in the toolkit. Each of these
transforms have data members for the wavelet type (i.e. Haar, D4, etc.) and the coefficients of
this type for implementing the discrete algorithms. These transforms are different from the other
two that we have discussed thus far, in that there is an implicit assumption relating the input to
the output. The assumption of the ForwardDiscreteWaveletTransform is that it takes as input a
SampleBlock of length 2M , and produces as output a block of samples that represent M + 1 lev-
els of wavelet coefficients. The output block that is generated is specially encoded in the class
DiscreteWaveletOutputSampleBlock, a subclass of OutputSampleBlock. The encoding is shown
in Figure 29. The ReverseDiscreteWaveletTransform takes as input the DiscreteWaveletOutput-
SampleBlock and reconstructs back into the type SampleBlock representing the reconstructed

37

ForwardDiscreteWaveletTransform

ReverseDiscreteWaveletTransform

• WaveletType wt;
• WaveletCoefficients wc;

• WaveletType wt;
• WaveletCoefficients wc;

Figure 28: The discrete transform classes.

L0L1LM LM -1

Length 2M

0 2M–1 –1 2M–12M–2–1

2M–12M–2

2M–1

11

1 2 2M–2

2M–2–2

Figure 29: The encoding of the DiscreteWaveletOutputSampleBlock. Shown are the indices of
the block and the lengths of each segment. The levels are designated by Li, where i is the level
number.

time-domain signal.

Following from the other transforms discussed earlier, the DWT can produce all of the approx-
imation and detail signals, as well as the transform representation of one approximation and a set
of details, and the mixed signal representations. For more details on the specific functions in the
discrete classes, refer to appendix A.

From the requirements and goals of the Tsunami toolkit, we have created a first version im-
plementation. There is still much work to be done in order to completely fulfill these goals, but
as a first release, most requirements have been satisfied. The implementation has a flavor of the
complete tool that we would like to eventually have, and will only become more closely matched
to the goals of the project over time.

38

7 Advanced usage and extensions

In this section, we will describe how to use Tsunami built in interfaces to construct decompo-
sitions provided in the toolkit. From the following code examples, it should become clear how
to piece together more sophisticated decompositions with the provided building blocks. We start
by describing the code contained within the StaticForwardWaveletTransform for decomposing the
signal into a non-uniform decomposition. From here we show the code for instantiating the recon-
struction structure using the StaticReverseWaveletTransform code. This provides the reader with
a concrete example of how to construct decompositions using Tsunami building blocks.

In the second part of this section, we discuss extensions to the Tsunami toolkit. Wavelet packets
(a more general wavelet structure), time-varying operation and filter extensions are discussed.

7.1 Using Tsunami building blocks for advanced decompositions

In this section, we discuss how to instantiate a static wavelet transform by using the code contained
in the StaticForwardWaveletTransform class. From the stage class, many other types of decom-
positions can be created. We will also show a reconstruction using reverse stages from the code
contained in the StaticReverseWaveletTransform class.

The constructor code that follows takes as input the number of stages in the decomposition,
the wavelet filter type, the downsample rates on the low-pass and high-pass branches and the
lowest output level. The code performs checks as to the sanity of the number of stages, and
initializes protected data members for indexing and output level annotation. Next, the first stage
in the decomposition converts the INSAMPLE type to the OUTSAMPLE type. The remaining
stages work with OUTSAMPLE types only. The chaining of stages in this code is represented as
a vector of stages.

39

Non-uniform decomposition using forward stages
template <typename SAMPLETYPE, class OUTSAMPLE, class INSAMPLE>
StaticForwardWaveletTransform<SAMPLETYPE, OUTSAMPLE, INSAMPLE>::
StaticForwardWaveletTransform(const unsigned numstages,

const WaveletType wavetype,
const unsigned rate_l,
const unsigned rate_h,
const int lowest_outlvl)

{
unsigned i;

// Argument checks and data initializations
if ((numstages == 0) || (numstages > MAX_STAGES)) {
this->numstages = 1;

} else {
this->numstages = numstages;

}
this->numlevels = this->numstages + 1;
this->lowest_outlvl = lowest_outlvl;

for (i=0; i<numlevels; i++) {
index_a[i] = 0;
index_d[i] = 0;

}

int outlvl = lowest_outlvl;

// The lowest stage converts from INSAMPLES to OUTSAMPLES
first_stage = new
ForwardWaveletStage<SAMPLETYPE, OUTSAMPLE, INSAMPLE>(wavetype,

rate_l,
rate_h,
outlvl,
outlvl);

// Setup the remaining stages of the tree (tree represented by
// a vector named stages)
ForwardWaveletStage<SAMPLETYPE, OUTSAMPLE, OUTSAMPLE>* pfws;
for (i=0; i<this->numstages-1; i++) {
outlvl++;
pfws = new ForwardWaveletStage<SAMPLETYPE, OUTSAMPLE, OUTSAMPLE>

(wavetype, rate_l, rate_h, outlvl, outlvl);
stages.push_back(pfws);

}
}

In the code example that follows, we show how to set up the reconstruction structure using re-
verse stages. The constructor code shown takes as input the number of stages in the reconstruction,
the wavelet filter type, the upsample rates of the low-pass and high-pass branches and the lowest
input level. After argument checks and data member initialization for sample annotation is com-
plete, the last stage is instantiated which converts from an INSAMPLE to an OUTSAMPLE. Next,
the remaining reverse stages are instantiated and represented as a vector of stages. The remaining

40

stages work solely on OUTSAMPLE types.
Non-uniform reconstruction using reverse stages

template <typename SAMPLETYPE, class OUTSAMPLE, class INSAMPLE>
StaticReverseWaveletTransform<SAMPLETYPE, OUTSAMPLE, INSAMPLE>::
StaticReverseWaveletTransform(const unsigned numstages,

const WaveletType wavetype,
const unsigned rate_l,
const unsigned rate_h,
const int lowest_inlvl)

{
// Argument checks and data initializations
if ((numstages == 0) || (numstages > MAX_STAGES)) {
this->numstages = 1;

} else {
this->numstages = numstages;

}
unsigned i;
this->numlevels = this->numstages+1;
this->lowest_inlvl = lowest_inlvl;
this->index = 0;
this->incoming_index_init = false;
for (i=0; i<MAX_STAGES+1; i++) {
incoming_index[i]=0;

}

// Set up the input signal buffers
for (i=0; i<numlevels; i++) {
SampleBlock<INSAMPLE>* psbis = new SampleBlock<INSAMPLE>();
insignals.push_back(psbis);

}

// Set up the buffers that reside between stages
for (i=0; i<this->numstages-1; i++) {
SampleBlock<INSAMPLE>* psbis = new SampleBlock<INSAMPLE>();
intersignals.push_back(psbis);

}

// Instantiate the last stage that converts from INSAMPLE to OUTSAMPLE
last_stage = new ReverseWaveletStage<SAMPLETYPE, OUTSAMPLE, INSAMPLE>

(wavetype, rate_l, rate_h);

// Instantiate the remaining reverse stages
for (i=0; i<this->numstages-1; i++) {
ReverseWaveletStage<SAMPLETYPE, INSAMPLE, INSAMPLE>* prws =

new ReverseWaveletStage<SAMPLETYPE, INSAMPLE, INSAMPLE>(wavetype,
rate_l,
rate_h);

stages.push_back(prws);
}

}

From the two-band wavelet filter banks, a structure that we refer to as stages, many other types
of decompositions can be created. A uniform decomposition that looks like a full binary tree can

41

S

D1A1

AA2 DA2 AD2 DD2

AAA3 DAA3 ADA3 DDA3 AAD3 DAD3 ADD3 DDD3

Figure 30: Wavelet packet decomposition tree at level three.

be constructed using the stages by choosing the correct container type for holding the stages (i.e. a
list of stages) and devising the correct level annotations. We will discuss uniform decompostitions
next in the wavelet packet section.

7.2 Extensions

Based on the flexible design of the Tsunami toolkit, many extensions can be created for different
types of purposes. In this section we look at a few of the extensions that are possible with the
toolkit. The extensions that we will discuss in this section include wavelet packets, time-varying
and adaptive operation, and adding more filter types and coefficients to the library.

7.2.1 Wavelet packets

In what follows from our discussion of filter banks from Section 3, signal decompositions can
be non-uniform such as the wavelet decompositions that we have shown thus far, or they can be
uniform depending on how the stages are chained together. A uniform signal decomposition using
wavelet basis functions, is known as wavelet packets. Wavelet packets have been shown to be
useful when looking for a powerful analysis technique that shapes the decomposition based on
the signal. Typically the decomposition is determined based on the entropy information of the
signal [13]. If nodes of the full-binary tree provide no information (zero entropy), than that node is
removed. It is fairly easy to use the Tsunami toolkit to create a wavelet packet decomposition. A
diagram of a full wavelet packet system is shown in Figure 30. Instead of just the approximation
signal being split, the detail signals are also split to balance the tree. The wavelet transform, based
on this figure, consists of all the left half of the tree and the output of block D1.

The decomposition consists of creating a tree using ForwardWaveletStage and ReverseWavelet-
Stage in such a way that the tree is balanced and the decomposition uniform. When one decides
to build such a decomposition, the output levels will have to be tagged to each stage appropriately.
In addition, any of the standard wavelet basis functions used earlier may be used in the wavelet
packet decomposition, and perfect reconstruction can still be maintained. Other trees can be cre-
ated arbitrarily using the forward and reverse stages, and can be adjusted to the various types of
signals to be analyzed. Since the stages are parameterized by the up and down sampling rates, the

42

Epoch detector

Numlevels=N0
Basis=B0

Numlevels=N1
Basis=B1

Input
Signal

Output t0

Output t1

Switch

Figure 31: High level view of time-varying operation.

basis function coefficients, and the output level numbers, any type of decomposition is achievable
through the correct manipulation of the stage abstraction that we have provided.

In the next subsection, we will talk about how decompositions may adapt to a non-stationary
resource signal using time-varying decompositions and through the changing of wavelet basis func-
tions (the filter coefficients) at run-time.

7.2.2 Time-varying, adaptable decompositions

Figure 31 shows a high level view of time varying operation. A detection block peers into the
dynamics of the input signal and determines what type of structure and wavelet filters should be
used in a particular epoch. The figure shows only two choices but there could be multiple struc-
tures and filters used. The Tsunami toolkit offers a dynamic transform class that allows stages to
be added and removed dynamically at run-time based on signal detection schemes. In addition,
wavelet filter coefficients can also be changed at run-time, and is typically dependent on mini-
mizing computation. This type of operation may prove extremely useful for resource signals that
exhibit non-stationary behavior in detectable epochs. In order to properly achieve time-varying
operation with low error, it can be decomposed into a detection problem for finding epoch changes
followed by transition filters to reduce the error from changing stages and/or coefficients, to the
steady state operation once the old structure state has progressed out of the delay line of the fil-
ters. The epoch changes may be detected using thresholding, but more sophisticated techniques
may need to be employed. This is an area that we will avoid talking about in this report, but is
something that we are interested in looking at in more detail.

In order to design transition filters that ease the error of changing the structure of the decom-
position at run-time, one should first determine how many different structures will be supported,
which translates into the number of different decompositions. The design of the transition fil-
ters turn into an optimization problem over the various states between the old and new struc-
ture [23, 19]. This is a very powerful and interesting area of work that can be supported by the
Tsunami toolkit. In order to support time-varying operation, one would need to add the transition
filters to the toolkit, a topic which will be discussed in the next subsection. One would then either
build their own decompositions using the forward and reverse stages, or use our class Dynamic-
ForwardWaveletTransform and DynamicReverseWaveletTransform. One limitation of this class is

43

that stages can only be added or removed one at a time. To make this class more powerful, we
should offer member functions to change the structure more dramatically, but this can be achieved
by calling the member functions AddStage and RemoveStage a successive number of times.

By looking closely at the transforms that are offered in the toolkit, it appears that the static
transform classes also support structure changes. While it is true that the static classes have the
ability to change the wavelet filter coefficients and the number of stages at run-time, this removes
all stored state in the structure and may cause a prohibitive amount of error between the recon-
struction signal and the input signal. This type of operation should be avoided if used in an online
system where error needs bounds, and should mainly be used for analysis only.

In the next subsection, a discussion on how to add wavelet filter coefficients and different types
of filters is discussed.

7.2.3 Extending the filters

In our base implementation of the Tsunami toolkit, we provide the Daubechies wavelet filters
to be used for analysis and synthesis filters. The types that we offer are the Daubechies filters
D2, D4, D6, ..., D20. Because this set is somewhat limited, there may be a need for more powerful
filters in the future. We will now discuss how to add filters to the Tsunami toolkit.

The most simple way to create a new filter is to increase the number of wavelet types and
label the new type in the file waveletinfo.h. Next, the coefficients need to be added to the file
coefficients.cpp as well as inserting the new coefficients in the wavelet coefficient table and adding
a human-readable name for the filter. This is shown below using the D2 wavelet, the Haar wavelet,
as an example.

44

Filter tables
// DAUBECHIES WAVELETS

// N=2, Haar wavelet
const double daub_g2[2] = {1.0/sqrt(2.0),

1.0/sqrt(2.0)};

// Add Haar to coefficients table
const double *waveletCoefTable[NUM_WAVELET_TYPES] = {daub_g2,

daub_g4,
daub_g6,
daub_g8,
daub_g10,
daub_g12,
daub_g14,
daub_g16,
daub_g18,
daub_g20};

const unsigned numWaveletCoefTable[NUM_WAVELET_TYPES] = {2,
4,
6,
8,
10,
12,
14,
16,
18,
20};

char *waveletNames[NUM_WAVELET_TYPES] = {"Daubechies 2 (Haar)",
"Daubechies 4",
"Daubechies 6",
"Daubechies 8",
"Daubechies 10",
"Daubechies 12",
"Daubechies 14",
"Daubechies 16",
"Daubechies 18",
"Daubechies 20"};

The filters shown in the above table are only the low-pass filter coefficients, g(n). From these
coefficients, the high-pass analysis filters and the low-pass/high-pass synthesis filters can be solved
for using the CQF properties [22]. If this is not the case, then both the low-pass and high-pass filters
for the analysis and synthesis stages will need to be added to the tables appropriately. In addition,
the CQFWaveletCoefficients class should be avoided, and a new class built that provides the co-
efficients of the four different filters. Other filter types besides CQF types based on Daubechies’
work might be implemented in the future, but is not provided at this time. However, if your filter
is of the CQF type, it is very easy to add a new filter to the toolkit, and the code itself generates the
other three required filters based on the CQF constraints.

45

8 System performance and delay

In this section, we detail the performance of the Tsunami toolkit and analyze the real-time system
delay of the filter bank structures. The performance tests observe the scalability of adding stages
to the decomposition (adds more levels) while keeping the number of samples processed and the
wavelet types constant. In addition the scalability of using different wavelet types, corresponding
to the filter order, are analyzed while keeping the number of samples to process and the number of
stages fixed.

Other performance tests measure CPU overhead as a function of sample rate. The sample rate is
sweeped to high rates and measured in terms of measured load and percentage of CPU consumed.

The real-time system delay section analyzes the expected real-time system delay for streaming
transforms and discrete transforms. The real-time system delay is an important design constraint
for deploying online wavelet-based systems.

8.1 System performance

In order to analyze the system performance of the Tsunami toolkit, we have composed several
tests to determine the impact of using this system in online distributed applications. The tests are
performed using a trace data set of host load sampled at a 1Hz sampling rate 3. The tests that are
run are data independent, but we still use a representative resource signal trace for the performance
tests. All tests are run on an unloaded, single processor, 2 GHz Pentium 4 with an 8 KB L1 data
cache, and 512 KB L2 cache. The memory size for this machine is 512 MB. The operating system
used in the tests is RedHat Linux 7.3, kernel version 2.4.18.

8.1.1 Scalability

In this section, we measure how the system scales as a function of the parameters listed in Fig-
ure 10. Figure 32 (a) and (b) shows the scalability of the streaming forward and reverse transforms
as the number of stages are increased from one to twenty while keeping the wavelet type and num-
ber of samples processed constant. The wavelet type used in these tests are the D10 and 262,144
samples are processed. The performance metric used in these tests is the mean-time to completion
to process all of the input samples. As expected, as the number of stages are increased, the mean
completion time tends to level out. This is because as a new stage is added, it must process half the
amount of samples as the stage before, and therefore the lessened amount of work tends to flatten
the mean completion time. Early stages in the chain perform most of the work in the transform due
to having to process the most samples.

In Figure 32 (c) and (d), we show the scalability of the streaming transforms as the wavelet type
is increased from D2 (Haar) to D20 while keeping the number of stages and number of samples
processed constant. The number of stages used in these tests are 10 and the same number of
samples are processed as in (a) and (b). As the filter changes from a DN to DN+2, the number of
additional operations that must be performed is two extra multiplications and accumulations per
stage. Therefore, we expect a linear relationship in the mean-time to completion as the wavelet
type is increased.

3Host load traces are available at http://www.cs.northwestern.edu/∼pdinda/LoadTraces

46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

Number of Stages
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

0.5

1

1.5

2

2.5

3

3.5

Number of Stages

(a) (b)

D2 D4 D6 D8 D10 D12 D14 D16 D18 D20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wavelet Types
D2 D4 D6 D8 D10 D12 D14 D16 D18 D20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wavelet Types

(c) (d)

Figure 32: Streaming transform scalability. Scalability of the (a) forward transform and (b) the
reverse transform as stages are added. The wavelet type is a DAUB10 for these tests. Scalability of
the (c) forward transform and (d) the reverse transform as the wavelet type increases from DAUB2
to DAUB20. The stages are fixed at 10 for these tests.

Figure 33 (a) and (b) shows the scalability of the discrete forward and reverse transforms as the
blocksize is increased from two to 1024 samples while keeping the wavelet type and total number
of samples to process constant. The wavelet type used is a D10 and 262,144 samples are processed.
The 262,144 samples are split into blocks and the discrete transforms are run successively for each
blocksize. The performance metric in this set of tests is again the mean-time to completion. The
blocksize in the discrete transforms determine the number of levels in the decomposition. As
expected, as the blocksize increases the mean-time to completion decreases. The reason for this is
twofold. First, as the blocksize is increased, there are less calls to the discrete transform routine.
Secondly, the amount of work to be performed at higher levels, where levels is a function of
blocksize, decreases exponentially.

In Figure 33 (c) and (d), we show the scalability of the discrete forward and reverse transforms
as the wavelet type is increased from D2 to D20. The blocksize for these tests are 1,024 samples
and 262,144 samples are processed to completion. For reasons discussed above, the relationship
of wavelet type to mean completion time is linear as the wavelet type is increased. This is again
due to the constant increase in the number of operations performed for each new wavelet type at
each stage.

47

2 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

1.2

Blocksize
2 4 8 16 32 64 128 256 512 1024

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Blocksize

(a) (b)

D2 D4 D6 D8 D10 D12 D14 D16 D18 D20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Wavelet Types
D2 D4 D6 D8 D10 D12 D14 D16 D18 D20

0

0.1

0.2

0.3

0.4

0.5

0.6

Wavelet Types

(c) (d)

Figure 33: Discrete transform scalability. Scalability of the (a) discrete forward transform and
(b) the discrete reverse transform as the blocksize varies from 2 to 1024. The wavelet type is a
DAUB10 for these tests. Scalability of the (c) discrete forward transform and (d) discrete reverse
transform as the wavelet type changes from DAUB2 to DAUB20. The blocksize is fixed at 1024
for these tests.

8.1.2 Performance as a function of sample rate

In this section, we measure how the system performs as a function of the sample rate. All tests
in this section first start a vmstat monitor to measure the percentage of cpu consumed over time.
After a quiesce time of 50 seconds, a loadmonitor is started to estimate the measured load on the
machine. At the beginning of the test, a rather large data file is loaded and the system quiesces for
another 50 seconds. After this period is over, we sweep the sampling rate from 5.12 kHz to 327.8
kHz followed by a maximum rate test where 1024 blocks of size 65,536 samples are run as fast
as possible. After the max rate test, the system returns for 400 seconds to a state where just the
vmstat and the load monitor are running.

Figure 34 shows the performance of streaming transforms as a function of sample rate. In (a),
the percentage CPU used is shown for the streaming forward transform. The system can sustain
a sample rate on the order of 40 kHz while keeping the percentage of CPU used under 10%. In
(b), the percentage CPU used is shown for the streaming reverse transform. The reverse transform
performs a bit worse than the forward transform. This is probably due to the extra additions per
stage as realized in the reverse transform. The reverse streaming transform also sustains a sample

48

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

P
er

ce
nt

ag
e

of
 C

P
U

 U
se

d

vm
st

at

vm
st

at
 +

 lo
ad

m
on

lo
ad

 d
at

a
fil

e
an

d
qu

ie
sc

e

5.
12

 k
H

z

10
.2

4
kH

z

20
.4

8
kH

z

40
.9

6
kH

z

81
.9

2
kH

z

16
3.

84
 k

H
z

32
7.

68
 k

H
z

M
ax

 r
at

e,
 1

02
4

bl
oc

ks

bl
oc

ks
iz

e
=

 6
5,

53
6

sa
m

pl
es

vm
st

at
 +

 lo
ad

m
on

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

P
er

ce
nt

ag
e

of
 C

P
U

 U
se

d

vm
st

at

vm
st

at
 +

 lo
ad

m
on

lo
ad

 d
at

a
fil

e
an

d
qu

ie
sc

e

5.
12

 k
H

z

10
.2

4
kH

z

20
.4

8
kH

z

40
.9

6
kH

z

81
.9

2
kH

z

16
3.

84
 k

H
z

32
7.

68
 k

H
z

M
ax

 r
at

e,
 1

02
4

bl
oc

ks

bl
oc

ks
iz

e
=

 6
5,

53
6

sa
m

pl
es

vm
st

at
 +

 lo
ad

m
on

(a) (b)

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

M
ea

su
re

d
Lo

ad

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

M
ea

su
re

d
Lo

ad

(c) (d)

Figure 34: Streaming transform performance as a function of sample rate. Percentage of CPU
used as a function of sample rate for the (a) forward and (b) reverse transform. Measured load as
a function of sample rate for the (c) forward and (d) reverse transform.

rate on the order of 40 kHz while keeping the percentage of CPU used under 10%. In (c) and (d)
the measured load as a function of time and sample rate are shown for the forward and reverse
transform respectively. The measured load is typically under 0.2 for sample rates as high as 40
kHz. For typical sample rates used in distrubuted systems (i.e. 1 Hz), the load and percentage of
CPU used is negligible. This can be inferred from the load and percent CPU used at 5.12 kHz. At
this rate, the percent CPU used is in the noise and is commonly 0 or 1 percent. Due to the averaging
nature of load measurements in the linux operating system, it is hard to estimate the measured load
at a sampling rate of 5.12 kHz rate, but the measured load at 10.24 kHz is zero, so it can also be
inferred that the load is zero for a 5 kHz rate.

Figure 35 shows the performance of the discrete transforms as a function of sample rate and
time. In (a) and (b) we show the percentage of CPU consumed as a function of sample rate for
the discrete forward and discrete reverse transforms respectively. The discrete transforms perform
better as a function of sample rate when compared with the streaming transforms. Both transform

49

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

P
er

ce
nt

ag
e

of
 C

P
U

 U
se

d

vm
st

at

vm
st

at
 +

 lo
ad

m
on

lo
ad

 d
at

a
fil

e
an

d
qu

ie
sc

e

5.
12

 k
H

z

10
.2

4
kH

z

20
.4

8
kH

z

40
.9

6
kH

z

81
.9

2
kH

z

16
3.

84
 k

H
z

32
7.

68
 k

H
z

M
ax

 r
at

e,
 1

02
4

bl
oc

ks
bl

oc
ks

iz
e

=
 6

5,
53

6
sa

m
pl

es

vm
st

at
 +

 lo
ad

m
on

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

P
er

ce
nt

ag
e

of
 C

P
U

 U
se

d

vm
st

at

vm
st

at
 +

 lo
ad

m
on

lo
ad

 d
at

a
fil

e
an

d
qu

ie
sc

e

5.
12

 k
H

z

10
.2

4
kH

z

20
.4

8
kH

z

40
.9

6
kH

z

81
.9

2
kH

z

16
3.

84
 k

H
z

32
7.

68
 k

H
z

M
ax

 r
at

e,
 1

02
4

bl
oc

ks

bl
oc

ks
iz

e
=

 6
5,

53
6

sa
m

pl
es

vm
st

at
 +

 lo
ad

m
on

(a) (b)

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (seconds)

M
ea

su
re

d
Lo

ad

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (seconds)

M
ea

su
re

d
Lo

ad

(c) (d)

Figure 35: Discrete transform performance as a function of sample rate. Percentage of CPU used
as a function of sample rate for the (a) forward and (b) reverse discrete transforms. Measured load
as a function of sample rate for the (c) forward and (d) reverse discrete transforms.

Transform type Samples per second

Streaming forward transforms 156.10K
Streaming reverse transforms 131.84K
Discrete forward transforms 185.99K
Discrete reverse transforms 177.02K

Figure 36: Average maximum samples per second sustained for streaming and discrete transforms.

directions can sustain a sample rate of 81.92 kHz while keeping the percentage of CPU used less
than 14%. The measured load is also less than 0.2 for sample rates at or around 81.92 kHz. This is
to be expected since the discrete transforms are based on an efficient algorithm [12].

Figure 36 shows the average maximum sampling rate achievable by the various transform meth-
ods. In this test each of the various transform methods listed are run as fast as possible. The number
of samples processed in this test are 8,388,608 samples. The time is measured and the number of

50

Transform type System delay, nd

Streaming transforms 2M (N − 1) + 2 −N + 2 · TsCOMP

Discrete transforms 2M · ∆T + 2 · TdCOMP

Figure 37: Real-time system delay for each type of transform.

samples per second are calculated. The reverse transforms perform a bit worse than the forward
transforms, but this is to be expected due to extra operations.

8.2 Real-time system delay

The types of transforms that are provided in the base implementation of the Tsunami toolkit, have
varying real-time system delays based on the type of transform and the wavelet filter type used. The
real-time system delays for each transform type is shown in Figure 37. In the figure, M designates
the number of stages (M + 1 is the number of levels), N is the number of filter coefficients for a
particular wavelet type (N = 2 for the Haar wavelet), ∆T is the sampling period, and TsCOMP

and TdCOMP is an estimate of the computational time for performing the streaming or discrete
transform respectively.

As can be seen in the table, each type of transform contains exponential real-time system delays
in terms of the number of stages in the decomposition. For low sampling rates using a large number
of decomposition levels, this delay may be prohibitive. Finding ways to minimize real-time system
delay is an area of research that we are actively pursuing.

9 Interface to RPS

Tsunami fits into the RPS system as a package whose description and interface are as described
above. However, there are three additions. First, there is a set of interface classes that define
wavelet information that can be easily serialized over a communication channel. Second, a Wavelet
prediction model has been added to the RPS TimeSeries module. Third, there are a set of RPS
components, utility programs, that implement various operations. Among these components are
predictors that can use the Wavelet model. The interface classes enable the easy construction of
the components. The components can be composed at run-time to create different kinds of wavelet
systems that communicate over the network. The interface classes are not Tsunami-specific, al-
though their implementations, and the implementation of some of the components, are. This means
that they can potentially be integrated with other tools.

9.1 Interface classes and types

RPS’s communication model is designed to support streams of C++ objects, and request-response
operation, in which a request C++ object is sent to a server which then returns a response C++
object, a simple form of synchronous RPC. All objects are serialized to a machine-independent
binary format. Each serializable class implements an interface called SerializeableInfo and defines
methods for packing and unpacking its data. Generally, each class contains all the context needed
to interpret its contents.

51

Type Description

Type information
WaveletType Underlying wavelet (e.g., Daubauchies 8)
WaveletRepresentationType Domain (time, frequency, wavelet approx/detail/both)
WaveletBlockEncodingType Ordering of data in the block (pre-, in-, post-order)
WaveletRepresentationInfo All metadata needed to use a sample

Contains WaveletType, WaveletRepresentationType
number of levels, and sampling period

WaveletTransformDirection Direction of transform (forward, reverse)
WaveletTransformRequestType Full specifies a transform except for data

Contains WaveletTransformDirection,
to and from WaveletRepresentationInfo,
and to/from WaveletBlockEncodingType

Sample blocks
WaveletBlock Self-contained, timestamped block of samples

Contains WaveletRepresentationInfo,
WaveletBlockEncodingType, number of samples,
and array of doubles.

Samples and sample blocks for streaming
WaveletIndividualSample Timestamped sample with all necessary metadata

Contains WaveletReprsentationInfo, index, level
timestamp, tag, and value

WaveletStreamingBlock Timestamped block of samples with all necessary metadata
Contains timestamp, tag, number of samples,
and array of WaveletIndividualSamples.

Discrete transforms
WaveletTransformBlockRequest A discrete transform request

Contains WaveletTransformRequestType,
WaveletBlock, tag, and
input and output timestamps

WaveletTransformBlockResponse A discrete transform response
Identical to WaveletTransformBlockRequest

Streaming transforms
WaveletTransformRequestType Specifies type of transform (see above)
WaveletIndividualSample Stream content (see above)
WaveletStreamingBlock Stream content (see above)

Figure 38: RPS interface classes and types

Figure 38 summarizes the classes and types involved in the interface to RPS. Each item in the
list supports serialization to a lightweight binary format. RPS’s communication template library
uses this interface to send data over different channels, such as TCP connections, UDP streams,
and others. The interface supports both streaming and block transforms. Every request, response,
sample, or sample block has associated with it all the necessary contextual information to make
sense of it. While wavelet transforms are not stateless, to the greatest extent possible the interface
attempts to push state information into data that is communicated over the network.

52

Each sample or coefficient, which is a double precision floating point value is either decorated
with contextual information or is contained in a block that contains this information. For exam-
ple, a WaveletBlock is a self-contained block of samples (an array of doubles) that also contains
a timestamp, a sampling period, a WaveletRepresentationInfo, and WaveletBlockEncodingType.
The WaveletRepresentationInfo includes a WaveletRepresentationType, which tells us whether
the sample block is in time, frequency, or wavelet domain. In wavelet domain, the numbers may
represent the detail signals, the approximation signals, or both. For wavelet domain, the Wavele-
tRepresentationInfo also tells us how many levels are being used. The WaveletRepresentationInfo
also includes the WaveletType (underlying wavelet used). The WaveletBlockEncodingType de-
scribes whether the block is in pre-, in-, or post-order traversal form, if the block is in wavelet
domain.

WaveletBlocks are used for one-off discrete wavelet transforms. For streaming operation, RPS
includes a WaveletIndividualSample and a WaveletStreamingBlock. A WaveletIndividualSample
contains a single timestamped value, its index and level, and a WaveletRepresentationInfo which
describes the context of the value as above. A WaveletStreamingBlock is an array of WaveletIndi-
vidualSamples.

WaveletTransformRequestType describes the wavelet transform to be done. It contains a
WaveletTransformDirection, stating whether a forward or inverse transform is needed, and a (Wavele-
tRepresentationInfo, WaveletBlockEncodingType) pair for both the input and output data. Com-
bined with data, this fully specifies a transform to be done.

To accomplish a discrete transform on a block, one constructs a WaveletTransformBlockRe-
quest, which contains the WaveletTransformRequestType and the data, sends it to the server,
and receives back a WaveletTransformBlockResponse, which contains the transformed data and
a WaveletTransformRequestType that explains exactly what was done.

For streaming transforms, a WaveletTransformRequestType is used to specify the transform
(no WaveletBlockEncodingType is used). The transform than outputs a stream of WaveletIndivid-
ualSamples or WaveletStreamingBlocks. The stream contents provide all information necessary
to interpret the transformed data.

9.2 Wavelet predictor

The RPS TimeSeries module has been extended to include a wavelet prediction model that can be
used from any TimeSeries-based tool. The basic idea behind the wavelet predictor is to transform
an incoming signal into wavelet detail signals. A non-wavelet predictor (or delay component) is
then run on each level separately, and the detail predictions are then inverse transformed to get the
predicted signal.

The predictor specification is WAVELET file, where file is a configuration file, which has
the following format:

53

Wavelet prediction configuration file format
Comment
Number of levels
3
Type of wavelet (D8 here)
3
For each level: level predhorizon model|delay
0 +1 managed 50 50 30 0.01 0.01 ar 16
1 +8 managed 50 50 30 0.01 0.01 ar 16
2 +8 managed 50 50 30 0.01 0.01 ar 16

Instead of a predictor, a delay may also be used, denoted delay and having a negative “prediction
horizon”. We provide a script, generate wavelet prediction config.pl to help in producing such
configuration files.

There is a significant caveat with the current implementation of wavelet prediction. The con-
figuration file specifies a structure that generates a single output signal, for k steps ahead or behind
realtime depending on the configuration file. The RPS predictor model, however, allows the user
to ask for prediction for any number of steps into the future. In the current implementation, the
k-ahead output value is always reported. This bug will be fixed in a future version of the predictor.

9.3 Wavelet components

Using the interface classes and types, we built several RPS prediction components. Components in
RPS are simple programs that can be tied together at run-time to build different kinds of systems.
They provide a way of using RPS without writing any code. Sophisticated users can create their
own components.

Figure 39 summarizes the wavelet components that are included. There are three categories of
components: discrete transforms, streaming transforms, and multiresolution queries.

Discrete transforms are straightforward. There is a stateless server that accepts requests for
transformations. The client packages up a request along with sample data, sends it to the server,
and the server replies with the transformed data.

In streaming transforms, streams of RPS Measurements are transformed into streams of WaveletIndi-
vidualSamples or WaveletSampleBlocks, and conveyed over the network to a client that can dis-
play, filter, or reconstruct from them. The majority of the work is done in wavelet streaming server,
which accomplishes the transform, and wavelet streaming client, which displays or reconstructs.
In addition, the transformed data can be buffered using wavelet buffer, and retrieved using the util-
ity wavelet buffer client. This provides convenient request-response access to the buffered stream.

Multiresolution queries build on top of streaming transforms. The wavelet streaming selection
component can be configured to let only samples within a range of levels pass. The component
Wavelet streaming query can reconstruct the Measurement stream using only a subset of the avail-
able levels. Wavelet interval query is similar, except it computes an average over an interval of
time. Wavelet streaming denoise is a filter similar to wavelet streaming query, except that it dis-
cards WaveletIndividualSamples not based on their level, but on their energy.

We have begun to build prediction tools using wavelets. The wavelet predict component can be
used to project forward wavelet detail signals, streams of WaveletStreamingSamples. The goal of

54

Component Description

Block Transforms
wavelet reqresp server One-off server for block transforms
wavelet reqresp client one-off client for block transforms
Streaming Transforms
wavelet streaming server Transforms a stream of Measurements

into a stream of WaveletIndividualSamples
wavelet streaming client Reads a stream of WaveletIndividualSamples

and either prints them or reconstructs
the original signal

wavelet buffer Buffers a stream of WaveletIndividualSamples
and provides request/response access to it

wavelet bufferclient Requests WaveletIndividualSamples from
a wavelet bufferclient

Wavelet-based multiresolution queries
wavelet streaming server As above
wavelet streaming selection Reads a stream of WaveletIndividualSamples

and emits a stream that contains only
the specified levels

wavelet streaming denoise Reads a stream of WaveletIndividualSamples
and emits a stream that contains only
values greater than a specified limit

wavelet streaming query Reconstruct from multicasted streams
wavelet interval query Reconstruct average over interval from

multicasted streams
Wavelet-based prediction
wavelet predict Reads a stream of WaveletIndividualSamples

and emits a stream of WaveletIndividualSamples
projected into the future using models specified
in a configuration file. Used to explore prediction
as a cure for the delay problem.

predserver These are the standard RPS prediction servers. Each
managed predserver reads a stream of Measurements and produces

a stream of Predictions. A WAVELET predictive model is now
supported. Measurements are wavelet-transformed,
prediction is done on each level and the predictions
are superposed to get final output.

Figure 39: RPS wavelet components

wavelet predict is to minimize the real-time system using prediction. The wavelet predserver com-
ponent attempts time-series prediction by first wavelet-transforming an incoming measurement
stream, predicting each level using a separate prediction filter, and then combining the predictions
at the output.

55

wavelet_reqresp_server

wavelet_reqresp_client

WaveletBlockTransformRequest WaveletBlockTransformResponse

Figure 40: Request/Response configuration.

wavelet_streaming_server

wavelet_streaming_client

rps_measurement_source

Stream of Measurements

Stream of WaveletIndividualSamples

Reconstructed Measurement Stream

Figure 41: Streaming client/server configuration.

9.4 Configurations

The wavelet components can be composed to create various sorts of systems. We have experi-
mented with several configurations.

Figure 40 illustrates a simple request/response configuration. One wavelet reqresp server can
provide discrete wavelet transform services for the network.

Figure 41 illustrates simple streaming operation. We acquire measurements from some RPS
sensor (host load, network bandwidth, etc). A wavelet streaming server transforms these into
WaveletIndividualSamples. A wavelet streaming client can then connect to this stream and either
print it directly or reconstruct the original measurement stream from it.

Figure 42 shows a generalization of this, providing multiresolution queries. Here, the stream
from wavelet streaming server is acquired by multiple wavelet streaming selection components.
Each emits a subrange of the levels in the original stream to a different ip multicast channel. The
wavelet streaming query component connects to only those channels needed to reconstruct the

wavelet_streaming_server

wavelet_streaming_selection

rps_measurement_source

Stream of Measurements

Stream of WaveletIndividualSamples

Lower Resolution
Reconstructed
Measurement Stream

wavelet_streaming_selection
wavelet_streaming_selection
wavelet_streaming_selection

wavelet_streaming_query

Figure 42: Multiresolution streaming configuration.

56

signal to the resolution needed. The network traffic is determined by the number of levels needed
by the wavelet streaming query component of maximum resolution.

10 Conclusions and future work

Wavelet techniques have been shown useful in analyzing computer generated resource signals such
as network bandwidth, host load, and IP flow data. An emergence of wavelet-based online systems
have been deployed in the literature for estimating network problems, but many of these solutions
are ad hoc. In order to address our research needs, we have built a general and extensible wavelet-
based system that can be used for offline analysis and online system building. This system can
be used for many areas related to our research goals since the system provides building blocks for
general decompositions, time-varying operation and streaming modes of operation which we feel
will be important to distributed system research. The system provides standard interfaces such as
the discrete wavelet transform and its inverse as well as an extensive MRA analysis interface. From
the interfaces provided in the toolkit, flexibility is in the hands of the researcher for progressing
through simulation to deployment of an actual online system. The toolkit performs well at high
sampling rates, rates much higher than we typically observe in measurement sensors in distributed
systems, and scales well as the wavelet type or number of stages are increased. Tsunami fits
snugly into the RPS toolkit, and uses its interfaces for communication, resource monitoring and
prediction.

Future directions of our research include obtaining a better understanding of computer gener-
ated resource signals in order to predict the behavior of applications that run in distributed systems.
Wavelet approaches have already been shown useful for understanding and visualizing complex
signals like those found in computer measurement systems. Combinations of dimensionality re-
duction techniques of multivariate resource signals with that of a thorough wavelet analysis may
lead to a better understanding of these signals, and therefore, an enhancement of the predictability
of application run-time signatures.

Other directions include novel approaches to minimizing the real-time system delay incurred
while using wavelet transform techniques. An application with stringent, real-time delay con-
straints may find wavelet-enabled techniques prohibitive for use in their online application. We
have created a resource dissemination system using wavelet techniques to summarize and dissemi-
nate information efficiently throughout the network. The system decouples sensors which measure
resources and the applications of various granularities which subscribe to measurements. However,
the real-time system delay prohibits the use of this system with fine-grain, interactive applications.
Solving this problem lends more flexibility in building online wavelet systems, and provides a more
general solution to many domains. The system delay problem has no effect on offline analysis.

We are in the process of looking for other applications that may benefit from wavelet tech-
niques. Among these include using wavelets for signature detection. Applications of signature
detection include intrusion detection on hosts or anamoly detection in segments of the network.
These areas are new approaches for us, and we feel that our research will benefit from the toolkit
that we have built.

57

Appendix

A Tsunami class descriptions

In this section of the appendix, we list the member functions and data members of each class with
a brief description of the functionality of each. This section is for quick reference when using the
Tsunami toolkit.

A.1 Command line functions

We have built many functions for making the command line utilities more readable and also for
factoring code with common functionality. In order to use these functions and typedefs, the file
cmdlinefuncs.h must be properly included. The typedefs that are used in the utilities and the
function names and descriptions of each are listed here.

Type defines
typedef WaveletInputSample<double> wisd;
typedef WaveletOutputSample<double> wosd;

58

Function name Description

WaveletType GetWaveletType(const char *x, Obtains the type of
const char *filename); wavelet from char string.

void ParseSignalSpec(SignalSpec &spec, ifstream &file); Parses the signal specification.
void ParseZeroSpec(vector〈int〉 &spec, ifstream &file); Parses the zero specification.
void OutputWaveletCoefs(ostream &os, Outputs the wavelet coefficents

vector〈vector〈wosd〉 〉 &levels); in standard output form.
void OutputWaveletCoefs Same as above but takes blocks of

(ostream &os, samples instead of samples. Uses the
vector〈WaveletOutputSampleBlock〈wosd〉 〉 &levels, transform type to print the appropriate
const TransformType tt); number of levels.

unsigned OutputWaveletCoefs Same as above but outputs data starting
(ostream &os, at the specified index.
vector〈WaveletOutputSampleBlock〈wosd〉 〉 &levels,
const TransformType tt,
const unsigned start index);

void OutputWaveletCoefs Same as above but works on discrete
(ostream &os, output. Takes flat as input to
const DiscreteWaveletOutputSampleBlock〈wosd〉 &dwosb, generate human readable output as
const TransformType tt, well.
const bool flat);

void OutputMRACoefs(ostream &os, Outputs the coefficients of an MRA
vector〈vector〈wosd〉 〉 &approxlevels, analysis. Tags each output line with
vector〈vector〈wosd〉 〉 &detaillevels); the appropriate signal type.

void OutputMRACoefs Same as above but works on output
(ostream &os, sample blocks.
vector〈WaveletOutputSampleBlock〈wosd〉 〉 &approx,
vector〈WaveletOutputSampleBlock〈wosd〉 〉 &detail);

unsigned OutputMRACoefs Same as above but outputs data starting
(ostream &os, at the specified index.
vector〈WaveletOutputSampleBlock〈wosd〉 〉 &approx,
vector〈WaveletOutputSampleBlock〈wosd〉 〉 &detail,
const unsigned index);

void OutputLevelMetaData(ostream &os, Outputs the sizes of each wavelet
vector〈vector〈wosd〉 〉 &levels, coefficient level.
const unsigned numlevels);

void OutputLevelMetaData Same as above but works on output
(ostream &os, sample blocks.
vector〈WaveletOutputSampleBlock〈wosd〉 〉 &levels,
const unsigned numlevels);

void OutputLevelMetaData(ostream &os, Same as above but works on arrays
const unsigned *levelsize, and counts.
const unsigned levelcnt);

void OutputLevelMetaData Same as above but works on discrete
(ostream &os, output. Used transform type to infer
const DiscreteWaveletOutputSampleBlock〈wosd〉 &dwosb, the number of levels in the
const TransformType tt); representation.

59

A.2 Flat parsing

Much of the output from the command line utilities are in a parsing format that is difficult to
understand using human eyes. Therefore, we have provided FlatParser, a class that parses flat
output from the command line utilities. Here we show the member functions included in this class.

Member function Description

FlatParser(); Default constructor.
virtual ∼FlatParser(); Destructor.
void ParseTimeDomain(vector〈wisd〉 &samples, istream &in); Parses time-domain samples, expecting

one sample per line.
void ParseTimeDomain(deque〈wisd〉 &samples, istream &in); Same as above but output stored to

deque instead of vector.
bool ParseWaveletCoefsSample(vector〈wosd〉 &wavecoefs, Parse wavelet coefficients at sample

istream &in); times into a vector.
void ParseWaveletCoefsBlock Same as above except that the

(vector〈WaveletOutputSampleBlock〈wosd〉 〉 &wavecoefs, coefficients are stored in a vector
istream &in); of blocks.

void ParseWaveletCoefsBlock Same as above except that the
(DiscreteWaveletOutputSampleBlock〈wosd〉 &wavecoefs, coefficients are packed into a
istream &in); discrete block.

unsigned ParseWaveletCoefsBlock Same as above except that a number
(vector〈WaveletOutputSampleBlock〈wosd〉 〉 &wavecoefs, of coefficients are parsed each
istream &in, call. This is used for the dynamic
const unsigned parsenum); transforms.

bool ParseMRACoefsSample Parses MRA coefficients at sample
(const SignalSpec &spec, times into two separate vectors,
vector〈wosd〉 &acoefs, one for approximations and one for
vector〈wosd〉 &dcoefs, details. The returned vectors are
istream &in); based upon the signal specification.

bool ParseMRACoefsSample(vector〈wosd〉 &acoefs, Same as above except that all the
vector〈wosd〉 &dcoefs, available approximations and details
istream &in); are returned.

void ParseMRACoefsBlock Parses MRA coefficients all at once
(const SignalSpec &spec, and stores them into blocks. The
vector〈WaveletOutputSampleBlock〈wosd〉 〉 &acoefs, returned vectors of blocks are based
vector〈WaveletOutputSampleBlock〈wosd〉 〉 &dcoefs, upon the signal specification.
istream &in);

unsigned ParseMRACoefsBlock Same as above except that a number
(const SignalSpec &spec, of coefficients are parsed each
vector〈WaveletOutputSampleBlock〈wosd〉 〉 &acoefs, call. This call is used for the
vector〈WaveletOutputSampleBlock〈wosd〉 〉 &dcoefs, dynamic transforms.
istream &in,
const unsigned parsenum);

void ParseMRACoefsBlock Same as above except that all the
(vector〈WaveletOutputSampleBlock〈wosd〉 〉 &acoefs, available approximations and details
vector〈WaveletOutputSampleBlock〈wosd〉 〉 &dcoefs, are returned.
istream &in);

60

A.3 Wavelet information

This set of data types is for adding new filters, and parameters within the Tsunami toolkit. If one
is to add a new wavelet type, they must edit the file waveletinfo.h within the include directory of
the wavelet branch.

Data type Description

const int NUM WAVELET TYPES; The number of different types of
basis functions supported.

enum TransformType; Then types of transforms that
are supported by the toolkit.
These include TRANSFORM,
APPROX and DETAIL.

enum WaveletType; An enumeration for each wavelet
type. An example is DAUB2, which
is simply the Haar basis function.

const numsigned numberOfCoefs[NUM WAVELET TYPES]; For each wavelet type, designate
the number of coefficients.

const unsigned MAX STAGES; The maximum number of stages that
can be chained together. This number
is currently set to 20, which implies
a maximum decomposition of 21 levels.

A.4 Sample classes

The purpose of the sample classes is to provide a generically typed class that is tagged with the
index and value of a sample.

A.4.1 Sample base class

This class contains most of the operations for manipulating the data members of the sample classes.
In the next two tables, we provide the data members and member functions of the Sample class.

Data member Description

Protected
SAMPLETYPE value; The Sample base class is parameterized by the typename

SAMPLETYPE. This can be any of the machine dependent
datatypes such as int, double, etc. The value holds
the sample’s value and must be of type SAMPLETYPE.

unsigned index; Because we expect samples to be periodic, we only need
to keep an index number for maintaining sample order.
This data type is for maintaining sample order.

61

Member function Description

Public
Sample(const SAMPLETYPE value=0, Default constructor that takes as

const unsigned index=0); arguments the sample value and index.
inline Sample(const Sample &rhs); Copy constructor.
virtual ∼Sample(); Destructor.
virtual Sample〈SAMPLETYPE〉 & Equal operator that takes as

operator=(const Sample &rhs); argument a reference to another
Sample and returns a reference
to the copied Sample.

Sample〈SAMPLETYPE〉 & Equal operator that takes as
operator=(const SAMPLETYPE rhs); argument a value and returns a

reference to the copied Sample.
Sample〈SAMPLETYPE〉 & Plus operator that takes as input

operator+(const SAMPLETYPE rhs); argument a value and performs
value = value + rhs. It returns
a reference to the Sample.

Sample〈SAMPLETYPE〉 & Plus operator that takes as input
operator+(const Sample &rhs); a reference to a Sample and performs

value = value + rhs.value. It returns
a reference to the Sample.

Sample〈SAMPLETYPE〉 & Operator that takes as input a sample
operator+=(const SAMPLETYPE rhs); value and performs value = value + rhs.

It returns a reference to the Sample.
Sample〈SAMPLETYPE〉 & Operator that takes as input a

operator+=(const Sample &rhs); reference to a Sample and performs
value = value + rhs.value. It returns
a reference to the Sample.

SAMPLETYPE operator*(const double rhs); Operator that takes as input the type
double and returns a SAMPLETYPE of the
result value*rhs.

inline void SetSampleValue(const SAMPLETYPE sample); Sets the sample value.
inline SAMPLETYPE GetSampleValue(); Gets the sample value.
virtual inline void SetSampleIndex(const unsigned index); Sets the sample index.
virtual inline unsigned GetSampleIndex() const; Gets the sample index.
virtual ostream & Print(ostream &os) const; Prints the Sample data.
virtual ostream & operator�(ostream &os) const; Operator for printing the Sample data.

A.4.2 InputSample class

This class is simply an intermediate class that sits between the base class, Sample, and specialized
input sample classes which derive from it. It has no data members and very few member functions.

62

Member function Description

Public
InputSample(const SAMPLETYPE value=0, Default constructor that takes as input

const unsigned index=0); the value and index of the sample.
InputSample(const InputSample &rhs); Copy constructor that takes as input a

reference to an InputSample.
virtual ∼InputSample(); Destructor.
virtual InputSample〈SAMPLETYPE〉 & Equal operator that takes as input a

operator=(const Sample〈SAMPLETYPE〉 &rhs); reference to a Sample and returns a
reference to an InputSample.

A.4.3 OutputSample class

This class is an intermediate class between the base class, Sample, and specialized output sample
classes which derive from it. It has no data members and very few member functions.

Member function Description

Public
OutputSample(const SAMPLETYPE value=0, Default constructor that takes as input

const unsigned index=0); the sample value and index.
OutputSample(const OutputSample &rhs); Copy constructor that takes as input a

reference to an OutputSample.
virtual ∼OutputSample(); The destructor.

A.4.4 WaveletInputSample class

This class is a specialized class derived from the InputSample class. It contains no data members,
but contains a small set of member functions.

Member function Description

Public
WaveletInputSample(const SAMPLETYPE value=0, Default constructor that takes as input

const unsigned index=0); the value and index of the new sample.
WaveletInputSample(const WaveletInputSample &rhs); Copy constructor that takes as input

a reference to a WaveletInputSample.
virtual ∼WaveletInputSample(); Destructor.
virtual WaveletInputSample〈SAMPLETYPE〉 & Equal operator that takes as input

operator=(const Sample〈SAMPLETYPE〉 &rhs); a Sample and returns a reference
to the WaveletInputSample.

A.4.5 WaveletOutputSample class

This class is a specialized class derived from the OutputSample class. It has data members and a
accessor member functions for manipulating its data members.

63

Data member Description

Protected
int level; Designates which level the sample belongs to in the

decomposition.

Member function Description

Public
WaveletOutputSample(); Default constructor.
WaveletOutputSample(const WaveletOutputSample &rhs); Copy constructor that takes as input

a reference to a WaveletOutputSample.
WaveletOutputSample(const SAMPLETYPE value, Specialized constructor that takes as

const unsigned index); input the value and index. The level
is not set and must be set later by
another member function.

WaveletOutputSample(const SAMPLETYPE value, Specialized constructor that takes as
const int level, input the value, the level at which it
const unsigned index); resides and the index number at that

level.
virtual ∼WaveletOutputSample(); Destructor.
virtual WaveletOutputSample & Equal operator that takes as input

operator=(const Sample〈SAMPLETYPE〉 &rhs); a reference to a Sample and returns
a reference to the WaveletOutputSample.

WaveletOutputSample & Equal operator that takes as input
operator=(const WaveletOutputSample &rhs); a reference to a WaveletOutputSample and

returns a reference to the
WaveletOutputSample.

inline void SetSampleLevel(const int level); Sets the level of the sample.
inline int GetSampleLevel() const; Gets the level of the sample.
virtual ostream & Print(ostream &os) const; Prints the contents of the class.
virtual ostream & operator�(ostream &os) const; Stream operator to print the contents of

the class.

A.5 Sample block classes

There are multiple sample aggregating classes that serve different purposes. The purpose is highly
dependent on the operation. In what follows, we describe the purpose of the class with a listing of
its data members and member functions.

A.5.1 SampleBlock base class

The SampleBlock class serves as the base class for all sample blocks. The aggregating data struc-
ture is contained herein and most standard operations for manipulating the aggregated samples are
functions of this class.

64

Data type Description

Protected
deque〈SAMPLETYPE〉 samples; STL deque container type used for aggregating the

samples. In some algorithms, the queue is accessed
from the front and back.

unsigned blockindex; The block index is used for maintaining order between
subsequent arriving blocks.

Member function Description

Public
SampleBlock(const unsigned blockindex=0); Default constructor with parameter blockindex.
SampleBlock(const SampleBlock &rhs); Copy constructor.
SampleBlock(const deque〈SAMPLETYPE〉 &input); Specialized constructor which takes as input

an aggregated block of samples.
SampleBlock(const deque〈SAMPLETYPE〉 &input, Specialized constructor which takes as input

const unsigned blockindex); an aggregated block of samples and blockindex.
virtual ∼SampleBlock(); Destructor.
virtual SampleBlock & Equal operator that takes as input a reference

operator=(const SampleBlock &rhs); to a SampleBlock and returns a reference.
SampleBlock & Addition operator adds the contents of the

operator+(const SampleBlock &rhs); two blocks and returns a refernce to the result.
SampleBlock & Plus-equal operator adds the contents of the two

operator+=(const SampleBlock &rhs); blocks and returns a reference to the result.
inline SAMPLETYPE Operator provides random access to the queue

operator[](const unsigned i) const; indexed by i.

65

Member function Description

Public
inline void Set the samples equal to the input sample

SetSamples(const deque〈SAMPLETYPE〉 &input); deque.
virtual void SetSamples(const double* series, Set the sample values equal to the input

const int serlen); array with corresponding length.
inline void Get the samples and store them into the input

GetSamples(deque〈SAMPLETYPE〉 &buf) const; buffer and return passed by reference.
void GetSamples(double *series) const; Get the samples and store them into the input

array.
void GetSamples(deque〈SAMPLETYPE〉 &buf, Get a range of samples based on the indices

const unsigned first, first and last and return by reference in
const unsigned last) const; the input argument buf.

inline SAMPLETYPE Front() const; Obtain the sample from the front of the queue.
inline void Push new sample to the front of the queue.

PushSampleFront(const SAMPLETYPE &input);
inline void PopSampleFront(); Pop sample off the front of the queue.
inline SAMPLETYPE Back() const; Obtain the sample from the back of the queue.
inline void Push new sample to the back of the queue.

PushSampleBack(const SAMPLETYPE &input);
inline void PopSampleBack(); Pop sample off the back of the queue.
inline void SetBlockIndex(const unsigned index); Sets the block index.
inline unsigned GetBlockIndex() const; Gets the block index.
void Append a block of samples to the back of the

AppendBlockBack(const SampleBlock &block); queue.
void Append a block of samples to the front of the

AppendBlockFront(const SampleBlock &block); queue.
void Remove a number of samples from the front of

RemoveSamplesFront(const unsigned numsamples); the queue.
void Remove a number of samples from the back of

RemoveSamplesBack(const unsigned numsamples); the queue.
inline void ClearBlock(); Clear the sample block.
inline bool Empty() const; Checks if the block is empty and returns bool.
inline unsigned GetBlockSize() const; Get the size of the sample block.
virtual SampleBlock* clone() const; Clone the SampleBlock and return a pointer to it.
virtual ostream & Print(ostream &os) const; Prints the contents of the class.
virtual ostream & operator�(ostream &os) const; Streaming operator for printing contents of class.

A.5.2 InputSampleBlock class

The InputSampleBlock class is essentially used to designate the block as type input. Input type
classes will derive from this class which is derived from the SampleBlock class.

66

Member function Description

Public
InputSampleBlock(); Default constructor.
InputSampleBlock(const InputSampleBlock &rhs); Copy constructor.
InputSampleBlock(const deque〈SAMPLETYPE〉 &input); Specialized constructor that takes as

input a reference to a deque of samples.
InputSampleBlock(const deque〈SAMPLETYPE〉 &input, Specialized constructor that takes as

const unsigned index); input a reference to a deque of samples
and a block index.

virtual ∼InputSampleBlock(); Destructor.

A.5.3 OutputSampleBlock class

The OutputSampleBlock class is to designate the block as type output. Output type classes will
derive from this class which is derived from the SampleBlock class.

Member function Description

Public
OutputSampleBlock(); Default constructor.
OutputSampleBlock(const OutputSampleBlock &rhs); Copy constructor.
OutputSampleBlock(const deque〈SAMPLETYPE〉 &input); Specialized constructor that takes as

input a reference to a deque of samples.
OutputSampleBlock(const deque〈SAMPLETYPE〉 &input, Specialized constructor that takes as

const unsigned index); input a reference to a deque of samples
and a block index.

virtual ∼OutputSampleBlock(); Destructor.

A.5.4 WaveletInputSampleBlock class

The WaveletInputSampleBlock class is derived from the InputSampleBlock class, and represents
the input block type used for streaming block operations.

Member function Description

Public
WaveletInputSampleBlock(); Default constructor.
WaveletInputSampleBlock(const WaveletInputSampleBlock &rhs); Copy constructor.
WaveletInputSampleBlock(const deque〈SAMPLETYPE〉 &input); Specialized constructor

that takes as input a
reference to a deque of
samples.

WaveletInputSampleBlock(const deque〈SAMPLETYPE〉 &input, Specialized constructor
const unsigned index); that takes as input a

reference to a deque of
samples and a block
index.

virtual ∼WaveletInputSampleBlock(); Destructor.

67

A.5.5 WaveletOutputSampleBlock class

The WaveletOutputSampleBlock class is derived from the OutputSampleBlock, and represents
that output block type used for streaming block operations. The samples contained within this
block should all be tagged with the same level information.

Data member Description

Protected
int level; The level information of the output sample block. The

samples in the block should also be tagged with level
information.

Member function Description

Public
WaveletOutputSampleBlock(const int level=0); Default constructor that

takes as input a default
argument for the level.

WaveletOutputSampleBlock(const WaveletOutputSampleBlock &rhs); Copy constructor.
WaveletOutputSampleBlock(const deque〈SAMPLETYPE〉 &input, Specialized constructor

const unsigned index); that takes as input a
reference to a deque of
samples and a block index.

virtual ∼WaveletOutputSampleBlock(); Destructor.
WaveletOutputSampleBlock & Equal operator that takes

operator=(const WaveletOutputSampleBlock &rhs); as input a reference to a
WaveletOutputSampleBlock.

virtual WaveletOutputSampleBlock* clone() const; Cloning operation that
returns a pointer to the
newly created object.

inline void SetBlockLevel(const int level); Sets the level of the block.
inline int GetBlockLevel() const; Gets the level of the block.
void SetSamples(const double* series, const int serlen); Sets the sample values to

the values in the input array
with corresponding length.

inline void SetSamples(const deque〈SAMPLETYPE〉 &buf); Sets samples to the contents
of the input deque of samples.

bool AllSamplesLevelCorrect(); Returns true if all samples
in the block are tagged with
the appropriate level
information.

void SetAllSamplesToCorrectLevel(); Sets all samples in the block
to the correct level (that set
by the data member level.

A.5.6 WaveletRandomOutputSampleBlock class

The class WaveletRandomOutputSampleBlock class assumes that the samples are randomly or-
dered and would need reordering to perform appropriate operations in the toolkit.

68

Member function Description

Public
WaveletRandomOutputSampleBlock(); Default constructor.
WaveletRandomOutputSampleBlock Copy constructor.

(const WaveletRandomOutputSampleBlock &rhs);
virtual ∼WaveletRandomOutputSampleBlock(); Destructor.
virtual WaveletRandomOutputSampleBlock* Cloning function that returns

clone() const; a pointer to the newly created
object.

inline void Sets the level of the sample
SetBlockLevelOfSample(const unsigned index, located by the input argument

const int level); index.
inline int Gets the level of the sample

GetBlockLevelOfSample(const unsigned index) const; located by the input argument
index.

A.5.7 DiscreteWaveletOutputSampleBlock class

The DiscreteWaveletOutputSampleBlock is an output block of samples for use with DWT opera-
tions. The encoding of this block is shown in Figure 29.

69

Member function Description

Public
DiscreteWaveletOutputSampleBlock Default constructor that

(const unsigned numlevels=2, takes as default
const int lowest level=0, parameters the number of
const TransformType tt=TRANSFORM); levels, the lowest level

represented in the block
and the type of
transform represented.

DiscreteWaveletOutputSampleBlock Copy constructor.
(const DiscreteWaveletOutputSampleBlock &rhs);

virtual ∼DiscreteWaveletOutputSampleBlock(); Destructor.
virtual DiscreteWaveletOutputSampleBlock* clone() const; Clone operation that

returns a pointer to the
newly constructed block.

inline int GetLowestLevel() const; Returns the lowest
output level represented
in the block.

inline void SetLowestLevel(const int lowest level); Sets the lowest output
level represented in the
block.

inline unsigned GetNumberLevels() const; Obtains the number of
levels encoded in the
block.

inline void SetNumberLevels(const unsigned numlevels); Sets the number of
levels encoded in the
block.

inline TransformType GetTransformType() const; Obtains the transform
type encoded in the
block.

inline void SetTransformType(const TransformType tt); Sets the transform type.
void SetSamplesAtLevel(const deque〈SAMPLETYPE〉 &samps, Set the samples from the

const int level); input deque passed by
reference at the
appropriate level.

unsigned GetSamplesAtLevel(deque〈SAMPLETYPE〉 &out, Gets the samples from a
const int level) const; particular level and

returns them by
reference to the output
deque.

A.6 Sampler classes

In this section, we provide the interfaces for performing up and down sample operations. The
classes that are discussed in this section are the DownSample and UpSample class.

70

A.6.1 DownSample class

The DownSample class is used to resample a stream or block of samples to a new rate lower than
the original. The rate must be an integer value.

Member Function Description

Public
DownSample(const unsigned rate=1); Default constructor that takes as

input the down sample rate.
DownSample(const DownSample &rhs); Copy constructor.
virtual ∼DownSample(); Destructor.
DownSample & operator=(const DownSample &rhs); Equal operator that takes as input a

reference to a DownSample object.
inline void SetDownSampleRate(const unsigned rate); Sets the down sample rate to rate.
inline unsigned GetDownSampleRate() const; Gets the down sample rate.
inline void ResetState(); Resets the state of the down sampler

object.
bool KeepSample(); Routine returns true of the sample

should be kept and false if the
sample can be thrown away.

void DownSampleBuffer(SampleBlock〈SAMPLE〉 &output, This routine downsamples a block of
const SampleBlock〈SAMPLE〉 &input); samples taken as input and returns

the output sample block.
ostream & Print(ostream &os) const; Prints the contents of the class.
ostream & operator�(ostream &os) const; Stream operator that prints the

contents of the class.

A.6.2 UpSample class

The UpSample class is used to resample a stream or block of samples to a new rate greater than the
original by adding zero samples in between samples of the original sampling rate. The rate must
be an integer value.

71

Member Function Description

Public
UpSample(const unsigned rate=1); The default constructor that takes as

input the up sample rate.
UpSample(const UpSample &rhs); Copy constructor.
virtual ∼UpSample(); Deconstructor.
UpSample & operator=(const UpSample &rhs); Equal operator that takes as input a

reference to an up sample object.
inline void SetUpSampleRate(const unsigned rate); Sets the up sample rate to rate.
inline unsigned GetUpSampleRate() const; Gets the up sample rate.
inline void ResetState(); Resets the state of the up sampler.
bool ZeroSample(); Routine returns true if the current

sample time should be zero filled.
void UpSampleBuffer(SampleBlock〈SAMPLE〉 &output, This routine up samples a block of

const SampleBlock〈SAMPLE〉 &input); samples and returns the upsampled
block as output.

ostream & Print(ostream &os) const; Prints the contents of the class.
ostream & operator�(ostream &os) const; Stream operator that prints the contents

of the class.

A.7 Filter and coefficient classes

There are two types of classes that are discussed in this section. The FIRFilter class characterizes a
finite-impulse response type filter. It uses the CQFWaveletCoefficients class to define the impulse
response. Other filter types, and coefficients can be added to the system in the future.

A.7.1 FIRFilter class

The FIRFilter class contains operations and data structures to realize the functionality of an FIR
filter that can be run in both sample and block modes.

72

Member function Description

Public
FIRFilter(const unsigned numcoefs=0); Default constructor with

default argument for number
of coefficients.

FIRFilter(const FIRFilter &rhs); Copy constructor.
FIRFilter(const unsigned numcoefs, Specialized constructor that

const vector〈double〉 &coefs); takes as arguments the number
of coefficients and a
reference to a vector of
coefficient values.

virtual ∼FIRFilter(); Destructor.
FIRFilter & operator=(const FIRFilter &rhs); Equal operator that takes as

input a reference to an FIR
filter.

void SetFilterCoefs(const vector〈double〉 &coefs); Sets the filter coefficients
to the values of the
referenced vector.

void GetFilterCoefs(vector〈double〉 &coefs) const; Gets the filter coefficients
and passes them back by
reference to the input vector.

void SetNumCoefs(const unsigned numcoefs); Sets the number of coefficients.
inline unsigned GetNumCoefs() const; Gets the number of coefficients.
void ClearDelayLine(); Clears the delay line.
void GetFilterOutput(Sample〈SAMPLETYPE〉 &out, Performs sample filter operations

const Sample〈SAMPLETYPE〉 &in); on the input sample and returns
an output sample.

void GetFilterBufferOutput(SampleBlock〈OUTSAMPLE〉 &out, Performs block filter operations
const SampleBlock〈INSAMPLE〉 &in); on an input SampleBlock

and return an output block of
samples.

ostream & Print(ostream &os) const; Prints the contents of the class.
ostream & operator�(ostream &os) const; Streaming operator that prints

the contents of the class.

A.7.2 CQFWaveletCoefficients class

The CQFWaveletCoefficients class provides the filter coefficients for the low-pass and high-pass
analysis and synthesis filters based on the CQF assumptions for perfect reconstruction. CQF filters
are FIR filters, and therefore work directly with the FIRFilter class.

73

Member function Description

Public
CQFWaveletCoefficients(const WaveletType wt=DAUB2); Default constructor that takes as

input the wavelet type, defaulting
to the Haar mother wavelet.

CQFWaveletCoefficients(const CQFWaveletCoefficients &rhs); Copy constructor.
virtual ∼CQFWaveletCoefficients(); Deconstructor.
CQFWaveletCoefficients & Equal operator that takes as input

operator=(const CQFWaveletCoefficients &rhs); a reference to a
CQFWaveletCoefficients object.

void Initialize(const WaveletType wt); This function initializes the data
members by calling the private
function init().

void ChangeType(const WaveletType wt); Changes the wavelet type and re-
initializes the data members.

string GetWaveletName() const; Returns a human readable string
identifying the wavelet type.

unsigned GetNumCoefs() const; Gets the number of coefficients.
void GetTransformCoefsLPF(vector〈double〉 & coefs) const; Gets the analysis, low-pass filter

coefficients, g(−n) ⇒ G(z−1). The
coefficients are returned in coefs.

void GetTransformCoefsHPF(vector〈double〉 & coefs) const; Gets the analysis, high-pass filter
coefficients, h(−n) ⇒ H(z−1). The
coefficients are returned in coefs.

void GetInverseCoefsLPF(vector〈double〉 & coefs) const; Gets the synthesis, low-pass filter
coefficients, g(n) ⇒ G(z). The
coefficients are returned in coefs.

void GetInverseCoefsHPF(vector〈double〉 & coefs) const; Gets the synthesis, high-pass filter
coefficients, h(n) ⇒ H(z). The
coefficients are returned in coefs.

ostream & Print(ostream &os) const; Prints the contents of the class.
ostream & operator�(ostream &os) const; Stream operator for printing the contents

of the class.

A.8 DelayBlock class

The primary function of the Delay class is to realize perfect reconstruction in the streaming trans-
forms. It phase aligns the FIR filters with less coefficients to those with more coefficients. The
class is simply a deque of samples that flow in one direction.

74

Member function Description

Public
DelayBlock(const unsigned numlevels=2, Default constructor that takes

const int lowest level=0, as input the number of levels
int* delay vals=0); in the delay block, the lowest

output level represented, and
the delay value at each level.

DelayBlock(const DelayBlock &rhs); Copy constructor.
virtual ∼DelayBlock(); Destructor.
DelayBlock & operator=(const DelayBlock &rhs); Equal operator that takes as

input a reference to a
DelayBlock.

inline unsigned GetNumberLevels() const; Gets the number of levels in
in the delay block.

inline int GetLowestLevel() const; Gets the lowest level
represented in the delay block.

inline void SetLowestLevel(const int lowest level); Sets the lowest level represented.
inline unsigned GetDelayValueOfLevel(const int level) const; Gets the delay value at a

particular level.
bool SetDelayValueOfLevel(const int level, Sets the delay value of a

const unsigned delay); particular level.
bool ChangeDelayConfig(const unsigned numlevels, Changes the delay configuration.

const int lowest level, It takes as inputs the number
int* delay vals); of levels, the lowest level and

delay values.
bool ClearLevelDelayLine(const int level); Clears the delay line at the

specified level.
void ClearAllDelayLines(); Clears all delay lines.
bool StreamingSampleOperation(vector〈SAMPLE〉 &out, Performs the delay operation

const vector〈SAMPLE〉 &in); in sample streaming mode. The
input and output are vectors
indexed by the level.

unsigned StreamingBlockOperation Performs the delay operation
(vector〈WaveletOutputSampleBlock〈SAMPLE〉 〉 &outblock, in block streaming mode. The
const vector〈WaveletOutputSampleBlock〈SAMPLE〉 〉 &inblock); input and output are vectors

of sample blocks indexed by
the level.

ostream & Print(ostream &os) const; Prints the contents of the class
ostream & operator�(ostream &os) const; Stream operator for printing the

contents of the class.

A.9 Jitter and jitter action classes

Jitter protection and recovery in communication systems is extremely important in order to reduce
errors within the system. In Tsunami, we provide a single stream jitter protection class, JitterPro-
tectStream, and a multiple stream jitter protection class, JitterProtectMultiStream. The multiple

75

stream class uses the single stream class, and is used for recovering from jitter when the wavelet
coefficients are streamed over the network. When jitter is detected and action must be taken, the
toolkit provides two jitter action classes. These are the ZeroFillAction and the InterpolateFillAc-
tion class.

A.9.1 JitterProtectStream class

The JitterProtectStream class protects a stream of periodic samples from jitter and loss by first
detecting the condition and then taking the appropriate action.

Member function Description

Public
JitterProtectStream Default constructor that

(const unsigned backlog thresh=DEFAULT BACKLOG THRESH); takes a default argument
for setting the backlog
threshold.

JitterProtectStream(const JitterProtectStream &rhs); Copy constructor.
virtual ∼JitterProtectStream(); Destructor.
JitterProtectStream & operator=(const JitterProtectStream &rhs); Equal operator that takes

as input a reference to a
JitterProtectStream.

void ChangeBacklogThresh(const unsigned backlog thresh); Changes the backlog
threshold on the fly.

inline unsigned GetBacklogThresh() const; Gets the current backlog
threshold.

inline void SetCurrentIndex(const unsigned curr index); Sets the current index
to look for next.

inline unsigned GetCurrentIndex() const; Gets the current index.
void JitterProtectSampleOperation(list〈INSAMPLE〉 &out, Sample operation jitter

const INSAMPLE &in); protection that takes as
input a reference to a
sample and returns a list
of ordered output samples.

void JitterProtectBlockOperation(SampleBlock〈INSAMPLE〉 &out, Block operation jitter
const SampleBlock〈INSAMPLE〉 &in); protection that takes as

input a reference to a
sample block and returns
a block of ordered samples.

ostream & Print(ostream &os) const; Prints the contents of the
class.

ostream & operator�(ostream &os) const; Stream operator used for
printing the contents of the
class.

76

A.9.2 JitterProtectMultiStream class

The JitterProtectMultiStream class uses the JitterProtectStream class to protect each of its mul-
tiple streams. Each stream has its own backlog threshold, and action is taken on each stream
individually. This class is typically used to protect against jitter when the wavelet coefficients, the
multi-level representation, is sent over a lossy network for reconstruction at an end system.

Member function Description

Public
JitterProtectMultiStreams(const unsigned numlevels=1, Default constructor that

const int lowest level=0, takes as input the number
unsigned* backlogs=0); of levels to be protected,

the lowest level represented
and backlogs for each level.

JitterProtectMultiStreams(const JitterProtectMultiStreams &rhs); Copy constructor.
virtual ∼JitterProtectMultiStreams(); Destructor.
JitterProtectMultiStreams & Equal operator that takes as

operator=(const JitterProtectMultiStreams &rhs); input a reference to a
JitterProtectMultiStreams.

bool ChangeNumberOfLevels(const unsigned numlevels); Changes the number of levels.
inline unsigned GetNumberOfLevels() const; Gets the number of levels.
inline void ChangeLowestLevel(const int lowest level); Changes the value of the lowest

level represented.
inline int GetLowestLevel() const; Gets the lowest level.
void JitterProtectSampleOperation(vector〈list〈INSAMPLE〉 〉 &out, Sample operation multi-stream

const vector〈INSAMPLE〉 &in); jitter protection that takes
as input a vector of sampes
indexed by level, and returns
a vector of lists of ordered
samples.

void JitterProtectBlockOperation Block operation multi-stream
(vector〈WaveletOutputSampleBlock〈INSAMPLE〉 〉 &outblock, jitter protection that takes
const vector〈WaveletOutputSampleBlock〈INSAMPLE〉 〉 &inblock); as input a vector of sample

blocks indexed by level and
returns a vector of sample blocks.

ostream & Print(ostream &os) const; Prints the contents of the class.
ostream & operator�(ostream &os) const; Stream operator used to print the

contents of the class.

A.9.3 ZeroFillAction class

The ZeroFillAction class is used in conjunction with the jitter protection classes. When the jitter
backlog threshold has been exceeded, a member function of this class, JitterAction is called to zero
fill missing samples. Each of the action classes will have a member function called JitterAction.

77

Member Function Description

Public
static unsigned JitterAction(list〈INSAMPLE〉 &samples, A function that fills missing samples

const unsigned curr index); by simply making them zero. It takes
as input the current index, and a list
of samples upon which to work on.

A.10 Stage classes

The stage classes described in this section create two-band filter banks that we have discussed
earlier in the report. By chaining these two-band filter banks, a structure we call a stage, arbitrary
types of decompositions are realized. The decompositions that we have created at the time of this
writing are transform-type trees where the frequency has been sliced logarithmically in powers of
two. In order to accomplish these structures, we use the WaveletStageHelper, which provides the
commonality between the ForwardWaveletStage used for analysis and the ReverseWaveletStage
used for synthesis.

A.10.1 WaveletStageHelper class

The WaveletStageHelper class is used to abstract out the common functionality between the for-
ward and reverse stages. It uses an enumerated type to determine the stage direction, contains the
wavelet type (i.e. D2, D4, ..., D20), the coefficients of the wavelet filter and the low-pass and
high-pass filters associated with the stage type. In addition, it contains operations for performing
the filtering in sample and block streaming modes.

Data type Description

Protected
StageType stagetype; An enumerated type that designates

the direction of the stage (FORWARD
or REVERSE).

WaveletType wavetype; The type of wavelet filter used. (i.e.
DAUB2 the Haar).

CQFWaveletCoefficients wavecoefs; The coefficients of the wavelet filter.
FIRFilter〈SAMPLETYPE,OUTSAMPLE,INSAMPLE〉 lowpass; The low pass filter, either analyis or

synthesis based on the stage type.
FIRFilter〈SAMPLETYPE,OUTSAMPLE,INSAMPLE〉 highpass; The high pass filter, either analysis or

synthesis based on the stage type.

78

Member Function Description

Public
WaveletStageHelper(const WaveletType wavetype=DAUB2, Default constructor that takes as

const StageType stagetype=FORWARD); input the wavelet type and the
direction of the stage.

WaveletStageHelper(const WaveletStageHelper &rhs); Copy constructor.
virtual ∼WaveletStageHelper(); Destructor.
WaveletStageHelper & operator=(const WaveletStageHelper &rhs); Equal operator that takes as input

a reference to a WaveletStageHelper
and returns a reference to the newly
created object.

void ChangeWaveletType(const WaveletType wavetype); Changes the wavelet type.
string GetWaveletName() const; Gets the human readable name of the

wavelet type.
void SetFilterCoefsLPF(const vector〈double〉 &coefs); Sets the filter coefficients for the

analysis or synthesis low-pass filter.
unsigned GetNumCoefsLPF() const; Gets the number of coefficients for

the low-pass filter.
void PrintCoefsLPF() const; Prints the coefficients of the low-pass

filter.
void SetFilterCoefsHPF(const vector〈double〉 &coefs); Sets the filter coefficients for the

analysis or synthesis high-pass filter.
unsigned GetNumCoefsHPF() const; Gets the number of coefficients for the

high-pass filter.
void PrintCoefsHPF() const; Prints the coefficients of the high-pass

filter.
void ClearLPFDelayLine(); Clears the LPF delay line.
void LPFSampleOperation(Sample〈SAMPLETYPE〉 &out, Sample by sample filtering operation using

const Sample〈SAMPLETYPE〉 &in); the low-pass filter.
void LPFBufferOperation(SampleBlock〈OUTSAMPLE〉 &out, Buffer filtering operation using the low-

const SampleBlock〈INSAMPLE〉 &in); pass filter.
void ClearHPFDelayLine(); Clears the HPF delay line.
void HPFSampleOperation(Sample〈SAMPLETYPE〉 &out, Sample by sample filtering operation using

const Sample〈SAMPLETYPE〉 &in); the high-pass filter.
void HPFBufferOperation(SampleBlock〈OUTSAMPLE〉 &out, Buffer filtering operation using the high-

const SampleBlock〉INSAMPLE〈 &in); pass filter.
ostream & Print(ostream &os) const; Print the contents of the class.
ostream & operator�(ostream &os) const; Stream operator that prints the contents

of the class.

A.10.2 ForwardWaveletStage class

The ForwardWaveletStage class is a two-band stage that contains the WaveletStageHelper class for
filter operations and two DownSample classes. It also contains data members for bookkeeping such
as output level number to be tagged to output samples. The downsampler rates are configurable
through this stage type. The stage has operations for running in sample or block streaming modes
in order to decompose a time-domain signal into wavelet coefficients.

79

Data type Description

Protected
WaveletStageHelper〈SAMPLETYPE, This provides the stage all filtering operations.

OUTSAMPLE,
INSAMPLE〉 stagehelp;

unsigned rate l; The down sample rate that precedes the low-pass filter.
unsigned rate h; The down sample rate that precedes the high-pass filter.
int outlevel l; The output level number of the low-pass branch.
int outlevel h; The output level number of the high-pass branch.
DownSample〈OUTSAMPLE〉 downsampler l; This provides the stage with the down sampler attached

to the low-pass branch.
DownSample〈OUTSAMPLE〉 downsampler h; This provides the stage with the down sampler attached

to the high-pass branch.

80

Member Function Description

Public
ForwardWaveletStage(const WaveletType wavetype=DAUB2); Default contstructor that takes as

input the wavelet type. It
defaults to the Haar wavelet type.

ForwardWaveletStage(const ForwardWaveletStage &rhs); Copy constructor.
ForwardWaveletStage(const WaveletType wavetype, Specialized constructor that takes

const unsigned rate l, as input the wavelet type, the down
const unsigned rate h, sample rates of each filter branch
const int outlevel l, and the level number of each branch.
const int outlevel h);

virtual ∼ForwardWaveletStage(); Destructor.
ForwardWaveletStage & Equal operator that takes as input a

operator=(const ForwardWaveletStage &rhs); reference to a ForwardWaveletStage
and returns a reference to this object.

ForwardWaveletStage* clone(); Clones the ForwardWaveletStage.
inline void SetDownSampleRateLow(const unsigned rate); Sets the down sample rate of the low-

pass branch.
inline unsigned GetDownSampleRateLow() const; Gets the down sample rate of the low-

pass branch.
inline void SetDownSampleRateHigh(const unsigned rate); Sets the down sample rate of the high-

pass branch.
inline unsigned GetDownSampleRateHigh() const; Gets the down sample rate of the high-

pass branch.
inline void SetOutputLevelLow(const int outlevel); Sets the output level of the low-pass branch.
inline int GetOutputLevelLow() const; Gets the output level of the low-pass branch.
inline void SetOutputLevelHigh(const int outlevel); Sets the output level of the high-pass branch.
inline int GetOutputLevelHigh() const; Gets the output level of the high-pass branch.
inline void ChangeWaveletType(const WaveletType wavetype); Changes the filters of the stage to the

type wavetype.
inline void ClearFilterDelayLines(); Clears the filter delay lines of both

filters.
inline void ClearAllState(); Clears the filter delay lines and resets

the state of the down samplers.
bool Sample operation which takes in a sample

PerformSampleOperation and returns output samples every
(WaveletOutputSample〈SAMPLETYPE〉 &out l, 1/(ratei · fs) sample times. It
WaveletOutputSample〈SAMPLETYPE〉 &out h, returns true if an output sample is
const Sample〈SAMPLETYPE〉 &in); ready.

unsigned Block operation which takes in a sample
PerformBlockOperation block and returns two

(WaveletOutputSampleBlock〈OUTSAMPLE〉 &out l, WaveletOutputSampleBlock and
WaveletOutputSampleBlock〈OUTSAMPLE〉 &out h, the output sample block length (both
const SampleBlock〈INSAMPLE〉 &in); outputs same length).

ostream & Print(ostream &os) const; Prints the contents of the class.
ostream & operator�(ostream &os) const; Stream operator that prints the contents

of the class.

81

A.10.3 ReverseWaveletStage class

The ReverseWaveletStage class is a two-band stage that contains the WaveletStageHelper class
for filter operations and two UpSample classes. The upsampler rates are configurable through this
stage type. The stage has operations for running in sample or block streaming modes, and performs
the reconstruction from the input wavelet coefficients.

Data type Description

Protected
WaveletStageHelper〈SAMPLETYPE, This provides the stage all filtering operations.

OUTSAMPLE,
INSAMPLE〉 stagehelp;

unsigned rate l; The up sample rate that precedes the low-pass filter.
unsigned rate h; The up sample rate that precedes the high-pass filter.
UpSample〈INSAMPLE〉 upsampler l; This provides the stage with the up sampler attached

to the low-pass branch.
UpSample〈INSAMPLE〉 upsampler h; This provides the stage with the up sampler attached

to the high-pass branch.

82

Member Function Description

Public
ReverseWaveletStage Default contstructor that takes as input

(const WaveletType wavetype=DAUB2); the wavelet type. It defaults to the Haar
wavelet type.

ReverseWaveletStage(const ReverseWaveletStage &rhs); Copy constructor.
ReverseWaveletStage(const WaveletType wavetype, Specialized constructor that takes as

const unsigned rate l, input the wavelet type and the up sample
const unsigned rate h); rates of each filter branch.

virtual ∼ReverseWaveletStage(); Destructor.
ReverseWaveletStage & Equal operator that takes as input a

operator=(const ReverseWaveletStage &rhs); reference to a ReverseWaveletStage
and returns a reference to this object.

ReverseWaveletStage* clone(); Clones the ReverseWaveletStage.
inline void SetUpSampleRateLow(const unsigned rate); Sets the up sample rate of the low-pass

branch.
inline unsigned GetUpSampleRateLow() const; Gets the up sample rate of the low-pass

branch.
inline void SetUpSampleRateHigh(const unsigned rate); Sets the up sample rate of the high-pass

branch.
inline unsigned GetUpSampleRateHigh() const; Gets the up sample rate of the high-pass

branch.
inline void ChangeWaveletType Changes the filters of the stage to the

(const WaveletType wavetype); type wavetype.
inline void ClearFilterDelayLines(); Clears the filter delay lines of both filters.
inline void ClearAllState(); Clears the filter delay lines and resets the

state of the up samplers.
bool Sample operation that takes in a sample on

PerformSampleOperation each branch and produces twice as many
(vector〈OUTSAMPLE〉 &out, output samples. It returns true if there are
const Sample〈SAMPLETYPE〉 &in l, samples ready.
const Sample〈SAMPLETYPE〉 &in h);

unsigned Block operation that takes as input a sample
PerformBlockOperation block on each branch and returns an output

(SampleBlock〈OUTSAMPLE〉 &out, sample block twice as long as the input
const SampleBlock〈INSAMPLE〉 &in l, sample blocks and the output sample block
const SampleBlock〈INSAMPLE〉 &in h); length.

ostream & Print(ostream &os) const; Prints the contents of the class.
ostream & operator�(ostream &os) const; Stream operator that prints the contents of

the class.

A.11 Transform classes

In this section, we discuss the transforms that are provided in the Tsunami toolkit. These in-
clude the statically structured transform classes, StaticForwardWaveletTransform and StaticRe-
verseWaveletTransform, the dynamically structured transform classes, DynamicForwardWavelet-
Transform and DynamicReverseWaveletTransform subclassed from the static transforms, and the

83

discrete transform classes, ForwardDiscreteWaveletTransform and ReverseDiscreteWaveletTrans-
form.

A.11.1 StaticForwardWaveletTransform class

The StaticForwardWaveletTransform class provides a statically structured, streaming wavelet trans-
form. It includes a number of ForwardWaveletStages designated by the data member numstages,
arrays for indexing the output detail and approximation samples, and a notion of the lowest output
level in order to keep track of output level numbering.

Data type Description

Protected
unsigned numstages; The number of stages to include in the

transform.
unsigned numlevels; The number of level decomposition.

numlevels = numstages+ 1
int lowest outlvl; The lowest output level number in

the decomposition. Also the
output level number of the highest
frequency band.

unsigned index a[MAX STAGES+1]; An array of indices for approximation
samples indexed by the level number
offset.

unsigned index d[MAX STAGES+1]; An array of indices for detail
samples indexed by the level number
offset.

ForwardWaveletStage〈SAMPLETYPE, The first stage of the decomposition
OUTSAMPLE, that is parameterized by INSAMPLE
INSAMPLE〉* first stage; as the input type and OUTSAMPLE as

the output type.
vector〈ForwardWaveletStage〈SAMPLETYPE, The remaining stages of the decompositon

OUTSAMPLE, that are parameterized by OUTSAMPLE
OUTSAMPLE〉 *〉 stages; as the input type and OUTSAMPLE as

the output type.

84

Member Function Description

Public
StaticForwardWaveletTransform Default constructor that takes as

(const unsigned numstages=1, input the number of stages in the
const int lowest outlvl=0); decomposition and the lowest

output level.
StaticForwardWaveletTransform Copy constructor.

(const StaticForwardWaveletTransform &rhs);
StaticForwardWaveletTransform(const unsigned numstages, Specialized constructor that takes

const WaveletType wavetype, as input the number of stages, the
const unsigned rate l, wavelet type, the down sample rates
const unsigned rate h, of each branch and the lowest output
const int lowest outlvl); level.

virtual ∼StaticForwardWaveletTransform(); Destructor.
StaticForwardWaveletTransform & Equal operator that takes as input

operator=(const StaticForwardWaveletTransform &rhs); a reference to a
StaticForwardWaveletTransform.

inline unsigned GetNumberStages() const; Gets the number of stages.
bool ChangeNumberStages(const unsigned numstages); Changes the number of stages and also

clears all state.
bool ChangeNumberStages(const unsigned numstages, Changes the number of stages and sets

const WaveletType wavetype, the new wavelet type, the down sample
const unsigned rate l, rates and the lowest output level.
const unsigned rate h,
const int lowest outlvl);

inline int GetLowestOutputLevel() const; Gets the lowest output level.
inline void SetLowestOutputLevel(const int lowest outlvl); Sets the number of the lowest output

level.
inline unsigned GetIndexNumberOfApproxLevel Gets the index number of the

(const int level) const; current approximation sample at level.
inline unsigned GetIndexNumberOfDetailLevel Gets the index number of the current

(const int level) const; detail sample at level.
inline void SetIndexNumberOfApproxLevel Sets the index number of the

(const int level, current approximation sample to
const unsigned newindex); newindex at level.

inline void SetIndexNumberOfDetailLevel Sets the index number of the
(const int level, current detail sample to
const unsigned newindex); newindex at level.

ostream & Print(ostream &os) const; Prints the contents of the class.
ostream & operator�(ostream &os) const; Stream operator that prints the

contents of the class.

85

Member Function Description

Public
bool Streaming sample

StreamingSampleOperation(vector〈OUTSAMPLE〉 &approx out, operation that provides
vector〈OUTSAMPLE〉 &detail out, all approximations
const Sample〈SAMPLETYPE〉 &in); and detail signals.

bool Streaming sample
StreamingTransformSampleOperation(vector〈OUTSAMPLE〉 &out, operation that provides

const Sample〈SAMPLETYPE〉 &in); one approximation and
rest detail signals.

bool Streaming sample
StreamingApproxSampleOperation(vector〈OUTSAMPLE〉 &approx out, operation that provides

const Sample〈SAMPLETYPE〉 &in); only the approximations.
bool Streaming sample

StreamingDetailSampleOperation(vector〈OUTSAMPLE〉 &detail out, operation that provides
const Sample〈SAMPLETYPE〉 &in); only the details.

bool Streaming sample
StreamingMixedSampleOperation(vector〈OUTSAMPLE〉 &approx out, operation that provides

vector〈OUTSAMPLE〉 &detail out, a mix of details and
const Sample〈SAMPLETYPE〉 &in, approximations based
const SignalSpec &spec); on the signal spec.

unsigned Streaming block
StreamingBlockOperation operation that provides

(vector〈WaveletOutputSampleBlock〈OUTSAMPLE〉 〉 &approx outblock, all approximations and
vector〈WaveletOutputSampleBlock〈OUTSAMPLE〉 〉 &detail outblock, detail signals.
const SampleBlock〈INSAMPLE〉 &inblock);

unsigned Streaming block
StreamingTransformBlockOperation operation that provides

(vector〈WaveletOutputSampleBlock〈OUTSAMPLE〉 〉 &outblock, one approximation and
const SampleBlock〈INSAMPLE〉 &inblock); rest detail signals.

unsigned Streaming block
StreamingApproxBlockOperation operation that provides

(vector〈WaveletOutputSampleBlock〈OUTSAMPLE〉 〉 &approx outblock, only the approximations.
const SampleBlock〈INSAMPLE〉 &inblock);

unsigned Streaming block
StreamingDetailBlockOperation operation that provides

(vector〈WaveletOutputSampleBlock〈OUTSAMPLE〉 〉 &detail outblock, only the detail signals.
const SampleBlock〈INSAMPLE〉 &inblock);

unsigned Streaming block
StreamingMixedBlockOperation operation that provides

(vector〈WaveletOutputSampleBlock〈OUTSAMPLE〉 〉 &approx outblock, a mix of details and
vector〈WaveletOutputSampleBlock〈OUTSAMPLE〉 〉 &detail outblock, approximations based
const SampleBlock〈INSAMPLE〉 &inblock, on the signal spec.
const SignalSpec &spec);

86

A.11.2 StaticReverseWaveletTransform class

The StaticReverseWaveletTransform is the statically structured dual to the StaticForwardWavelet-
Transform, and is used for reconstruction from the wavelet coefficients output from the forward
transform. This class consists of data members for keeping track of the number of stages, the num-
ber of levels, outgoing indices, incoming indices, buffers for the input signals that arrive at varying
stream rates, buffers in between stages for dealing with different stream rates, and a number of
ReverseWaveletStages to perform the filtering and upsampling at each stage. Like the forward
transform, this class can be run in sample or block streaming modes of operation.

Data type Description

Protected
unsigned numstages; The number of stages to include in the

reconstruction.
unsigned numlevels; The number of level reconstruction.

numlevels = numstages+ 1
int lowest inlvl; The lowest input level represented by

the incoming signals.
unsigned index; Outgoing indice counter to index the

output samples.
unsigned indices[MAX STAGES+1]; An array of input indices for determing

when enough samples have arrived so that
the reconstruction can be properly performed.

unsigned sampletime; Keeps track of the sampletime based on
incoming samples in order to zero-fill
missing samples.

bool sync; True if the incoming indices have been
properly synchronized. False otherwise.

unsigned sync level; The level upon which to synchronize the
sampletime calculations.

vector〈SampleBlock〈INSAMPLE〉 *〉 insignals; Input buffers for the incoming input signals.
This is required because each of the streams
arrive at varying rates.

vector〈SampleBlock〈INSAMPLE〉 *〉 intersignals; Buffers that sit in between subsequent stages.
This is required because signals between stages
arrive at varying rates.

vector〈ReverseWaveletStage〈SAMPLETYPE, A vector of ReverseWaveletStages indexed
INSAMPLE, by the level number. The stages are parameterized
INSAMPLE〉 *〉 stages; by input type INSAMPLE and output type

INSAMPLE.
ReverseWaveletStage〈SAMPLETYPE, The last ReverseWaveletStage that is

OUTSAMPLE, parameterized by input type INSAMPLE and
INSAMPLE〉* last stage; output type OUTSAMPLE. This stage converts

the input from INSAMPLE to the output type
OUTSAMPLE.

87

Member Function Description

Protected
inline void ClearAllDelayLines(); Clears all filter delay line.
inline bool Returns true of there are samples in each

SamplePairReady block that are ready to be run through a
(const SampleBlock〈INSAMPLE〉 &block l, stage.
const SampleBlock〈INSAMPLE〉 &block h) const;

inline bool Returns true if the blocks have samples
BlockPairReady that are ready to be run through a stage.

(const SampleBlock〈INSAMPLE〉 &block l,
const SampleBlock〈INSAMPLE〉 &block h) const;

void Adds the remaining samples from a sample
AddRemainingBlockToInsignals block that have not been run through the

(const SampleBlock〈INSAMPLE〉 &block, stage into the insignals buffer at index
const unsigned minsize, level.
const unsigned level);

void AddBlockToInsignals Adds the samples from the sample block
(const SampleBlock〈INSAMPLE〉 &block, into the insignal buffer at a particular
const unsigned level); level.

void Adds the remaining samples from a sample
AddRemainingBlockToIntersignals block that have not been run through a

(const SampleBlock〈INSAMPLE〉 &block, stage into the intersignals buffer at
const unsigned minsize, index level.
const unsigned level);

void AddBlockToIntersignals Adds the samples from the sample block
(const SampleBlock〈INSAMPLE〉 &block, into the intersignal buffer at a
const unsigned level); particular level.

void AddZeroSamplesToInput Adds zero samples to the input sample
(vector〈INSAMPLE〉 &zeros, data structures.
const vector〈int〉 &zerolevels);

Public
StaticReverseWaveletTransform Default constructor that takes as input the

(const unsigned numstages=1, number of stages in the reconstruction and
const int lowest inlvl=0); the lowest input level.

StaticReverseWaveletTransform Copy constructor.
(const StaticReverseWaveletTransform &rhs);

StaticReverseWaveletTransform Specialized constructor that takes as input
(const unsigned numstages, the numbber of stages, the wavelet type, the
const WaveletType wavetype, up sample rates of each branch and the
const unsigned rate l, lowest input level.
const unsigned rate h,
const int lowest inlvl);

virtual ∼StaticReverseWaveletTransform(); Destructor.
StaticReverseWaveletTransform & Equal operator that takes as input a

operator=(const StaticReverseWaveletTransform &rhs); reference to a
StaticReverseWaveletTransform.

88

Member Function Description

Public
inline unsigned GetNumberStages() const; Gets the number of stages.
bool ChangeNumberStages(const unsigned numstages); Changes the number of

stages to current type and
clears all state.

bool ChangeNumberStages(const unsigned numstages, Changes the number of
const WaveletType wavetype, stages and sets the new
const unsigned rate l, wavelet type, the up sample
const unsigned rate h, rates and the lowest input
const int lowest inlvl); level.

inline int GetLowestInputLevel() const; Gets the lowest input level.
inline void SetLowestInputLevel(const int lowest inlvl); Sets the number of the

lowest input level.
inline unsigned GetIndexNumber() const; Gets the current output index

number.
inline void SetIndexNumber(const unsigned index); Sets the current output index

number.
inline void ClearIncomingIndices(); Clear the incoming indices.
inline unsigned GetSampleTime() const; Obtain the sampletime estimate.
inline void SetSampleTime(const unsigned sampletime); Set the sampletime estimate.
inline bool GetSyncStatus() const; Obtain the synchronization

status.
inline void SetSyncStatus(const bool sync); Set the synchronization staus.
bool Streaming sample operation that

StreamingTransformSampleOperation reconstructs using one
(vector〈OUTSAMPLE〉 &out, approximation signal and the
const vector〈INSAMPLE〉 &in); rest detail signals.

bool Streaming sample operation that
StreamingTransformZeroFillSampleOperation reconstructs using one

(vector〈OUTSAMPLE〉 &out, approximation signal and the
const vector〈INSAMPLE〉 &in, rest detail signals with zero
const vector〈int〉 &zerolevels); filling levels designated by

the zerolevels spec.
bool Streaming sample operation

StreamingMixedSampleOperation that reconstructs using a
(vector〈OUTSAMPLE〉 &out, mix of approximations and
const vector〈INSAMPLE〈 &approx in, details based on the signal
const vector〈INSAMPLE〉 &detail in, spec.
const SignalSpec &spec);

89

Member Function Description

Public
unsigned StreamingTransformBlockOperation Streaming block operation

(SampleBlock〈OUTSAMPLE〉 &outblock, that reconstructs using
const vector〈WaveletOutputSampleBlock〈INSAMPLE〉 〉 &inblock); one approximation signal

and the rest detail signals.
unsigned StreamingTransformZeroFillBlockOperation Streaming block operation

(SampleBlock〈OUTSAMPLE〉 &outblock, that reconstructs using one
const vector〈WaveletOutputSampleBlock〈INSAMPLE〉 〉 &inblock, approximation signal and
const vector〈int〉 &zerolevels); the rest detail signals with

zero filling levels
designated by the
zerolevels spec.

unsigned StreamingMixedBlockOperation Streaming block operation
(SampleBlock〈OUTSAMPLE〉 &outblock, that reconstructs using a
const vector〈WaveletOutputSampleBlock〈INSAMPLE〉 〉 &approx block, mix of approximations and
const vector〈WaveletOutputSampleBlock〈INSAMPLE〉 〉 &detail block, details based on the signal
const SignalSpec &spec); spec.

ostream & Print(ostream &os) const; Prints the contents of the
class.

ostream & operator�(ostream &os) const; Stream operator that prints
the contents of the class.

A.11.3 DynamicForwardWaveletTransform class

The DynamicForwardWaveletTransform class is subclassed from the StaticForwardWaveletTrans-
form class, but provides the user with dynamic operations that add stages or remove stages without
clearing the state of the class. This allows the transform to be shaped at run-time to the signature
of the input signal being transformed.

90

Member Function Description

Public
DynamicForwardWaveletTransform(); Default constructor.
DynamicForwardWaveletTransform Copy constructor.

(const DynamicForwardWaveletTransform &rhs);
DynamicForwardWaveletTransform Specialized constructor that takes as input

(const unsigned numstages=1, the number of stages and the lowest output
const int lowest outlvl=0); level.

DynamicForwardWaveletTransform Specialized constructor that takes as input
(const unsigned numstages, the number of stages, wavelet type for each
const WaveletType wavetype, stage, the downsample rates, and the lowest
const unsigned rate l, output level.
const unsigned rate h,
const int lowest outlvl);

virtual ∼DynamicForwardWaveletTransform(); Destructor.
bool AddStage(); Dynamically adds a stage of the existing type to

the structure. This can be done at run-time, and
all existing state remains the same.

bool AddStage(const WaveletType wavetype, Same as above except that the stage that is added
const unsigned rate l, is specified by the wavelet type and down sample
const unsigned rate h); rates.

bool RemoveStage(); Removes a stage from the top, lowest frequency
band of the structure.

bool ChangeAllWaveletTypes Change all wavelet types in all stages.
(const WaveletType wavetype);

bool ChangeStageWaveletTypes Changes the wavelet type of a particular stage.
(const WaveletType wavetype,
const unsigned stagenum);

bool ChangeStructure Changes the structure to a new number of stages
(const unsigned new numstages, and a new wavelet type.
const WaveletType new wavetype);

ostream & operator�(ostream &os) const; Stream operator that prints the contents of the
class.

A.11.4 DynamicReverseWaveletTransform class

The DynamicReverseWaveletTransform class is subclassed from the StaticReverseWaveletTrans-
form class, but provides the user with dynamic operations that add stages or remove stages without
clearing the state of the class. This allows the reconstruction to be shaped at run-time to the sig-
nature of the wavelet coefficients that are streaming into the structure. As an example, if a set of
levels are producing little to no energy in the wavelet coefficients, these stages might be dynami-
cally removed at run-time.

91

Member Function Description

Public
DynamicReverseWaveletTransform(); Default constructor.
DynamicReverseWaveletTransform Copy constructor.

(const DynamicReverseWaveletTransform &rhs);
DynamicReverseWaveletTransform Specialized constructor that takes as input

(const unsigned numstages=1, the number of stages and the lowest input
const int lowest inlvl=0); level.

DynamicReverseWaveletTransform Specialized constructor that takes as input
(const unsigned numstages, the number of stages, wavelet type for each
const WaveletType wavetype, stage, the upsample rates, and the lowest
const unsigned rate l, input level.
const unsigned rate h,
const int lowest inlvl);

virtual ∼DynamicReverseWaveletTransform() ; Destructor.
bool AddStage(); Dynamically adds a stage of the existing type to

the structure. This can be done at run-time, and
all existing state remains the same.

bool AddStage(const WaveletType wavetype, Same as above except that the stage that is added
const unsigned rate l, is specified by the wavelet type and up sample
const unsigned rate h); rates.

bool RemoveStage(); Removes a stage from the top, lowest frequency
band of the structure.

bool ChangeAllWaveletTypes Change all wavelet types in all stages.
(const WaveletType wavetype);

bool ChangeStageWaveletTypes Changes the wavelet type of a particular stage.
(const WaveletType wavetype,
const unsigned stagenum);

bool ChangeStructure Changes the structure to a new number of stages
(const unsigned new numstages, and a new wavelet type.
const WaveletType new wavetype);

ostream & operator�(ostream &os) const; Stream operator that prints the contents of the
class.

A.11.5 ForwardDiscreteWaveletTransform class

The ForwardDiscreteWaveletTransform class implements the Discrete Wavelet Transform (DWT).
The operations in this class are run in block mode only, and the number of levels are a function of
the input block size.

92

Member Function Description

Public
ForwardDiscreteWaveletTransform Default constructor that takes

(const WaveletType wavetype=DAUB2, as input the wavelet type and
const int lowest outlvl=0); the number of the lowest

output level.
ForwardDiscreteWaveletTransform Copy constructor.

(const ForwardDiscreteWaveletTransform &rhs);
virtual ∼ForwardDiscreteWaveletTransform(); Destructor.
ForwardDiscreteWaveletTransform & Equal operator that takes as

operator=(const ForwardDiscreteWaveletTransform &rhs); input a reference to a
ForwardDiscreteWaveletTransform.

inline int GetLowestOutputLevel() const; Gets the number of the lowest
output level.

inline void SetLowestOutputLevel(const int lowest outlvl); Sets the number of the lowest
output level.

inline unsigned GetIndexNumberOfApproxLevel Gets sample index number of
(const int level) const; approximation level designated

by level.
inline unsigned GetIndexNumberOfDetailLevel Gets sample index number of

(const int level) const; detail level designated by level.
inline void SetIndexNumberOfApproxLevel Sets the next sample index number of

(const int level, approximation level designated by
const unsigned newindex); level.

inline void SetIndexNumberOfDetailLevel Sets the next sample index number of
(const int level, detail level designated by level.
const unsigned newindex);

inline WaveletType GetWaveletType() const; Gets the wavelet type used in the DWT.
bool ChangeWaveletType(const WaveletType wavetype); Sets the wavelet type used in the DWT.

93

Member Function Description

Public
unsigned DiscreteWaveletOperation Discrete wavelet operation

(DiscreteWaveletOutputSampleBlock〈OUTSAMPLE〉 &approxblock, that provides all of the
DiscreteWaveletOutputSampleBlock〈OUTSAMPLE〉 &detailblock, approximation and detail
const SampleBlock〈INSAMPLE〉 &inblock); signals.

unsigned DiscreteWaveletTransformOperation Discrete wavelet transform
(DiscreteWaveletOutputSampleBlock〈OUTSAMPLE〉 &outblock, operation that provides one
const SampleBlock〈INSAMPLE〉 &inblock); approximation and the rest

details.
unsigned DiscreteWaveletApproxOperation Discrete wavelet operation

(DiscreteWaveletOutputSampleBlock〈OUTSAMPLE〉 &approxblock, that provides approximation
const SampleBlock〈INSAMPLE〉 &inblock); signals only.

unsigned DiscreteWaveletDetailOperation Discrete wavelet operation
(DiscreteWaveletOutputSampleBlock〈OUTSAMPLE〉 &detailblock, that provides detail signals
const SampleBlock〈INSAMPLE〉 &inblock); only.

unsigned DiscreteWaveletMixedOperation Discrete wavelet operation
(vector〈WaveletOutputSampleBlock〈OUTSAMPLE〉 〉 &approxblock, that provides a mix of
vector〈WaveletOutputSampleBlock〈OUTSAMPLE〉 〉 &detailblock, approximation and detail
const SampleBlock〈INSAMPLE〉 &inblock, signals based on the input
const SignalSpec &spec); signal specification.

ostream & operator�(ostream &os) const; Stream operator that prints
the contents of the class.

A.11.6 ReverseDiscreteWaveletTransform class

The ReverseDiscreteWaveletTransform class implements the Inverse Discrete Wavelet Transform
(IDWT). The operations in this class are run in block mode only, and the number of levels are
a function of the input block size. It typically takes an encoded block of samples upon which it
works to create the reconstructed time-domain signal.

94

Member Function Description

Public
ReverseDiscreteWaveletTransform Default constructor that

(const WaveletType wavetype=DAUB2); takes as input the wavelet
const int lowest inlvl=0); type and lowest input level.

ReverseDiscreteWaveletTransform Copy constructor.
(const ReverseDiscreteWaveletTransform &rhs);

virtual ReverseDiscreteWaveletTransform(); Destructor.
ReverseDiscreteWaveletTransform & Equal operator that takes

operator=(const ReverseDiscreteWaveletTransform &rhs); as input a reference to a
ReverseDiscrete-
WaveletTransform.

inline unsigned GetIndexNumber() const; Gets the current sample
index number.

inline void SetIndexNumber(const unsigned newindex); Sets the current next
output sample index
number.

inline int GetLowestInputLevel() const; Obtains the lowest input
level.

inline void SetLowestInputLevel(const int lowest inlvl); Sets the lowest input level.
inline WaveletType GetWaveletType() const; Get the current wavelet

type.
bool ChangeWaveletType(const WaveletType wavetype); Change the current wavelet

type.
bool DiscreteWaveletTransformOperation Inverse discrete wavelet

(SampleBlock〈OUTSAMPLE〉 &outblock, transform operation that
const DiscreteWaveletOutputSampleBlock〈INSAMPLE〉 &inblock); reconstructs the time-

domain signal from an
input sample block.

bool DiscreteWaveletTransformZeroFillOperation Inverse discrete wavelet
(SampleBlock〈OUTSAMPLE〉 &outblock, transform operation that
const DiscreteWaveletOutputSampleBlock〈INSAMPLE〉 &inblock); reconstructs the time-
const vector〈int〉 &zerolevels); domain signal from an

input sample block with
zero filling based on the
zero fill specification.

bool DiscreteWaveletMixedOperation Inverse discrete wavelet
(SampleBlock〈OUTSAMPLE〉 &outblock, transform operation that
const vector〈WaveletOutputSampleBlock〈INSAMPLE〉 〉 &approxblock, reconstructs the time-
const vector〈WaveletOutputSampleBlock〈INSAMPLE〉 〉 &detailblock, domain signal from a mix
const unsigned numlevels); of approximations and

details.

ostream & operator�(ostream &os) const; Stream operator that prints
the contents of the class.

95

References

[1] P. Abry, P. Flandrin, M. S. Taqqu, and D. Veitch. Long-Range Dependence: Theory and Applications,
chapter Self-similarity and long range dependence through the wavelet lens. Birkhauser, 2002.

[2] P. Abry, D. Veitch, and P. Flandrin. Long-range dependence: Revisiting aggregation with wavelets.
Journal of Time Series Analysis, 19(3):253–266, May 1998.

[3] G. Booch. Object-oriented analysis and design. Addison Wesley Longman, Inc., 2nd edition, 1994.
[4] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (SIAM),

1999.
[5] P. A. Dinda and D. R. O’Hallaron. An extensible toolkit for resource prediction in distributed systems.

Technical Report CMU-CS-99-138, School of Computer Science, Carnegie Mellon University, July
1999.

[6] A. Feldman, A. C. Gilbert, and W. Willinger. Data networks as cascades: Investigating the multifractal
nature of internet WAN traffic. In Proceedings of ACM SIGCOMM ’98, pages 25–38, 1998.

[7] A. Feldmann, A. Gilbert, P. Huang, and W. Willinger. Dynamics of ip traffic: a study of the role of
variability and the impact of control. In Proceedings of the ACM SIGCOMM 1999, CAmbridge, MA,
August 29 - September 1 1999.

[8] P. Flandrin. Wavelet analysis and synthesis of fractional brownian motion. IEEE Transactions on
Information Theory, 38:910–916, March 1992.

[9] P. Huang, A. Feldmann, and W. Willinger. A non-intrusive, wavelet based approach to detecting
network performance problems. In Proceeding of ACM SIGCOMM Internet Measurement Workshop
2001, San Francisco, CA, November 2001.

[10] M. W. Knop, P. K. Paritosh, P. A. Dinda, and J. M. Schopf. Windows performance monitoring and data
reduction using watchtower and argus. Technical Report NWU-CS-01-6, Department of Computer
Science, Northwestern University, June 2001.

[11] B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste, and J. Subhlok. A resource monitoring
system for network-aware applications. In Proceedings of the 7th IEEE International Symposium on
High Performance Distributed Computing (HPDC), pages 189–196. IEEE, July 1998.

[12] S. Mallat. Multiresolution approximation and wavelets. Transactions American Mathematics Society,
pages 69–88, 1989.

[13] M. Misiti, Y. Misiti, G. Oppenheim, and J. Poggi. Wavelet Toolbox User’s Guide. The Mathworks,
Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, version 2.2 edition, July 2002.

[14] K. Nayebi, T. P. Barnwell, and M. J. T. Smith. Low delay fir filter banks: Design and evaluation. IEEE
Transactions on Signal Processing, 42(1):24–31, January 1994.

[15] D. E. Newland. An Introduction to Random Vibrations, Spectral and Wavelet Analysis. Addison
Wesley Longman Limited, 1993.

[16] Y. Qiao, J. Skicewicz, and P. Dinda. Multiscale predictability of network traffic. Technical Report TR
NWU-CS-02-13, Northwestern University, Evanston, IL, 2003.

[17] R. Riedi, M. Crouse, V. Ribeiro, and R. Baraniuk. A multifractal wavelet model with application to
network traffic. IEEE Transactions on Information Theory, 45(3):992–1019, April 1999.

[18] M. Roughan, D. Veitch, and P. Abry. On-line estimation of the parameters of long-range dependence.
In Proceedings Globecom 1998, volume 6, pages 3716–3721, November 1998.

[19] G. Schuller. Time varying filter banks with variable system delay. In IEEE International Conference
on Acoustics, Speech, and Signal Proecessing (ICASSP), Munich, Germany, April 21-24 1997.

[20] G. D. T. Schuller and T. Karp. Modulated filter banks with arbitrary system delay: Efficient implemen-
tations and the time-varying case. IEEE Transactions on Signal Processing, 48(3):737–748, March
2000.

96

[21] J. Skicewicz, P. Dinda, and J. Schopf. Multi-resolution resource behavior queries using wavelets. In
Proceedings of the 10th Intl. Symp. on High Performance Distriubuted Computing (HPDC-10), pages
395–405, San Francisco, CA, August 2001.

[22] M. J. T. Smith and T. P. Barnwell. Exact reconstruction techniques for tree structured subband coders.
IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-34(1):434–441, June 1986.

[23] I. Sodagar, K. Nayebi, and T. P. Barnwell. Time-varying filter banks and wavelets. IEEE Transactions
on Signal Processing, 42(11):2983–2996, November 1994.

[24] I. The Mathworks. The matlab and simulink web site. http://www.mathworks.com.
[25] P. P. Vaidyanathan and I. Djokovic. The Circuits and Filters Handbook, chapter 6, Wavelet Transforms.

CRC Press and IEEE Press, 1995.
[26] R. Wolski. Forecasting network performance to support dynamic scheduling using the network

weather service. In Proceedings of the 6th High-Performance Distributed Computing Conference
(HPDC97), pages 316–325, August 1997. extended version available as UCSD Technical Report
TR-CS96-494.

97

