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Presentation Outline
1. Self similarity in nature
2. Quick review of autocorrelation
3. Definition of self-similar discrete process

– Exactly/asymptotic self-similar
– Long range vs short range dependence

4. Measures of burstiness
5. Determining presence of self-similarity
6. Implications in computer networks

Self-Similarity Defined

• Self-similarity is the unifying concept for the 
theories of fractals and chaos.

• A phenomenon that is self-similar looks the same 
or behaves the same when viewed at different 
degrees of magnification or different scales on a 
dimension. The dimension can be space (length, 
width) or time.
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Fractals in Nature
• The term “fractal” was coined by Menoit Mandelbrot.
• A fractal is an object that appears self-similar under 

varying degrees of magnification. It possess symmetry 
across scale, with each small part of the object replicating 
the structure of the whole.

• Fractals can be a mathematical construct, but they also 
abound in nature.

• We can speak of
– Statistical self-similarity: coastline (paradox: length 

boundary is function of measuring unit), crack in wall
– Exact (geometric) self-similarity: fern, spiral, binary 

tree
• Fractals in nature do no exhibit self-similarity over all time 

scales; self-similarity eventually breaks down.

Examples of Fractals
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Examples of Fractals

Review: Autocorrelation
)()](*)([]2*1[ ττ RxxtXtXEXXE =+= • Autocorrelation: second 

joint moment of the 
process. It is a measure of 
how dependent a 
particular value of a 
sample function is on 
another value that is 
removed tao units of time.

• Stationary: the mean is 
independent of time, and 
the autocorrelation 
function depends only on 
the time difference
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Review: Autocorrelation 
Examples

process time trace autocorrelation power density PDF

Definition: Self Similar Process
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Definition: Self Similar Process

Definition: Self Similar Process
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Definition: Self Similar Process

Measures of Burstiness
• H. E. Hurst (hydrologist) spent a lifetime studying 

the Nile and other rivers and problems related to 
water storage. Hurst discovered that levels of the 
Nile River over an 800 year period obeyed a self-
similar pattern. In the short term, there were year-
to-year fluctuations. In the long term, there were 
long periods when droughts were followed by 
long periods of flooding.

• Hurst examined a number of different phenomena 
and developed a normalized, dimensionless 
measure to characterize variablility: R/S statistic
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Measures of Burstiness: H

• H, the Hurst parameter, or self-similarity 
parameter, is a key measure of self-similarity. H is 
a measure of the persistence of a statistical 
phenomenon and is a measure of the length of the 
long-range dependence of a stochastic process.
– H = 0.5 indicates absence of self-similarity
– H 1 indicates the degree of persistence or 

long-range dependence.

Measures of Burstiness: IDC

• A commonly used measure for capturing the variability of 
traffic over different time scales is provided by the index 
of dispersion for counts (IDC).

• For a given time interval L, IDC is given by the variance of 
the number of arrivals during the interval L, divided by the 
expected value on the same interval. SS traffic produces a 
monotonically increasing IDC. For Poisson, IDC is either 
constant or converges rapidly to a constant.

• Estimating IDC and plotting it in log-log provides a quick 
and simple approach to test for SS.
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Measures of Burstiness: Peak to 
Mean

• Any possible peak to mean ratio is possible 
depending on the length of the measurement 
interval.

• The dependence of the burstiness measure on 
choice of time interval is undesirable.

Determining Presence of SS

• Three of the most common approaches to 
determine whether a given time series of actual 
data is self-similar, and if so, estimate H are
– Variance-time plots
– R/S (rescale adjusted range) statistic
– Frequency domain: periodogram + Whittle’s
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Determining Presence of SS

• The variance-time plot and R/S plot are heuristic 
or “eyeballing” methods. These two methods are 
used to test whether a time series is self-similar 
and if so to obtain a rough estimate for H. The 
Whittle Estimator assumes the time series is from 
a self-similar process of a particular form and 
provides an estimate of H with confidence 
intervals.

Determining Presence of SS: 
variance-time plots
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Determining Presence of SS: 
variance-time plots

• From [LELAND 94] 
for an Ethernet trace 
collected in 1989 
consisting 360k 
observations:

• Variance-time curve 
has been normalized by 
dividing by the sample 
variance

• Slope is estimated to be 
about B’=-0.4 resulting 
in an estimate 

H’=1-B’/2~0.8

Determining Presence of SS: 
R/S statistic



11

Determining Presence of SS: 
R/S statistic

• Graphical R/S analysis consists of taking 
logarithmically spaced values of N (starting with 
N~10), and plotting log(R(N)/S(N)) versus log(N) 
results in the rescaled adjusted range plot.  If the 
data is well defined self-similar, an estimate H’ of 
H is given by the street’s asymptotic slope which 
can take any value between ½ and 1.

Determining Presence of SS: 
R/S statistic

• From [LELAND 94] for 
an Ethernet trace 
collected in 1989 
consisting of 360k 
observations:

• The value of the 
asymptotic slope of the 
R/S plot is between ½ 
and 1 (upper and lower 
dotted lines)

• Least-square fit results 
in H~0.79
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Implications in Computer Networks

Implications in Computer Networks

• Observations from self-similar packet traffic:
– The aggregated time-series do not resemble second-

order white noise.
– There is no “natural” burst size. The traffic is bursty

over a wide range of time-scales.
– The auto correlations of the aggregated series remains 

the same or tend to be the same as that of the original 
series over a wide range of time scales.

– The variances of the aggregated processes decrease 
shallower than 1/m

– The rescaled adjusted range increases faster than n^0.5
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Implications in Computer Networks
• Assuming poisson traffic leads 

to modest-sized queue buffers 
because traffic “smooths out” 
over the long term, despite 
burstiness in “short-term”. A 
queue may build up on short 
run, but over a longer period 
the buffers are cleared out. 
However, if traffic bursts  are 
themselves bursty, queue sizes 
may build up more than would 
be expected resulting in 
overflows.

Implications in Computer Networks

• Observations from LELAND (1994) paper based 
on very high quality traces (20us time resolution 
over 4 years) and rigorous statistical analysis
– Ethernet LAN traffic (packet arrival count) is self-

similar irrespective of time of measurement.
– The Hurst parameter, H, is a function of the overall 

utilization of the Ethernet and can be used for 
measuring the burstiness of the traffic. The higher the 
traffic, the higher H.

– This paper proved that queuing analysis using Poisson 
traffic assumption is not adequate to model network 
traffic
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