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On Multimedia Networks:
Self-Similar Traffic and
Network Performance
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he future will bring a wide variety of multimedia
applications each with different traffic characteris-

tics at optimized performance, to be carried by both wireless
and wireline networks. In wireless mobile networks the
offered traffic varies both temporally and spatially, with the
spatial variation significantly higher than in wired networks.
Models of the traffic offered to the network or a component
of the network will be critical to providing high quality of ser-
vice (QoS). Traffic models are used as the input to analytical
or simulation studies of resource allocation strategies.

We may view traffic at the application or packet level,
where an application-level view may simply describe the
offered traffic as “a videoconference between three parties,”
while the packet-level view is given by a stochastic model
that mimics the arrival process of packets associated with
this application reasonably well. Clearly, in order to quanti-
fy traffic, packet-level representation of applications will be
used. An important feature of multimedia traffic at the
packet level that has a significant impact on performance is
traffic correlation. The complexity of traffic in a multimedia
network is a natural consequence of integrating, over a sin-
gle communication channel,  a diverse range of traffic
sources such as video, voice, and data that significantly dif-
fer in their traffic patterns as well as their performance
requirements. Specifically, “bursty” traffic patterns generat-
ed by data sources and variable bit rate (VBR) real-time
applications such as compressed video and audio tend to
exhibit certain degrees of correlation between arrivals, and
show long-range dependence in time (self-similar traffic).
The questions that arise here are how prevalent such traffic
patterns are and under what conditions performance analy-
sis is critically dependent on taking self-similarity into
account. There are different studies pointing out either the
importance of self-similarity to network performance [1–4]
or the irrelevance of the need for capturing self-similarity in
traffic modeling [5]. To clarify this dilemma, a through
understanding of QoS and resource allocation in a network
environment is necessary. Optimal resource allocation is
determining optimal buffer sizes, assignment of bandwidth,
and other resources in order to get the desired QoS
expressed in terms of parameters such as queuing delay,

retransmission time, packet loss prob-
ability, and bit error rate.

QUALITY OF SERVICE
The International Organization for
Standards (ISO) defines QoS as a con-
cept for specifying how good the offered
networking services are [6]. A layered
model of the multimedia communica-
tion system (MCS) with respect to QoS

is presented in Fig. 1. Generally, QoS parameters are perfor-
mance measures such as bit error rate, frame error rate, cell
loss probability, delay, and delay variation or guarantee, which
is the maximum difference between end-to-end delays experi-
enced by any two packets.

The user and application requirements for the MCS are
mapped into a communication system that tries to satisfy the
requirements of the services, which are parameterized. Param-
eterization of the services is defined in ISO standards through
the notion of QoS.

In this article we concentrate on QoS in the network layer
since the characteristics of network traffic and its effects on
network performance are to be discussed. The set of chosen
parameters for a particular service determines what will be
measured as the QoS.

Network QoS parameters describe requirements for net-
work services. They may be specified in terms of:
• Network load, characterized by average/minimal inter-

arrival time on the network connection, packet cell size
and service time in the node for the connection’s pack-
et/cell [7].

• Network performance, describing the requirements that
the network services must guarantee. The performance
might be expressed through a source-to-destination delay
bound for the connection’s packet loss rate [7].

RESOURCE ALLOCATION
Services for multimedia networked applications need
resources to perform their functions. Of special interest are
resources that are shared among application, system, and net-
work. There are several constraints that must be satisfied dur-
ing multimedia transmission:
• Time constraints, which include delays, computing time,

and signaling delay
• Space constraints such as system buffers
• Frequency constraints, which are network bandwidth and

system bandwidth for data transmission
The best usage (or, in other words, utilization) of

resources in a network environment is only possible by first
characterizing the traffic, then determining the parameters
such as buffer size and bandwidth to maximize the perfor-
mance.
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The main objective in telecommunications network engineering
is to have as many happy users as possible. In other words, the

network engineer has to resolve the trade-off between capacity and QoS requirements.
Accurate modeling of the offered traffic load is the first step in optimizing resource alloca-
tion algorithms such that provision of services complies with the QoS constraints while
maintaining maximum capacity. In recent years, as broadband multimedia services became
popular, they necessitated new traffic models with self-similar characteristics. In this article
we present a survey of the self-similarity phenomenon observed in multimedia traffic and
its implications on network performance. Our current research aims to fill the gap
between this new traffic model and network engineering. An immediate consequence of
this study is the demonstration of the limitations or validity of conventional resource allo-
cation methods in the presence of self-similar traffic.
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WHAT IS SELF-SIMILARITY?

A self-similar phenomenon displays
structural similarities across a wide range
of timescales. Traffic that is bursty on
many or all timescales can be described
statistically using the notion of self-simi-
larity. Self-similarity is the property asso-
ciated with “fractals,” which are objects
whose appearances are unchanged
regardless of the scale at which they are
viewed [8]. In the case of stochastic
objects like time series, self-similarity is
used in the distributed sense: when
viewed at varying timescales, the object’s
relational structure remains unchanged.
As a result, such a time series exhibits
bursts at a wide range of timescales.

SELF-SIMILARITY IN NETWORK TRAFFIC
In 1993, a seminal event in the field of network perfor-

mance modeling occurred with the publication of the paper
titled “On the Self-Similar Nature of Ethernet Traffic [9]. “
Ethernet is a broadcast multi-access system for local area net-
working with distributed control. The authors reported the
results of a massive study of Ethernet traffic and demonstrat-
ed that it had a self-similar (i.e., fractal) characteristic. This
meant the traffic had similar statistical properties at a range
of timescales: milliseconds, seconds, minutes, hours, even days
and weeks. Another consequence is that the merging of traffic
streams, as in a statistical multiplexer or an asynchronous
transfer mode (ATM) switch, does not result in smoothing of
traffic. Again, bursty data streams that are multiplexed tend to
produce a bursty aggregate stream. This first paper sparked a
surge of research around the globe. The results show the self-
similarity in ATM traffic, compressed digital video streams,
and Web traffic between browsers and servers. Although a
number of researchers had observed over the years that net-
work traffic didn’t always obey Poisson assumptions used in
queuing analysis, this paper for the first time provided an
explanation and a systematic approach to modeling realistic
data traffic patterns. Following the announcement of the frac-
tal nature of data traffic, network theorists split into two
camps; one advocated that the entire network theory has to
be rewritten, and the other disagreed.

Traditionally, networks have been described by generalized
Markovian processes that are statistical models and rely on pos-
tulates framed by the Russian mathematician A. A. Markov.
Markovian models of networks have limited memory of the past.
They reflect short-range dependence. In a Markovian model,
smoothing of bursty data is possible. Averaging of bursty traffic
over a long period of time gives rise to a smooth data stream. A
network based on fractal nature will have very different param-
eters and congestion control techniques. Let us view in detail
what kind of statistical properties self-similar patterns present.

PROPERTIES OF SELF-SIMILARITY
X is defined to be a wide sense stationary random process with
mean µ, variance σ, and autocorrelation function ρ. In particular,
ρ(τ) is of the form ρ(τ) τβ, as τ  ∞ where L(τ) is slowly varying at
infinity [4], that is, Limτ∞L(τx)/L(τ) = 1 for all x > 0. Let X(m)

denote the new process obtained by averaging the original
series X in nonoverlapping subblocks of size m. That is,
X(m)(t) = (1/m)(Xtm–m+1 + Xtm–m+2 + … + Xtm).

For each m, X(m) defines a wide-sense stationary random pro-
cess. Process X is said to be second-order self-similar with self-

similarity parameter H if the aggregated
processes have the same autocorrelation
structure as X [4]. That is, H = 1 – β/2 and
ρ(m)(τ) = ρ(τ) for all m = 1, 2, ….

In other words, X is exactly second-
order self-similar if the aggregated pro-
cesses are indistinguishable from X with
respect to their first- and second-order
properties.

The most striking feature of self-simi-
larity is that the correlation structures of
the aggregated process do not degener-
ate as m ∞ . This is in contrast to tradi-
tional models, all of which have the
property that the correlation structure of
their aggregated processes degenerates
as m ∞ ; that is, ρ(m)(τ) 0, as m ∞ for τ
= 1, 2, 3, ….

LONG-RANGE DEPENDENCE AND
HEAVY-TAILED DISTRIBUTIONS

Long-range dependent processes are characterized by an auto-
correlation function which decays hyperbolically. This implies
that the auto-correlation function is nonsummable, unlike
more conventional short-range dependent processes, which
have auto-correlation functions that decay exponentially [4].

Also, a distribution is heavy-tailed if P[X > x] ~x–a, x ∞ ,
where 0 < a < 2 [3]. That is, the asymptotic shape of the distri-
bution follows a power law. A random variable that follows a
heavy-tailed distribution can take on extremely large values
with nonnegligible probability. Heavy-tailed distributions can be
used to characterize probability densities that describe traffic
processes such as packet interarrival times and burst length [10].

THE HURST PARAMETER: THE MEASURE OF SELF-SIMILARITY
The Hurst parameter H is a measure of the level of self-simi-
larity of a time series. H takes values from 0.5 to 1. In order
to determine if a given series exhibits self-similarity, a method
is needed to estimate H for a given series. Currently, there are
three approaches to doing that:
• Analysis of the variances of the aggregated processes X(m)

• Analysis of the rescaled range (R/S) statistic for different
block sizes

• A Whittle estimator
The first method, the variance time plot, relies on the

slowly decaying variance of a self-similar series. The variance
of X(m) is plotted against m on a log-log plot. Then a straight
line with a slope (–β) greater than –1 is indicative of self-simi-
larity. and the parameter H is given as above [8].

The second method, the R/S plot, uses the fact that for
self-similar data, the rescaled range or R/S statistic grows
according to a power law with exponent H as a function of the
number of points included, n. Thus, the plot of R/S against n
on a log-log plot has a slope which is an estimate of H.

While the preceding two graphical methods are useful to
estimate H, they may be biased for large H. The third method,
a Whittle estimator, does provide a confidence interval. This
technique uses the property that any long-range dependent
process approaches fractional Gaussian noise(FGN) when
aggregated to a certain level, and so should be coupled with a
test of the marginal distribution of the aggregated observa-
tions to ensure that it has converged to the normal distribu-
tion [8]. As m increases, short-range dependences are
averaged out of the data set. If the value of H remains rela-
tively constant, it is almost certain that this H value measures
a true level of self-similarity of the data set.

■ Figure 1. A QoS layered model for the
MCS [6].
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The Hurst Effect — Self-similar processes provide an ele-
gant explanation of an empirical law known as Hurst’s law or
the Hurst effect. For a given set of observations X1, X2, …, Xn
with sample mean —X(n) and sample variance S2(n), the
rescaled adjusted range or R/S statistic is given by

R(n)/S(n) = (1/S(n)) (max(0, W1, W2, … Wn)

–min (0, W1, W2, … Wn))

with Wk = X1 + X2 + … Xk – k—X, k = 1,2, …, n.
Hurst found that many naturally occurring time series are well
represented by the relation E[R(n)/S(n)] ~ cnH as n ∞ with
Hurst parameter H normally around 0.73, and c a finite posi-
tive constant independent of n. However, if the observations
come from a short-range dependent process, it has been
shown that E[R(n)/S(n)] ~ dn0.5 as n ∞ with d a finite posi-
tive constant independent of n [4]. This discrepancy is referred
to as the Hurst effect or Hurst phenomenon.

SLOWLY DECAYING VARIANCES

The most important feature of self-similar processes is that
the variance of the arithmetic mean, µ, decreases more slowly
than the reciprocal of the sample size n. That is equal to say-
ing var(X(m)) ~ am–βas m ∞ , where a is a finite constant
independent of m. On the other hand, for short-range depen-
dent processes var(X(m)) ~ bm–1, m ∞ , where b is a finite
positive constant independent of m.

WHAT CAUSES SELF-SIMILARITY?
Since self-similarity is believed to have a significant impact on
network performance, understanding the causes of self-simi-
larity in traffic is important.

Research done by M. E. Crovella et al. [8] has revealed
that the traffic generated by World Wide Web transfers shows
self-similar characteristics. Comparing the distributions of ON
and OFF times, they found that the ON time distribution was
heavier-tailed than the OFF time distribution. The distribu-
tion of file sizes in the Web might be the primary determiner
of Web traffic self-similarity. In fact, the work presented by K.
Park et al. [1] has shown that the transfer of files whose sizes
are drawn from a heavy-tailed distribution is sufficient to gen-
erate self-similarity in network traffic. The ON and OFF peri-
ods do not need to have the same distribution. These results
suggest that the self-similarity of Web traffic is not a machine-
induced artifact; in particular, changes in protocol processing
and document display are not likely to remove the self-simi-
larity of Web traffic [8].

In a realistic client/server network environment, the degree
to which file sizes are heavy-tailed can directly determine the
degree of traffic self-similarity at the link level [1, 3]. This
causal relation is proven to be robust with respect to changes
in network resources (bottleneck bandwidth and buffer capac-
ity), network topology, the influence of cross-traffic, and the
distribution of interarrival times. Specifically, measuring self-
similarity via the Hurst parameter H and the file size distribu-
tion by its power law exponent α, it has been shown that there
is a linear relationship between H and αover a wide range of
network conditions.

NETWORK PERFORMANCE
Well-defined metrics of delay, packet loss, flow capacity, and
availability are fundamental to measurement and comparison
of path and network performance. In general, users are most
interested in metrics that provide an indication of the likeli-
hood that their packets will get to the destination in a timely

manner. Therefore, estimates of past and expected perfor-
mance for traffic across specific Internet paths, not simply
measures of current performance, are important. Users are
also increasingly concerned about path availability informa-
tion, particularly as it affects the quality of multimedia appli-
cations requiring higher bandwidth and lower latency, such as
Internet phone and videoconferencing. Availability of such
data could help in scheduling online events such as Internet-
based distance education seminars, and also influence user
willingness to purchase higher service quality and associated
service guarantees.

Given the ubiquity of scale-invariant burstiness observed
across diverse networking contexts, finding effective traffic
control algorithms capable of detecting and managing self-
similar traffic has become an important problem.

The control of self-similar traffic involves modulating the
traffic flow in such a way that the resulting performance is
optimized. Scale-invariant burstiness (i.e., self-similarity)
introduces new complexities into optimization of network per-
formance and makes the task of providing QoS together with
achieving high utilization difficult.

THE EFFECTS OF SELF-SIMILARITY ON
NETWORK PERFORMANCE

Many analytical studies have shown that self-similar network
traffic can have a detrimental impact on network perfor-
mance, including amplified queuing delay and packet loss rate
[1, 2, 4]. On the other hand, Heyman et al. [5] found that
long-range dependence was unimportant for buffer occupancy
when there was strong short-range dependence and the Hurst
parameter was not very large (H < 0.7). However, they did
not touch the case where there was strong long-range depen-
dence with a larger Hurst parameter.

One practical effect of self-similarity is that the buffers
needed at switches and multiplexers must be bigger than those
predicted by traditional queuing analysis and simulations.
These larger buffers create greater delays in individual
streams than were originally anticipated [3, 4]. The delay-
bandwidth product problem arising out of high-bandwidth
networks and QoS issues stemming from support of real-time
multimedia communication have added further complexities
to the problem of optimizing performance.

How much self-similarity affects network performance is
modulated by the protocols acting at the transport/network
layer. An exponential trade-off relationship was observed
between queuing delay and packet loss rate [2].

It is certain that a linear increase in buffer sizes will pro-
duce nearly exponential decreases in packet loss, and that an
increase in buffer size will result in a proportional increase in
the effective use of transmission capacity. With self-similar
traffic, these assumptions do not hold. The decrease in packet
loss with buffer size is far less than expected, and as can be
seen from Fig. 2, the buffer requirements begin to explode at
lower levels of utilization for higher degrees of long-range
dependence (higher values of H).

Heyman et al. showed that for sources with large Hurst
parameters, Markov chain models estimated the buffer occu-
pancy well when the buffer sizes were not too large (no larger
than 10 ms for a single source) [5], but these models might
not estimate the cell loss rate and mean buffer size accurately
for larger buffers. Also, another study has shown that queuing
delay exhibited a superlinear dependence on self-similarity
when buffer capacity was large [2]. The queue length distribu-
tion decayed more slowly for long-range dependent sources
than short-range dependent sources.
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Moreover, scale-invariant burstiness
implies the existence of concentrated peri-
ods of high activity at a wide range of
timescales, which adversely affects conges-
tion control and is an important correla-
tion structure which may be exploitable for
congestion control purposes [4]. Network
performance as captured by throughput,
packet loss rate, and packet retransmission
rate degrades gradually with increasing
heavy-tailedness. The degree to which
heavy-tailedness affects self-similarity is
determined by how well congestion control
is able to shape its source traffic into an
on-average constant output stream while
conserving flow [2].

A dynamic congestion control strategy
is difficult to implement. Such a strategy is based on measure-
ment of recent traffic and can fail utterly to adapt to rapidly
changing conditions. Also, congestion prevention by appropri-
ate sizing of switches and multiplexers is difficult because data
network traffic does not exhibit a predictable level of busy
traffic periods; patterns can change over a period of days,
weeks, or months, and congestion can occur unexpectedly with
dramatic intensity. On the other hand, predictive congestion
control was studied for improving network performance by
Tuan et al. [3]. In their algorithm, information about the
future is utilized to make traffic control decisions. They called
this Selective Aggressiveness Control ( SAC ), and it is aimed to
be robust, efficient, and portable so that it can easily be incor-
porated into existing congestion control schemes.

SAC tries to aggressively soak up bandwidth if it predicts the
future network state to be “idle,” adjusting the level of aggres-
siveness as a function of the predicted idleness and its confi-
dence. They showed that the performance gain due to SAC is
higher the more self-similar the network traffic is [3]. Although
in real life the perfect prediction of future traffic congestion is
not possible, SAC achieves the highest throughput with perfect
future information among other congestion control algorithms
such as generic feedback congestion control.

As the traffic self-similarity (described by the αparameter
of Pareto file size distribution, α= 3 – 2H) and network
resources (buffer capacity, bottleneck bandwidth) vary, a grad-
ual change in the packet loss rate is observed: as αapproaches
1, along with a decrease in buffer capacity, packet loss rate
increases. This relation is shown in Fig. 3 for different link
buffer (LB) sizes in the range of 2–46 kbytes.

Packet loss and retransmission rate decline smoothly as
self-similarity is increased under reliable flow-controlled pack-
et transport [1]. The only performance indicator exhibiting a

more sensitive dependence on self-similarity is mean queue
length, and this concurs with the observation that queue
length distribution under self-similar traffic decays more slow-
ly than with Poisson sources. Increasing network resources
such as link bandwidth and buffer space results in a superlin-
ear improvement in performance. However, large buffer sizes
are accompanied by long queuing delays. In the context of
facilitating multimedia traffic such as video and voice in a
best-effort manner while satisfying their diverse QoS require-
ments, low packet loss, on average, can only be achieved at a
significant increase in queuing delay and vice versa.

Increasing link bandwidth, given a large buffer capacity,
has the effect of decreasing queuing delay much more drasti-
cally under highly self-similar traffic conditions than when
traffic is less self-similar (Fig. 4). Therefore, high-bandwidth
communication links ( for multimedia network applications )
should be employed to alleviate the exponential trade-off
between queuing delay and packet loss (throughput) for sup-
porting QoS-sensitive traffic.

One important discovery is that the higher the load on the
Ethernet, the higher the degree of self-similarity [10]. When
the network load is in the range of 30–70 percent, waveforms
of the traffic display self-similarity for which H was approxi-
mately 1. Furthermore, a load between 80 and 99 percent pro-
duces waves with a strong periodic component, and calculation
of H becomes unreliable.

CURRENT RESEARCH
Studies performed in the last couple of years have present-
ed convincing evidence that multimedia network traffic
exhibits self-similar traits. Therefore, the ongoing research

■ Figure 2. Queue size–utilization trade-off as self-similarity changes defined by H,
the Hurst parameter [10].
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on characterization of self-similar processes and their appli-
cation to teletraffic modeling is increasingly important.
Also, impacts of second-order self-similar processes on
ATM networking is a subject matter of recent research
work. The results will have a significant impact on the cor-
rect dimensioning of ATM networks, in particular ATM
multiplexers and switches.

Due to the inherent bursty nature of multimedia traffic,
packet loss and network delay are common problems experi-
enced by multimedia applications such as video on demand.
Hence, optimal allocation of buffers in a network in order to
smooth the bursty traffic caused by multimedia data is also
subject to further study.

Our ongoing research aims to detect self-similarity in real
time, and come up with a measure of self-similarity such that
this measure can be input for the optimization of resource
allocation algorithms. Our aim is to demonstrate the limita-
tions or validity of conventional resource allocation methods
in the presence of self-similar traffic. In general, self-similar
traffic, as established in this article, exhibits a higher level of
complexity than conventional traffic models, which has caused
existing network engineering tools and methods to be inade-
quate for such traffic. The new approach will simplify self-sim-
ilarity by reducing its modeling to a single measure, and
generate new network engineering tools and methods that will
adaptively operate on this measure to provide optimal perfor-
mance and capacity.

REFERENCES
[1] K. Park, G. Kim, and M. Crovella, “On the Relation Between File Sizes,

Transport Protocols, and Self-Similar Network Traffic,” Proc. IEEE Int’l.
Conf. Network Protocols, Oct. 1996, pp. 171–80.

[2] K. Park, G. Kim, and M. Crovella, “On the Effect of Traffic Self-Similarity
on Network Performance,” Proc. SPIE Int’l. Conf. Perf. and Control of
Network Sys., 1997, pp. 296–310.

[3] T. Tuan and K. Park, “Congestion Control for Self-Similar Network Traf-
fic,” Dept. of Comp. Sci., Purdue Univ., CSD-TR 98-014, May 1998, to
be published.

[4] P. R. Morin, “The Impact of Self-Similarity on Network Performance
Analysis,” Ph.D. dissertation, Carleton Univ., Dec. 1995.

[5] D. P. Heyman and T. V. Lakshman, “What are the Implications of Long-
Range Dependence for VBR-Video Traffic Engineering?” IEEE Trans. Net-
working, vol. 4, no. 3, June 1996, pp. 301–17.

[6] R. Steinmetz and K. Nahrstedt, Multimedia: Computing Communications
& Applications, Prentice Hall., 1995, pp. 420–45.

[7] D. Ferrari and D. C. Verma, “A Scheme for Real Time Channel Establishment
in Wide-Area Networks,” IEEE JSAC, vol. 8, no. 3, Apr. 1990, pp. 368–79.

[8] M. E. Crovella, “Self-Similarity in WWW Traffic: Evidence and Possible
Causes,” IEEE Trans. Networking, vol. 5, no. 6, Dec. 1997, pp. 835–45.

[9] W. E Leland et al., “On The Self-Similar Nature of Ethernet Traffic,” IEEE
Trans. Networking, vol. 2, no. 1, Feb. 1994, pp. 1–15.

[10] W. Stallings, High Speed Networks; TCP/IP ATM Design Principles,
Prentice Hall, 1998, pp. 181–207.

BIOGRAPHIES
ZAFER SAHINOGLU (zxsl602@red.njit.edu) graduated with a B.S. degree in
electrical and electronics engineering from Gazi University, Ankara, Turkey
in 1994. He focused on bioelectronics signal processing applications and
received his M.S. degree at the New Jersey Institute of Technology, Newark,
in 1997. Afterwards, he joined the New Jersey Center for Multimedia
Research at NJIT to pursue his Ph.D. in telecommunications and networking
engineering. His current research interests include analysis of network traf-
fic, self-similarity, and adaptive resource allocation schemes.

SIRIN TEKINAY [M] (stekinay@megahertz.njit.edu) holds a Ph.D. (1994) degree
with concentration in telecommunications from the School of Information
Technology and Engineering, George Mason University. She served as a visit-
ing scientist at CONTEL from 1991 until 1993. In 1994 she joined NORTEL as
a senior member of scientific staff where she led several projects, including
the capacity and performance evaluation of GSM systems, wireless network
planning for CDMA PCS systems, and external research projects with universi-
ties. In 1996 she joined Bell Laboratories, Lucent Technologies, where she
was appointed technical prime on wireless radiolocation. During this appoint-
ment, she has served on CDMA Development Group task forces, TIA 45.5
standards groups, and contributed to the CTIA. In September 1997, she
joined the Department of Electrical and Computer Engineering at the New
Jersey Institute of Technology and New Jersey Center for Multimedia
Research. She is director of the recently founded New Jersey Center for Wire-
less Telecommunications. Her research interests include teletraffic modeling
and management, resource allocation, mobility management for wireless and
wireline networks, computer communications networks, wireless geolocation
systems, propagation environment characterization, and wireless and wireline
multimedia networking.


