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Abstract 

Learning spatial prepositions is an important problem in 

spatial cognition.  We describe a model for learning how to 

classify visual scenes according to what spatial preposition 

they depict. We use SEQL, an existing model of analogical 

generalization, to construct relational descriptions from 

stimuli input as hand-drawn sketches.  We show that this 

model can distinguish between in, on, above, below, and left, 

after being trained on simple sketches exemplifying each 

preposition.   

Introduction 

Spatial reasoning is a skill central to many human tasks, as 

is being able to communicate about space.  One way we 

share spatial information is through the use of prepositions 

to describe relationships between entities in the world.  

These utterances involve at minimum two objects: a 

reference object (the ground) and a located object (the 

figure) as well as the preposition that describes their 

relationship.  The set of spatial prepositions in English is 

quite small when compared with other word categories; 

however computationally modeling the assignment of 

preposition labels to visual scenes remains a difficult and 

important problem.   

Many recent psychological studies have focused on 

understanding which properties of the figure and ground 

objects play a role in the assignment of spatial prepositions.  

Some of the properties studied are extracted directly from 

the spatial arrangement of objects and surface features.    

Spatial language has garnered so much attention since it is 

considered to be an important organizing structure for 

conceptual information (Talmy, 1983).  Studies have also 

shown that children learn how to use spatial language 

through interactions with objects in the world and without 

negative evidence.   

In this paper, we automatically categorize simple 

geometric sketches based on the preposition that would 

describe them. Sketching is particularly suited to studying 

this domain as our understanding of spatial terms is 

grounded in perception.  Perceptual features can be 

automatically computed using sketching systems, thus 

removing a source of tailorability in modeling. For these 

experiments, we used sKEA (Forbus, Ferguson & Usher, 

2001), the first open-domain sketching system.  sKEA 

sidesteps traditional recognition problems by allowing users 

to conceptually label the glyphs in a sketch.  We use this 

conceptual information along with visual properties of the 

ink itself to focus on understanding the relationships in the 

sketch.  The possibilities for conceptual labels are limited 

only by the underlying database (currently a subset of the 

Cyc database containing over 35,000 concepts).  In addition 

to the conceptual label, users can give each glyph a name to 

reference it by.  Basic qualitative spatial relationships are 

extracted from the ink in the sketch (Forbus, Tomai & 

Usher, 2003).  In sKEA, the frame of reference is also 

specified by allowing the user to select the view of the 

sketch (i.e., “looking from side”, “looking from another 

object”). 

We previously used sKEA as input into SpaceCase, a 

Bayesian model that assigned prepositions to individual 

sketches (Lockwood, Forbus, & Usher, 2005).  In that 

model, update rules fired based on properties in the sketch 

such as animacy of the ground and figure objects.  In that 

work, the rules were motivated by results from 

psychological studies indicating what properties of scenes 

were important for preposition assignment.  In the 

experiments described here, we use sKEA to automatically 

compute a set of spatial relationships from sketches.  These 

relationships are suggested by, and consistent with, those 

features which have been shown to influence spatial 

preposition judgments with human subjects.  Analogical 

generalization is used to automatically create groupings 

based on the features we have extracted.  The 

generalizations created group the sketches together based on 

the relationship (in, on, above, below, and left) between the 

two objects.   

Analogical Generalization 

 

We use SEQL (Skorstad, Gentner, & Medin, 1988; Kuehne, 

Forbus, Gentner, & Quinn, 2000) as our model of 

categorization.  SEQL is a computer model of category 

learning that is based on Gentner’s (1983) structure-

mapping theory of analogy and similarity. In SEQL 

categories are created through a process of successive 

comparison with incoming exemplars.  The comparisons are 

carried out with SME, the Structure-Mapping Engine 

(Falkenhainer, Forbus & Gentner, 1986; Forbus, Ferguson 

& Gentner, 1994).   For each category, a set of 

generalizations and exemplars is maintained.  Each new 



exemplar that arrives is compared against existing 

generalizations.  If the comparison is very close, i.e. over a 

given threshold, the exemplar is merged into the 

generalization and the generalization is replaced with the 

overlap between them. If it is sufficiently similar to an 

existing exemplar, the overlap between the two exemplars is 

stored as a new generalization.  Finally, if the incoming 

exemplar is not similar enough to any of the existing 

generalizations, it is maintained as a separate exemplar.   

The determination of “similar enough” is controlled by 

the match threshold parameter, which is 1.0 when the two 

descriptions are identical.  If this threshold is too high, it is 

difficult to find any exemplars that are similar enough to 

create generalizations.  If too low, then the generalizations 

created are meaningless.  Previous experiments suggest that 

a match threshold between 0.75 and 0.9 tends to yield the 

most useful results. 

SEQL can now use probabilities in producing 

generalizations (Halstead & Forbus, 2005).  When 

generalizations are created or extended, the union of the 

descriptions is used, with the probability of an expression 

being in the generalization calculated by the frequency of 

occurrence in the exemplars that make up the generalization. 

Experimental Design 

Experiment 1 

Input. Input was provided as sketches created using sKEA.  

Each sketch contained two geometric shapes named 

figure/ground and conceptually labeled with their common 

shape names (for example, in figure 1 below, the square was 

named figure and conceptually labeled “square”).  The 

shapes used were circles, triangles, rectangles, and squares. 

     

In the first experiment the library of sketches used 

contained 50 sketches.  Each sketch was designed to be a 

good example of one of five spatial prepositions: in, on, 

above, below, or left, with 10 sketches created for each 

preposition.  By “good example” we mean that it would be 

easily and unequivocally recognized as a good 

representative of the English use of that preposition.  For 

example, in all of the on sketches, the figure object was 

smaller than the ground object and the entire bottom surface 

of the figure object was in contact with the top surface of 

the ground object.  Each preposition had examples 

containing different shapes in the ground and figure roles.  

All sketches were 2D and drawn from the same side view 

perspective. 

The sketches were drawn from stimuli in the 

psychological literature studying spatial prepositions, 

focusing on simple geometric shapes.  The sketches for 

above and on were taken in part from examples provided in 

Regier (1995).  Other sketches for left and above were 

created based on information from Gapp (1995a, 1995b), 

whose experiments explored the effect of distance and shape 

(extent)/size of the ground in judgments of applicability for 

projective spatial relationships.  The sketches were also 

informed by a variety of experiments that discuss limitations 

on regions of acceptability for prepositions, such as Logan 

and Sadler (1996) and Regier and Carlson (2001). 

 

Visual Processing.  Initial processing is done on the sketch 

to extract visual information from the ink.  This information 

is meant to approximate high-level visual processing.  For 

example, RCC-8 relations (Cohn, 1996) are computed 

between the objects in the sketch to determine topological 

relationships such as touching (RCC8-EC) and inside (RCC8-

nTPP).  We use these qualitative spatial relations as one 

source of perceptually salient relationships in the sketches.   

sKEA automatically computes a variety of other 

qualitative spatial relationships from the ink.  For example, 

spatial processing identifies groups of glyphs that form 

connected glyph groups and contained glyph groups.  In the 

latter case it also specifies which glyph acts as the container 

and which acts as the insider.  sKEA computes positional 

relations (i.e., above and to the right of between all pairs of 

glyphs in a sketch that are disjoint from each other.  

Our model does some minimal additional processing 

based on the spatial relationships computed from the sketch.  

For example, positional relations are always computed with 

the figure in the first argument and the ground in the second 

argument, i.e., (above ground figure) would be translated 

to (below figure ground)1. For each sketch, this visual 

information and any conceptual information about the 

objects in the sketches is recorded as an exemplar.  

Unnecessary information, like bookkeeping facts 

representing specifics of our implementation, are filtered out 

since we do not view them as psychologically relevant.  All 

filtering and processing procedures were done over the 

entire case library of sketches.  Individual sketches were 

never singled out for specific processing. 

 

Classification.  All 50 sketch cases were run through  

SEQL, using a match threshold of 0.9.  Our goal in doing 

these experiments is to see whether we can achieve human-

like classification results automatically, and what specific 

sets of relationships are needed to do so.   

 

                                                           
1 Above as computed by sKEA is very different from its English 

language counterpart.  The spatial relationship above in sKEA is 

derived by comparing the relative positions of the centers of area 

of the bounding boxes of the glyphs. This alone is not enough 

information to parse different prepositions.  For example, the 

positional relationship above shows up in the generalizations for 

both above and on.     

 

Figure 1. An example of 

the sketched input used in 

this experiment. 



Results.  The fifty simple sketches were classified into the 

five generalizations expected (corresponding to in, on, 

above, below, and left).  These results were stable over a 

variety of match threshold values between 0.8 and 0.9.  

Inspection of the generalizations generated shows the 

overlap between the sketches that creates the generalization.  

Figure 2 shows the generalization created for on. 

The information included in the generalization is visual 

information based on the spatial arrangement of the glyphs 

in the sketch.  Looking at the facts generalized, it makes 

sense that the salient perceptual information needed to 

assign the relationship on would be a combination of 

tangential connection between the figure and the ground and 

the figure being above the ground.  Currently, every fact in a 

case is weighted the same as every other fact.   

These are surprisingly good results considering that we 

only used 10 sketches for each preposition and no prior 

training was needed.  Also, relatively few facts were needed 

in each case to determine which category a sketch fell into.  

The average number of facts per generalization was 5.6.  

The most facts needed was 7 for on. 

It is important to note that not just any set of facts will 

result in a useful classification.  If bookkeeping information 

is not filtered out, it will overwhelm the cases and 

categories that result are meaningless.  Also, object-centric 

perceptual information had to be filtered out, as it ended up 

being irrelevant to the spatial preposition categories and was 

adding noise to the similarity comparisons.  For example, 

the spatial properties that sKEA automatically computes 

includes an estimation of roundness of glyphs.  If the 

roundness facts are left in the cases, they sometimes cause 

sketches to classify based on similar roundness facts instead 

of on the relationship between the glyphs.  So the set of 

facts that ended up in each case ends up being focused on 

those facts that specifically related to the relationship 

between the two glyphs.  

Likewise, while doing these experiments, we found 

several additional spatial relationships that had not 

previously been computed that were needed to create 

meaningful generalizations.  In order to get the above and 

below cases to generalize, we added information about the 

grazing line.  The grazing line is a horizontal line, that 

grazes (is tangential to) the very top of the ground object.  

Regier and Carlson (2001) suggest that above ratings are 

sensitive to the grazing line and we found the same result in 

our experiments.    

The set of facts retained in generalizations is summarized 

in the table below along with the categories they appear in: 

 

Relationship Categories  
Horizontal enclosure below, above, on 

Vertical enclosure left 

Left of  left 

RCC8-DC (disjoint) below, above, left  

Above above, on 

Below below 

Above Grazing Line above 

Below Grazing Line below 

Contained Glyph Group in 

RCC8-NTPP/TPP (inside) in 

Connected Glyph Group on 

RCC8-EC (touching) on 

 

When glyphs partially overlap, a fact is also asserted based 

on percentage of total area overlap (LessThan10Overlap, 

DefiniteOverlap, or GreaterThan90Overlap).  These facts 

are useful for disambiguating cases of partial overlap from 

those that are just poorly drawn examples of in or on and are 

computed for every sketch.  Since none of the simple 

sketches had overlap cases, none of these facts shows up 

here. It is interesting that this small set of relationships is 

sufficient to distinguish between these prepositions.  Efforts 

were made to remove redundant and unnecessary 

information.  For example, in addition to designating 

contained glyph groups, sKEA also asserts information 

about which object is designated as the container and which 

is the insider.  At this level of classification removing that 

information had no impact on the generalizations created.  

Keeping just the information that the ground and the figure 

form a contained glyph group is enough to ensure the 

correct generalization will form. 

Experiment 2 

Input.  The input for Experiment 2 was very similar to that 

for Experiment 1.  The same 50 sketches from Experiment 1 

were used.  In addition, 20 new sketches which were more 

complicated (non-standard) and/or ambiguous cases of 

spatial prepositions were used.  Figure 4 below shows two 

sketches from the 20 added and illustrate two different 

reasons for inclusion.  The sketch on the left shows an 

ambiguous case where the circle could be considered above 

or to the left of the square.  The sketch on the right shows an 

instance of in where the figure is only partially contained 

within the boundaries of the ground (this is similar to the 

case “the flowers are in the vase”). For the rest of this 

discussion, the 50 original sketches from Experiment 1 will 

be referred to as the simple sketches and the 20 additional 

sketches from Experiment 2 will be referred to as the 

complex sketches. 

(enclosesHorizontally ground figure) 

(connectedGlyphGroupTangentialConnection  

figure ground) 

(connectedGlyphGroupTangentialConnection 

 ground figure) 

(rcc8-EC figure ground) 

(above figure ground) 

 

Figure 2. The SEQL generalization created for the 

preposition on. 
 

Figure 3. A summary of the spatial 

relationships used for generalization. 



  

 

The 20 complex sketches obviously could not cover every 

possible arrangement of figure and ground, so we focused 

on the following deviations:  

• Sketches where the figure overlaps the ground by 

varying amount (ambiguous between in and on) 

• Sketches ambiguous between above and left (as in 

figure 2b above) 

• Sketches where the figure is attached to the side of the 

ground – vertical as opposed to horizontal support (on 

as in “the picture is on the wall”) or where the ground is 

sloped. 

• On and above examples where the figure was larger 

(larger vertical extent) than the ground 

The idea that some scenes are better examples of certain 

prepositions than others is common in the literature.  For 

example, Logan and Sadler (1996) argue that for spatial 

templates, there are three regions of acceptability for spatial 

relationships: the good region, the region of examples that 

are not good, but are acceptable, and the region of 

unacceptable examples.  These sketches are intended to fall 

into the acceptable but not good category. 

 

Classification. First, the simple geometric sketches were 

classified using SEQL.  Once the base generalizations were 

created, the complex sketch examples were added to SEQL 

and the generalization algorithm was run again.  Several 

different runs were done with varying match thresholds.  

We good results were found at both the 0.8 and 0.9 levels.   

 

Results.  As mentioned above, the original 50 sketches 

created 5 generalizations, one corresponding to each 

relationship represented.  This result was unchanged in this 

experiment.  The ambiguous above/left sketches divided – 

the one that was most like the left sketches joined that 

generalization while the others created a separate 

generalization.   The sketches where the figure overlapped 

the ground by varying amounts formed another 

generalization. The on category assimilated all of the other 

sketches that were meant as complex or ambiguous 

examples of that preposition.  The incorporation of these 

instances into the overall generalization altered the facts that 

were considered part of the generalization as can be seen in 

the figures at the top of the next column. 

 

Clearly this new generalization covers a wide variety of 

sketches.  However, it is important to note that all sketches 

that were included in this generalization depict a 

relationship that would be classified using the preposition 

on.  Another interesting result is that the sketches 

representing those cases where the figure overlaps the 

ground, but is not fully contained in it, formed a separate 

generalization.    While they would most likely be labeled as 

in (although some might be on depending on the context of 

the scene) they did not join the generalization that contained 

the simple cases of in. 

Although there were a variety of new sketches added, the 

group of facts used to create the generalizations did not 

change that much from Experiment 1.  In addition to the 

facts listed in Figure 3, the following facts showed up in the 

generalizations created in Experiment 2: 

• RCC8-PO (i.e., partially overlaps) 

• DefiniteOverlap
2
 

• rightOf 

• The horizontal and vertical inclusion was expanded to 

include cases where the figure included the ground. 

                                                           
2 For all sketches where an RCC8-PO relationship exists, one of 

{DefiniteOverlap, LessThan10Overlap, 

GreaterThan90Overlap} gets asserted based on the 

percentage of area overlap (<10%, between 10% and 90%, or 

>90%) between the figure and ground. 

 

 

 

 

Figure 4. Two examples of the stimuli used 

for experiment 2. 

 on on 

 

 

 

Figure 5. Two dissimilar examples, both instances of on.  

The sketch on the left is a simple example, and the one on 

the right is complex in that it involves vertical rather than 

horizontal support. 

 
 
--DEFINITE FACTS: 

(connectedGlyphGroupTangentialConnection 

  figure ground) 

(connectedGlyphGroupTangentialConnection 

  ground figure) 

(rcc8-EC figure ground) 

--POSSIBLE FACTS: 

88% (above figure ground) 

65% (enclosesHorizontally ground figure) 

18% (enclosesHorizontally figure ground) 

12% (leftOf figure ground) 

12% (enclosesVertically ground figure) 

6% (rightOf figure ground) 

 

 

Figure 6. The new generalization created for on after the 

complex sketch examples are added.  



Related Work 

A number of models of spatial prepositions involve 

representational templates that are created by hand.  For 

example, Herskovits (1980, 1986) categorizes spatial 

language into use cases based on object and contextual 

features as well as typicality, and Logan and Sadler (1996) 

classify geometric scenes using spatial templates.  These 

models require an exhaustive list of the use cases/templates 

needed, mechanisms for selecting the correct one, and an 

account of what modifications can be made to fit an 

imperfect template to a scene.  By contrast, our use of 

SEQL produces relational templates automatically, and 

reduces the imperfect fit problem to structural alignment. 

Regier’s (1995) connectionist model was able to learn 

spatial prepositions for a variety of languages.  However, it 

required labeled training data, and a total of 3000 epochs of 

training on 126 movies.  Since we do not label our stimuli, 

there are no cues for our system as to which sketches should 

be classified together.    

Regier and Carlson’s (2001) attentional vector sum 

(AVS) model is able to reproduce similar results to humans 

for several different prepositions.  Recent extensions 

(Regier, Carlson, & Corrigan, 2005) modified the original 

AVS model to account for functional information.  This is 

done by focusing attention on the functional parts of objects 

(such as the bristles of a toothbrush).  This work predicts 

acceptability judgments of spatial terms as opposed to 

categorizing stimuli.  

Coventry et al. (2004; Cangelosi et al 2005) have 

developed a model which implements the constraints of the 

functional geometric framework (Coventry & Garrod, 2004) 

for the prepositions over/under/above/below.  The model 

has been shown to be consistent with human data on the 

appropriateness of these four prepositions in describing 

scenes involving both geometric and functional information.  

Martinez, Cangelosi, and Coventry (2001) describe another 

model that simulates the same set of data, using a neural 

network whose input is descriptions of visual scenes.  These 

descriptions are created using variables to encode various 

factors that were found to influence over/under/above/below 

judgments in experiments (Coventry, Prat-Sala, & Richards, 

2001): orientation, function, appropriateness, and object 

type.  The encoding of variables is done by hand, however, 

unlike our automatic encoding scheme.  

We find all of these projects to be complementary to our 

work; there are tradeoffs to the different approaches.  The 

main benefit of our approach is the flexibility and 

extendibility of the system.  Since the input is sketches, it is 

very quick and easy to create more stimuli and to test more 

arrangements of objects.  Since conceptual labeling ties to 

the underlying off-the-shelf knowledge base, functional 

information can be added through inference.  No 

information for any case needs to be hand coded or added 

individually.   

Discussion 

We have shown that we can successfully classify simple 

geometric sketches by the spatial preposition that would be 

used to describe them by extracting a sufficient set of spatial 

relationships.  Our contribution is unique in two ways.  The 

first is our use of sketch-based input.  This allows us the 

flexibility to quickly and easily create a variety of stimuli, 

including being able to recreate similar examples to stimuli 

from different psychological experiments.  Automatically 

extracting the salient perceptual information eliminates the 

need for hand coding of representations.  The second unique 

aspect of our model is the use of analogical generalization to 

automatically create categories.    By altering the contents of 

our case libraries, through variations of the automatic 

encoding process, we were able to explore what 

relationships are sufficient to create the correct 

generalizations. 

Future Work 

We plan to extend the corpus of sketches to include 
everyday objects in addition to abstract geometric shapes.  
Psychological studies show that functional information 
about objects in scenes contributes heavily to the choice of 
preposition used to describe them (Coventry, Prat-Sala, & 
Richards, 2001; Feist & Gentner, 1998; Carlson-Radvansky, 
Covey, & Lattanzi, 1999; Coventry & Mather, 2002; 
Coventry & Garrod, 2004).  Since we are already 
conceptually labeling the objects in our sketches, we can use 
the knowledge base to infer the functional properties of 
figure and ground objects, and verify that the figure and 
ground are fulfilling their functional roles.   
Another direction involves testing with human subjects.  

The sKEA interface provides an interesting opportunity to 
run human subjects with the exact same stimuli (sketches) 
provided to the computational model. For example, we plan 
to present people with a categorization task similar to what 
was given to SEQL, and determine how they classify the 
harder sketches to inform subsequent versions of our model.   
Finally, we also plan to explore categorization of 

prepositions in other languages (cf. Regier, 1995; 
Bowerman, 1999).  There are competing theories as to how 
spatial reasoning and spatial language develop.  One theory 
is that all humans share a small set of spatial primitives that 
we then learn to map to prepositions.  Some recent work 
suggests that these primitives may be more varied than 
previously suspected (Choi et al, 1999).  By comparing the 
relationships necessary to correctly classify prepositions in 
different languages we hope to shed some light on this 
discussion. 
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