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Abstract 

Understanding how high-level visual properties are computed 
is a central problem in perception.  Oddity tasks, where 
participants must identify a stimulus that is distinct in some 
way from others in an array, provide a method for 
determining what features are being computed.  We describe 
a computational model of oddity detection that models data 
by Dehaene et al. (2006) on perception of simple geometric 
shapes. It starts with virtually the same input stimuli as given 
to human subjects, and automatically constructs 
representations. Oddity detection is accomplished by 
analogical processing, using SME and SEQL.  The simulation 
is able to perform the task, and moreover, provides some 
insight as to what makes one problem harder than another. 

Keywords: Analogy; comparison; qualitative representations; 
spatial reasoning; sketch perception. 

Introduction 

Understanding how high-level visual properties, such as 

geometric relationships, are computed is a central problem 

in perception.  One method of exploring what properties are 

computed is the oddity task.  That is, participants are given 

an array of stimuli, and told to pick the one that is 

“different” or “odd”.  If people can do it easily, then they 

must be computing the property that distinguishes one 

stimulus from the others, assuming no confounds of course.  

Dehaene et al. (2006) used the visual oddity task to 

investigate perception of simple geometric shapes across 

different cultures. Participants were shown a series of arrays 

containing six similar images (Figure 1).  They were asked 

to pick out the image that did not fit with the other five.  The 

participant pool included both Americans and Mundurukú, a 

South American indigenous group, and both children and 

adults.  One finding was that certain problems were much 

harder than others, for all participant groups.  By looking at 

what makes some problems harder than others, we can gain 

insight into both what visual properties people tend to 

compute, and also how they detect oddities.  For this paper, 

we focus entirely on their results for American children, 

aged 8 to 13.  Figure 1 shows their accuracy on a subset of 

the problems. There are 45 problems in all. 

This paper describes a computational model of the visual 

oddity task.  The two key ideas are: (1) Qualitative spatial 

relations play an important role in much of visual processing 

(Forbus, Ferguson, & Usher, 2001). Thus, when participants 

are given a visual array such as the ones used in this study, 

we propose that they construct a qualitative representation 

of each image in the array. We model this in our simulation 

by automatically generating representations with our sketch 

understanding system, CogSketch
1
 (Forbus et al., 2008).  (2) 

Qualitative spatial representations are compared via 

structure-mapping (Gentner, 1983). In structure-mapping, 

relational representations are compared by aligning their 

common structure, which highlights common features and 

makes it easier to spot the image that lacks those features 

(cf. Markman & Gentner, 1996).  The visual oddity task is 

difficult because common features must be identified across 

multiple stimuli. We use analogical generalization to 

achieve a similar highlighting effect, as explained below.   

The combination of automatically generated qualitative 

visual representations and structure-mapping has been used 

to model several spatial tasks, including answering 

geometric Miller Analogy Test questions (Tomai et al., 

2005), solving a subset of the Raven’s Progressive Matrices, 

a visual intelligence test (Lovett, Forbus, & Usher, 2007); 

and making same-different judgments (Lovett, Gentner, & 

Forbus, 2006). However, none of these tasks offer as much 

discriminatory power in terms of testing for the presence or 

absence of particular visual properties.   

We begin by briefly reviewing the Structure-Mapping 

Engine (SME), since it plays a key role in multiple stages of 

the model.  Next we outline our qualitative spatial 

representations, including how we represent properties of 

both edges and shapes.  Then we describe how comparisons 

and analogical generalization are used to perform the task.  

Initial simulation results are discussed, including some 

predictions from the model.  We close with future work. 

The Structure-Mapping Engine 
SME (Falkenhainer et al. 1986) is a computational model of 

comparison. Structured, relational descriptions are assumed, 

including higher-order relations that connect and constrain 

lower-order relations.  Given two descriptions, a base and a 

target, SME computes one or more mappings.  A mapping 

consists of (1) a set of correspondences, which indicate 

what goes with what between the two descriptions, (2) a set 

of candidate inferences that represent conjectures about the 

target, using the correspondences and unmapped structure in 

the base, and (3) a structural evaluation score, a numerical 

estimate of overall similarity.  SME prefers mappings with 

high systematicity, where connected relational structure, 

especially with higher-order relations, is mapped.   

                                                           
1 http://spatialintelligence.org/projects/cogsketch_index.html 
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Qualitative Representation 

We believe qualitative relationships are important for 

comparison tasks because they are much less susceptible to 

noise than quantitative representations. For example, in 

comparing two drawings of a face, the important features 

are qualitative: each face contains an outer ellipse (the head) 

containing two horizontally aligned circles (the eyes) above 

two other ellipses (the nose and mouth). Most quantitative 

data, such as the size of each shape and the orientation of 

the edges, are not stable across small changes in a drawing.  

Ideally, qualitative representations should encode what 

Biederman (1987) calls nonaccidental properties. Parallel 

edges are an example of a nonaccidental property because 

the range of possible orientations means that edges are 

unlikely to be parallel by chance. Similarly, two edges are 

unlikely to be connected by chance. 

There is psychological evidence that a number of the 

features tested for by Dehaene et al. correspond to 

qualitative attributes and relations encoded by humans. The 

well established “oblique effect” (Apelle, 1972) shows that 

humans have a preference for objects aligned with the 

vertical or horizontal axis (see Figure 1, Problem A). 

Adults, and even infants as young as five months, can easily 

distinguish convex and concave objects (Bhatt et al., 2006) 

(see Problem B), and the salience of parallel lines has been 

shown in children as young as three (Abravanel, 1977) (see 

Problem C). Huttenlocher et al. (1991) demonstrated that 

individuals appear to divide a circle into four quadrants and 

qualitatively encode which quadrant a dot lies in; it might 

follow that individuals also encode a relation for cases 

where the dot lies directly in the circle’s center, where the 

four quadrants meet (Problem D). 

Other problems might be solved via qualitative relations 

based on Gestalt grouping rules (Wertheimer, 1924/1950). 

For example, grouping by proximity would result in 

qualitative differences between a single group of proximal 

dots and two groups of dots, as in Problem E, and the good 

continuation rule might cause individuals to encode a 

qualitative relation for a dot that lies along the continuation 

of a line in Problem F.  

Modeling Representation 

It has been argued (e.g., Palmer, 1977) that people construct 

hierarchical spatial representations. Our model constructs 

qualitative spatial representations at two levels: the edge 

level and the shape level. The edge level consists of edges, 

attributes of edges, and relations between edges. The shape 

level is similar, but for entire shapes. Comparisons are done 

with either the edge level or the shape level, never both. 

Our model generates representations based on glyphs, 

objects that have been sketched in CogSketch. The model 

assumes the user has sketched each object as a separate 

glyph. Thus, it does not need to segment a sketch into 

objects. Each object, or shape, is automatically segmented 

into edges, using maximal derivatives of the curvature to 

identify corners between edges along the outline of a glyph. 

For example, a square would be segmented into four edges, 

while a circle consists of only a single, elliptical edge. 

Each shape has its own edge representation. Table 1 

summarizes qualitative edge attributes and relations. Many 

relations are based on corners between edges. The other 

relations can only hold for edges that are not connected by a 

corner along the shape. 

Table 2 summarizes attributes and relations for shapes. 

Empty/filled is a simplification of shape color; it refers to 

whether the shape has any fill color. Frame-of-Reference 

Figure 1. A subset of the 45 problems used by Dehaene et al. (2006). Accuracy is for Americans, aged 8-13. 

       A 97%                        B 100%                         C 90%                         D 93%                         E 90% 

       F 91%                       G 57%                          H 96%                          I 78%                           J 97% 

      K 54%                        L 40%                          M 85%                         N 60%                         O 13% 



relations describe where a smaller shape is located inside a 

larger, symmetric shape (i.e., a circle).  The location of the 

inner shape is described in terms of quadrants, and whether 

or not the inner shape is at the central point where the axes 

of symmetry meet.  Currently, grouping by proximity is 

only implemented for circles. 

Line/Line and Line/Point relations apply only to special 

shape types. Line/Line relations are for shapes that are 

simple, straight lines (thus these relations are a subset of the 

edge relations). Line/Point relations are for when a small 

circle lies near a line. The centered-on relation applies when 

the circle lies at the center of the line. This relation is 

essentially a special case of the frame-of-reference relation 

for a dot lying at the center of a circle. 

A few shape features require an extra step to compute: 

axes of symmetry, same-shape, rotation-between, and 

reflection-between. These features can only be computed by 

using SME to compare shapes’ edge representations (Lovett 

et al. 2007). Axes of symmetry are computed using MAGI 

(Ferguson, 1994), an extension of SME that compares a 

representation to itself to look for symmetry. Same-shape is 

identified by using SME to compare two shapes’ edges, 

using the correspondences to find corresponding edges, and 

then comparing the edges quantitatively to detect whether 

the edge mapping represents a rotation or reflection between 

two instances of the same shape.  

Analogical Generalization 

Most of the 45 problems can be solved by identifying a 

qualitative feature that five of the images possess and one 

image lacks. In a few cases, a problem appears to require 

noticing that one image possesses a feature that the other 

five lack, such as parallel lines (Figure 1, Problem M). In 

either case, multiple images must be compared to identify 

common features.  In essence, participants must build a 

generalization from the objects.  We perform generalization 

using SEQL (Kuehne et al., 2000), a model of analogical 

generalization built upon SME. SEQL is based upon the 

idea that individuals learn generalizations for categories 

through a process of progressive abstraction (Gentner & 

Loewenstein, 2002), in which instances of a category are 

compared and the commonalities are abstracted out as a 

direct result of the comparison.  

SEQL uses SME to compare structural representations of 

objects. When it finds two objects that are sufficiently 

similar, it constructs a generalization of the objects. A 

generalization consists of only those elements that 

correspond with each other in SME’s mapping between the 

objects. Thus, elements found in only one of the two objects 

are abstracted out of the generalization. The generalization 

can then be compared to new objects. Each time an object is 

added to the generalization, the generalization is refined to 

contain only those elements that align with every object that 

is part of that generalization. 

Oddity Task Model 

Our model is based on the following claims about human 

performance on the oddity task: 

1) Humans compute qualitative, relational representations 

of visual scenes, which they use to solve spatial tasks. 

2) Spatial representations for a given operation will 

always be at either the edge level or the shape level; 

these two representational levels will not be combined. 

3) Representations will be compared via structure-

mapping (SME). 

4) Analogical generalization (SEQL) will be used to build 

up a representation of what is common across an array 

of images in the oddity task. 

5) Individual images can be compared to the 

generalization, and the odd image out should be the 

one that is noticeably less similar. 

In this section, we will describe a task model which is 

based on these five claims. In order for us to build an 

operational model, we had to make a number of 

assumptions beyond these key claims. Some of these 

assumptions may not be true of human performance, or may 

not generalize to all other stimuli. However, we believe the 

overall framework of the model is sound, and we believe the 

results support the model. 

Modeling the Process 

Our model attempts to pick out the image that does not 

belong by performing a series of trial runs. In each trial, the 

system constructs a generalization from half of the images 

in the array (either the top half or the bottom half). This 

generalization represents what is common across all three 

images. For example, consider the right-angled triangle 

Shape Attributes 

 Closed shape 

 Convex shape 

 Circle shape 

 Empty/Filled 

 Axis (Symmetric, 

Vertical, and/or 

Horizontal) 

 

Shape Relations 

 Right-of/Above 

(relative position) 

 Containment  

 Frame-of-Reference 

 Shape-proximity-group 

 Same-shape 

 Rotation-between 

 Reflection-between 

 
Line-Line Relations 

 Intersecting 

 Parallel 

 Perpendicular 

 

Line-Point Relations 

 Intersecting 

 Colinear 

 Centered-On 

 

Table 2. Qualitative vocabulary for shapes 

Edge Attributes 

 Straight/Curved/Ellipse 

 Axis-aligned (horizontal 

or vertical) 

 Short/Med/Long (relative 

length) 

 

Edge Relations 

 Concave/convex corner 

 Perpendicular corner 

 Edges-same-length 

corner 

 Intersecting 

 Parallel 

 Perpendicular 

 

Table 1. Qualitative vocabulary for edges 

 



problem (Figure 1, Problem G). The generalization built 

from the three top images will describe three connected 

edges, with two of the edges being perpendicular. In the 

leftmost top image, the two perpendicular edges are of 

different lengths, but this relation will have been abstracted 

out because it is not common to all three images. 

The generalization is then compared to each of the other 

three images, using SME. The model examines the 

similarity scores for the three images, looking for a 

particular pattern of results: two of the images should be 

quite similar to the generalization, while the third image, 

lacking a key feature, should be less similar. In this case, the 

lower middle triangle will be less similar to the 

generalization because it lacks a right angle. 

Similarity is based on SME’s structural evaluation score, 

but it must be normalized.  There are two different ways to 

normalize it: Similarity scores can be normalized based only 

on the size of the generalization (gen-normalized), which 

measures how much of the generalization is present in the 

image being compared. This measure is ideal for noticing 

whether an image lacks some feature of the generalization. 

Alternatively, similarity scores can be normalized based 

on both the size of the generalization and the size of the 

image’s representation (fully-normalized). This score 

measures both how much of the generalization is present in 

the image and how much of the image is present in the 

generalization.  While more complex than gen-normalized 

scores, fully-normalized scores are necessary for noticing an 

oddity that possesses an extra qualitative feature that the 

other images lack.  For example, it allows the model to pick 

out the image with parallel lines from the other five images 

without parallel lines. 

Controlling the Processing 

In each trial run, the model must make three choices. The 

first is whether to generalize from the top three images or 

the bottom three images. The second is whether to use gen-

normalized or fully-normalized similarity scores. The third 

is whether to use edge representations or shape 

representations. These choices are made via the following 

simple control mechanism: (1) To ensure that the results are 

not dependent on the order of the images in the array, trial 

runs are attempted in pairs, one based on generalizing from 

the top three images and one based on generalizing from the 

bottom three images. (2) Because the gen-normalized 

similarity score is simpler, it is always attempted first. (3) 

The model chooses whether to use edge or shape 

representations based on the makeup of the first image. If 

the image contains multiple shapes, or if the image contains 

an elliptical shape consisting of only a single edge (e.g., a 

circle), then a shape representation is used. Otherwise, an 

edge representation is used. Note, however, that an edge 

representation will be quickly abandoned if it is impossible 

to find a good generalization across images, as indicated by 

different images having different numbers of edges. 

After the initial pair of trials is run, the model looks for a 

sufficient candidate. Recall that each trial run produces three 

similarity scores for the three images compared. A sufficient 

candidate is chosen when the lowest-scoring image has a 

similarity score noticeably lower than the other two (< 95% 

of the second lowest-scoring image) and the other two 

images are reasonably similar to the generalization 

(normalized score > 55%). 

When a sufficient candidate is not found, the model 

attempts additional trial runs. (1) If the model was 

previously run using edge representations, it will try using 

shape representations.  (2) The model will try using a fully-

normalized similarity score, to see if the oddity possesses an 

extra feature. At this point, if no sufficient candidate has 

been identified, the model gives up.  We do not allow the 

model to guess randomly, as people sometimes do. 

Predictions 

This model suggests five factors that ought to contribute to 

the difficulty of a problem: 

1. Feature computability.  The first requirement for 

identifying a common feature is being able to compute it. 

Individuals who are unable to compute the key feature 

cannot solve the problem. Problem O, for example, requires 

participants to determine whether the dot falls at the 

intersection of the quadrilateral’s axes. An inability to 

compute this feature would contribute to this being one of 

the hardest problems. 

2. Feature salience. Salience here means the likelihood 

that participants will encode a particular feature.  There are 

far more possible visual properties that could be computed 

than finite attention and resources permit to actually be 

computed.  A low-salience feature might not be computed at 

first, and only generated in a later trial run when the most 

salient properties don’t lead to an answer.  Our model 

predicts that when images have multiple shapes, shape 

features will be much more salient than edge features, 

whereas when there is only a single shape, edge features 

will be more salient. This could explain the difficulty of 

problems such as K, which rests on the symmetry of the 

shape, rather than any features of individual edges. 

3. Feature representation strength.  Because of SME’s 

systematicity preference, it assigns higher similarity scores 

to correspondences that support large relational structures.  

Therefore, absence of features represented by higher-order 

relations should be easier to spot, since they will influence 

similarity scores more.  Similarly, if a feature is represented 

as multiple relations, its absence will be easier to spot than 

if it were represented by only a single relation.  Of course, 

representation strength is relative; in a sparse representation, 

the absence of even a single attribute may be easy to spot. 

This could explain why, for example, participants are much 

better at solving a problem based on two perpendicular lines 

than they are at solving a problem based on a right corner in 

a triangle (Problems H and G). The representation of two 

perpendicular lines would be much sparser than the 

representation of a right triangle, so the relative strength of 

the relation specifying that two edges are perpendicular 

would increase. 



4. Feature presence versus feature absence.  Because the 

model uses the gen-normalized similarity score before the 

fully-normalized similarity score, it solves problems in 

which the oddity lacks a feature more quickly than when the 

oddity possesses an added feature. Thus, the model predicts 

that participants should be faster and more accurate when 

solving problems where the oddity lacks the feature. 

Unfortunately, it is difficult to evaluate this prediction based 

on the current data, as there are only a few problems in 

which the oddity has an added feature. The one case where 

an oddity has an added feature is in one problem and lacks 

that same feature in another involves parallel lines, and 

participants performed similarly on both problems 

(Problems C and M). However, this may have been because 

both problems were quite easy. 

5. Alignability of images.  Participants should find a 

problem more difficult if it is harder to align the five 

common images.  This is because (a) there will be less 

structural support for the initial generalizations and (b) the 

similarity scores between any of the images and the 

generalization will be lower.  For example, participants had 

more difficult picking a triangle out of quadrilaterals 

(Problem I) than picking a parallelogram out of rectangles 

(Problem J). Even though a triangle is easier to distinguish 

from quadrilaterals, all the quadrilaterals were different 

from each other, thus making it harder to align them with 

each other to determine what common feature they 

possessed that the triangle lacked. 

Evaluation 

We evaluated our model by running it on all 45 problems 

from the original study (Dehaene et al., 2006). The original 

stimuli, which had been drawn in PowerPoint, were copied 

and pasted into CogSketch. Of the 45 problems, four were 

touched up in PowerPoint to ease the transition—lines or 

polygons that had been drawn as separate parts and then 

grouped together were redrawn as a single shape. In 

addition, five problems were modified after being pasted 

into CogSketch. In all five cases, we removed simple edges 

which had been added to the images of the problem to help 

illustrate an angle or reflection participants were meant to 

attend to (e.g., Problem L). Because the model was not able 

to understand the message these lines were meant to convey, 

they would have served only as distracters. Aside from the 

changes to these nine problems, no changes were made to 

the stimuli which had been run on human participants. 

CogSketch treats each PowerPoint object (line, polyline, 

or polygon) as a separate glyph and thus a separate object. 

After the problems were pasted into CogSketch, it computed 

the spatial relations between each edge in an object, 

producing the edge representations for a problem. It also 

computed object attributes and relations between objects in 

each image of a problem, producing the shape 

representations for a problem. The model then attempted to 

solve the problem using the method described above. 

Results 

Given the 45 problems, our model successfully solved 39 

problems. Note that chance performance on the task would 

be solving 7.5 problems. 

We ranked the problems based on the difficulty that the 

children had solving them, with 45 being the hardest. Of the 

six problems missed by our model, four were also the four 

hardest problems for the children. The other two were 

among the harder problems, at positions 32/45 and 35/45. 

Thus the average difficulty rank of the problems missed was 

40.2/45. Figure 2 shows the difficulty of the problems the 

model was unable to solve. The hardest problem for 

children was Problem O (in Figure 1), in which the key 

feature was whether a dot lied along the axes between the 

corners of a quadrilateral. Our model simply does not 

compute this feature, nor do the children, we believe, as 

they scored below chance on this problem. 

The other five problems missed by our model all required 

that participants either encode a quantitative feature for each 

image or directly compare shapes between images. For 

example, consider Problem N, in which the key feature was 

the position of the circle relative to the line. It appears that 

this problem could only be solved by comparing the shapes 

in pairs of images and mentally rotating them to determine 

whether they align. Our model compares shapes and looks 

for rotations within a single image, but not across different 

images of the array. 

These results suggest that problems requiring comparing 

shapes across two separate images were particularly 

difficult, given that both the model and participants had 

trouble solving these problems. This led us to ask whether 

problems which required comparing shapes within a single 

image would also be difficult. We ran a second evaluation in 

which our model did not compute any of the shape 

comparisons—these included rotations and reflections 

between shapes, as well as axes of symmetry within a shape 

that could only be computed by comparing the shape to 

itself with MAGI. See Figure 2 again for the difficulty of 

the problems the model was unable to solve without shape 

comparisons. These eight problems, along with the six the 

model failed to solve initially, make up 14 of the 17 hardest 

Figure 2: Performance by our model on the 45 

problems (ranked by difficulty for human participants) 
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problems for children. Thus, they nearly perfectly match the 

hardest third of the problem set. 

Conclusions and Future Work 

We believe the results described above provide strong 

support for our model of the visual oddity task. Qualitative 

spatial representations can be used with structure mapping 

and analogical generalization to solve nearly all of the 

problems from the original Dehaene et al. (2006) study. The 

problems on which the model fails are among the hardest 

problems for human participants. Furthermore, while edge 

representations are sometimes used to identify relations 

between shapes (such as rotations and reflections), the 

overall comparison mechanism is always run on either edge 

representations or shape representations. Thus, the model 

suggests that individuals do not need to represent edges and 

shapes simultaneously while making comparisons. 

Feature computability and salience seem to be the two 

factors contributing the most to problem difficulty.  The 

model failed on the problems for which it was unable to 

compute the key feature, such as the relative position of a 

line and a circle once the shapes have been rotated to the 

same orientation. Moreover, the model correctly predicted 

that people would have difficulty with other problems in 

which the key feature could only be computed by comparing 

the shapes within one image of an array. In other words, the 

current results suggest that people often fail to compare 

individual shapes before comparing the images themselves 

to solve these problems.  

One line of investigation for the future concerns 

sharpening the model’s explanation of problem difficulty, 

by conducting a more detailed analysis of the model’s 

output and its relationship to human results. Several 

extensions of the model are also intriguing, e.g., modeling 

feature salience via a probabilistic representation scheme.   

Our long-term goal is to develop a general model of 

human qualitative spatial representation. Each spatial task 

which we have modeled (e.g., Tomai et al., 2005; Lovett et 

al., 2006; Lovett et al., 2007) puts constraints on the 

representation that may be used to solve that particular task. 

A spatial representation scheme that works across all of 

these tasks will have much stronger support as a model of 

human spatial representation. 
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