
Log-Based Architectures for General-Purpose
Monitoring of Deployed Code

Shimin Chen1, Babak Falsafi2, Phillip B. Gibbons1, Michael Kozuch1,
Todd C. Mowry1,2, Radu Teodorescu1,3, Anastassia Ailamaki2,

Limor Fix1, Gregory R. Ganger2, Bin Lin1,4, Steven W. Schlosser1

1Intel Research Pittsburgh 2Carnegie Mellon University 3UIUC 4Northwestern

Categories and Subject Descriptors: C.4 [Performance
of Systems]: Reliability, availability, and serviceability; B.8.1
[Performance and Reliability]: Reliability, Testing, and Fault-
Tolerance; C.5.3 [Computer System Implementation]: Mi-
crocomputers — Microprocessors.
General Terms: Design, Reliability.
Keywords: Log-Based Architectures, general-purpose task
monitoring, chip multiprocessors.

1. INTRODUCTION
Runtime monitoring tools are invaluable for detecting var-

ious types of bugs, in both sequential and multi-threaded
programs. However, these tools often slow down the mon-
itored program by an order of magnitude or more [4], im-
plying that the tools are ill-suited for always-on monitor-
ing of deployed code. Fortunately, the emergence of chip
multiprocessors as a dominant computing platform means
that resources are available on-chip to assist in monitoring
tasks. In this brief note, we advocate Log-Based Architec-
tures (LBA) that exploit such on-chip resources in order to
dramatically reduce the overhead of runtime program mon-
itoring. Specifically, we propose adding hardware support
for logging a main program’s trace and delivering it to an-
other (otherwise idle) processing core for inspection. A life-
guard program running on this other core executes the de-
sired monitoring task.

In contrast to previous proposals that add special-purpose
hardware support for specific types of lifeguards [7, 8] (e.g.,
checking memory references or function call/return pairs),
LBA is a general-purpose infrastructure, aimed to enable
efficient monitoring for a wide variety of program bugs, se-
curity attacks, and performance problems. (We show three
diverse lifeguards in our evaluation section.) We believe that
the benefits of LBA will more than warrant the costs of
adding the requisite hardware support, especially because
the costs are amortized over the diverse set of lifeguards
supported.

Software-only approaches (e.g., using dynamic binary in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASID’06 October 21, 2006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-576-2 ...$5.00.

Core 1 Core 2

Application Lifeguard

Operating System

capture dispatch

compress decompress

Figure 1: Dual-core LBA system

strumentation), while also general purpose, suffer from two
key sources of performance overhead. First, because the
monitoring task (i.e., the lifeguard) and the monitored pro-
gram run on the same core, they compete for processor re-
sources such as cycles, registers, and cache space. Second,
these software-based approaches frequently expend consid-
erable effort recreating hardware state not exposed through
the architecture (instruction pointers, effective addresses,
etc.).

In contrast, LBA lifeguards run on different cores than the
monitored programs, and hence do not compete for cycles,
registers or L1 cache. Moreover, the hardware-based logging
captures hardware state directly. As a bonus, the lifeguard
functionality can be split across multiple cores, exploiting
further parallelism to speed up lifeguards.

A key advantage of a log-based approach is that the log
captures the dynamic history of a monitored program. Thus
it enables lifeguards to use this history to detect sophisti-
cated bugs or answer “how did I get here” analysis questions,
as well as providing a means, when a problem is detected,
to (selectively) rewind the monitored program and possibly
perform on-the-fly bug repair [3].

Even when considering only bug detection, there are al-
ready significant challenges in making LBA efficient, includ-
ing issues in capturing the log, reducing the log storage
and communication bandwidth requirements, buffering and
transporting the log, and consuming the log. Our initial de-
sign (Section 2) has begun to address these challenges, with
some promising initial results (Section 3).

2. LOG-BASED ARCHITECTURES
Figure 1 depicts an example dual-core LBA system. As an

application instruction retires, the capture hardware creates

0
10
20
30
40
50
60
70
80
90

 bc gnuplot gs gzip mcf tidy w3m
 v l v l v l v l v l v l v lno

rm
al

iz
ed

 e
xe

cu
tio

n
tim

e

0
10
20
30
40
50
60
70
80
90

 bc gnuplot gs gzip mcf tidy w3m
 v l v l v l v l v l v l v lno

rm
al

iz
ed

 e
xe

cu
tio

n
tim

e

0
10
20
30
40
50
60
70
80
90

water zchaff
 v l v lno

rm
al

iz
ed

 e
xe

cu
tio

n
tim

e

(a) AddrCheck (b) TaintCheck (c) LockSet

Figure 2: Execution times of LBA lifeguards (l) vs. Valgrind lifeguards (v), normalized to unmonitored
execution times.

an event record that contains the instruction’s (a) program
counter, (b) type, (c) input and output operand identifiers,
and (d) load/store memory address, if present.1 Then, a
hardware engine compresses the record to reduce the band-
width pressure and buffer requirements on the log transport
medium (the cache hierarchy in our design). We adapted
value prediction-based compression [1] to achieve less than
one byte per instruction with moderate chip area require-
ments.

Log record fetch is driven by the lifeguard, which is pri-
marily organized as a collection of event handlers, each of
which terminates by issuing an nlba (next LBA record) in-
struction. This operation causes the dispatch hardware to
retrieve the next record from the decompression engine and
execute the lifeguard handler associated with that type of
event. Certain event values (such as the memory addresses
of loads and stores) are simultaneously placed in the regis-
ter file by the dispatch engine for ready lifeguard handler
access.

To reduce overheads, the application core and the life-
guard core are not synchronized. They coordinate only
through the log buffer, and hence log entry consumption
at the lifeguard core typically lags behind event retirement
on the application core. This enables pipeline-style process-
ing at the lifeguard core. For example, although each nlba
instruction causes a jump table lookup to retrieve the life-
guard handler address, the index can be determined very
early.

While this lack of tight synchronization significantly im-
proves performance, it also implies that there is typically a
lag between the occurrence of a problem and its detection
by a lifeguard. In order to contain the effects of bugs, the
OS stalls each application syscall until the lifeguard finishes
checking the remaining log entries that executed prior to
the syscall invocation. In this way, lifeguards can prevent
the propagation of errors beyond the application’s process
container.

3. PRELIMINARY EVALUATION
Our initial evaluation uses three diverse lifeguards: (i)

AddrCheck [4] detects accesses to unallocated memory,
double free(), and memory leaks; (ii) TaintCheck [5] de-
tects security exploits by tracking the propagation of in-
puts, and checking if they eventually modify jump target
addresses or other critical data; and (iii) LockSet [6] de-

1Additional fields would be needed to enable rewind.

tects possible data races in multithreaded programs using
the LockSet algorithm.

We ran the standard Fedora Core 2 and Valgrind 2.2.0 on
Simics 2.2.14. Valgrind is a popular software-only approach
that uses dynamic binary instrumentation to augment the
monitored program with the desired lifeguard functional-
ity [4]. We model single-CPI in-order cores with 16KB pri-
vate split L1 caches and a 512KB shared L2 cache. For LBA
support, we developed a trace generation tool to produce log
record traces from applications, and a Simics extension mod-
ule to read the log traces and perform event-driven lifeguard
executions. We selected seven single-threaded benchmarks
and two multi-threaded benchmarks, all of which were run
to completion. On average, a benchmark executes 209 mil-
lion x86 instructions, of which 51% are memory references.
(See [2] for more details.)

In Figure 2, the Y-axis can be regarded as the slowdown
of the monitoring approaches compared to normal (unmon-
itored) executions. We see that Valgrind lifeguards incur
10-85X slowdowns, which is consistent with the slowdowns
reported in [4, 5]. Compared to Valgrind lifeguards, LBA
lifeguards are 4-19X faster.

However, the overall LBA lifeguard slowdowns are still
significant: on average, 3.9X slowdowns for AddrCheck,
4.8X slowdowns for TaintCheck, and 9.7X slowdowns for
LockSet. We are working on a variety of techniques to fur-
ther reduce this overhead, including parallelizing lifeguards
and employing filtering techniques (e.g., address-range based
filtering).

4. RELATED WORK
Our work contrasts with projects involving off-line recon-

struction such as Flight Data Recorder [9] and BugNet [3]
in that our goal of constant monitoring requires continuous
consumption of the execution log. The work that is closest
to ours in terms of its motivation is iWatcher [10], which
invokes monitoring code in response to accesses to certain
ranges of memory addresses. LBA differs in that it sup-
ports tracking data flow through all instructions—a crucial
attribute for certain lifeguards such as TaintCheck. Other
work [7, 8] uses dual-core processors to do dynamic checking
only for specific lifeguards.

5. REFERENCES
[1] M. Burtscher. VPC3: A fast and effective

trace-compression algorithm. In
SIGMETRICS/PERFORMANCE, 2004.

[2] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C.
Mowry, R. Teodorescu, A. Ailamaki, L. Fix, G. R.
Ganger, and S. W. Schlosser. Logs and lifeguards:
Accelerating dynamic program monitoring. Technical
Report IRP-TR-06-05, Intel Research Pittsburgh, May
2006.

[3] S. Narayanasamy, G. Pokam, and B. Calder. BugNet:
Continuously recording program execution for
deterministic replay debugging. In ISCA, 2005.

[4] N. Nethercote. Dynamic Binary Analysis and
Instrumentation. PhD thesis, University of
Cambridge, Nov. 2004. http://valgrind.org.

[5] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature
generation of exploits on commodity software. In
NDSS, 2005.

[6] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic race detector for
multi-threaded programs. ACM TOCS, 15(4), 1997.

[7] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic.
Heapmon: A helper-thread approach to
programmable, automatic, and low-overhead memory
bug detection. IBM Journal on Research and
Development, 50(2/3), 2006.

[8] W. Shi, H.-H. S. Lee, L. Falk, and M. Ghosh. An
integrated framework for dependable and revivable
architectures using multicore processors. In ISCA,
2006.

[9] M. Xu, R. Bodik, and M. D. Hill. A ‘Flight Data
Recorder’ for enabling full-system multiprocessor
deterministic replay. In ISCA, 2003.

[10] Y. Zhou, P. Zhou, F. Qin, W. Liu, and J. Torrellas.
Efficient and flexible architectural support for
dynamic monitoring. ACM TACO, 2(1), 2005.

