VSched: Mixing Batch And Interactive Virtual Machines Using Periodic Real-time Scheduling

Bin Lin

Peter A. Dinda

Prescience Lab

Department of Electrical Engineering and Computer Science Northwestern University

http://www.presciencelab.org

Overview

- Periodic real-time model for scheduling diverse workloads onto hosts
 - Virtual machines in our case
- Periodic real-time scheduler for Linux
 - VSched publicly available
 - Works with any process
 - We use it with type-II VMs
- Promising evaluation for many workloads
 - Interactive, batch, batch parallel

Outline

- Scheduling virtual machines on a host
 - Virtuoso system
 - Challenges
- Periodic real-time scheduling
- VSched, our scheduler
- Evaluating our scheduler
 - Performance limits
 - Suitability for different workloads
- Conclusions and future work
 - Putting the user in direct control of scheduling

Virtuoso: VM-based Distributed Computing

	🕗 Configure Machine - Microsoft Internet Explorer	
	Elle Edit View Favorites Iools Help	
	🔇 Back 🔹 🚫 - 🖹 😰 🚮 🔎 Search 🤺 Favorites 🜒 Media 🥝 🔗 - 🥁 🚍 - 📒	
	Address 🗃 http://virtuoso-management.cs.northwestern.edu/~virtuoso/editconfiguration.pl	Go Links
	Google - 💮 🏀 Search Web - 🧭 🖶 112 blocked 📲 AutoFill 🛛 🛃 Options 🥒	1
	Virtuoso About Virtuoso	
	Account Info	
	Configuration Name peter's small pc Processor	
	Pentium3	
Orders a raw	Speed Speed	
User machine	● 4000 bogomips ● 2000 bogomips	
	Operating System	
	O win98	
	win2000Pro	
	freeBSD	
	O none Memory	
	0 64 Mb 0 32 Mb	
Storage Frice /month		
37.5	Hard Drive	
	0 100 Mb	
Running Price /hour		
0.2006	37.5	
0.3030	Running Price /hour	
	0.3096	
Register Configuration (\$.05) Search Provide	el Register Configuration (\$.05) Search Provider	
	Site Terms Terms and Conditions of Sale Privacy Policy Contact Us	

User's View in Virtuoso Model

About Virtuoso

R

Account Info RMY Computers

Help

Challenges in Scheduling Multiple VMs Simultaneously on a Host

- VM execution priced according to interactivity and compute rate constraints
 - -How to express?
 - -How to coordinate?
 - -How to enforce?
- Workload-diversity

-Scheduling must be general

Our Driving Workloads

• Interactive workloads

- substitute a remote VM for a desktop computer.
- desktop applications, web applications and games
- Batch workloads
 - scientific simulations, analysis codes
- Batch parallel workloads
 - scientific simulations, analysis codes that can be scaled by adding more VMs

Goals

- interactivity does not suffer
- batch machines meet both their advance reservation deadlines and gang scheduling constraints.

Scheduling Interactive VMs is Hard

- Constraints are highly user dependent
- Constraints are highly application dependent
- Users are very sensitive to jitter

- Conclusions based on extensive user studies
 - User comfort with resource borrowing [HPDC 2004]
 - User-driven scheduling [Grid 2004, in submission papers]

Batch Workloads

- Notion of compute rate
- Application progress proportional to compute rate
- Ability to know when job will be done

Batch Parallel Workloads

- Notion of compute rate
- Application progress proportional to compute rate
- Ability to know when job will be done
- Coordination among multiple hosts

- Effect of gang scheduling

Outline

- Scheduling virtual machines on a host
 - Virtuoso system
 - Challenges
- Periodic real-time scheduling
- VSched, our scheduler
- Evaluating our scheduler
 - Performance limits
 - Suitability for different workloads
- Conclusions and future work
 - Putting the user in direct control of scheduling

Periodic Real-time Scheduling Model

- Task runs for slice seconds every period seconds [C.L. Liu, et al, JACM, 1973]
 - "1 hour every 10 hours", "1 ms every 10 ms"
 - Does NOT imply "1 hour chunk" (but does not preclude it)
 - Compute rate: slice / period
 - 10 % for both examples, but radically different interactivity!
 - Completion time: size / rate
 - 24 hour job completes after 240 hours
- Unifying abstraction for diverse workloads
 - We schedule a VM as a single task
 - VM's (slice, period) enforced

EDF Online Scheduling

- Dynamic priority preemptive scheduler
- Always runs task with highest priority
- Tasks prioritized in reverse order of impending deadlines
 - Deadline is end of current period

EDF="Earliest Deadline First"

EDF Admission Control

 If we schedule by EDF, will all the (slice, period) constraints of all the VMs always be met?

• EDF Schedulability test is simple – Linear in number of VMs

$$U(n) = \sum_{k=1}^{n} \frac{slice_k}{period_k} \le 1 \text{ Schedulable}$$

A detailed VSched schedule for three VMs

Outline

- Scheduling virtual machines on a host
 - Virtuoso system
 - Challenges
- Periodic real-time scheduling
- VSched, our scheduler
- Evaluating our scheduler
 - Performance limits
 - Suitability for different workloads
- Conclusions and future work
 - Putting the user in direct control of scheduling

Our implementation - VSched

- Provides soft real-time (limited by Linux)
- Runs at user-level (no kernel changes)
- Schedules any set of processes
 We use it to schedule type-II VMMs
- Supports very fast changes in constraints
 - We know immediately whether performance improvement is possible or if VM needs to migrate

Our implementation – VSched

- Supports (slice, period) ranging into days
 - Fine millisecond and sub-millisecond ranges for interactive VMs
 - Coarser constraints for batch VMs
- Client/Server: remote control scheduling
 - Coordination with Virtuoso front-end
 - Coordination with other VScheds
- Publicly released http://virtuoso.cs.northwestern.edu.

Exploiting SCHED_FIFO

- Linux feature for simple preemptive scheduling without time slicing
- FIFO queue of processes for each priority level
- Runs first runnable process in highest priority queue
- VSched uses the three highest priority levels

VSched structure

- Client
 - Securely manipulate
 Server over TCP/SSL
 - Remote control
- Server module
 - EDF admission control
 - Remote control
- Scheduling Core
 - Online EDF scheduler manipulates SCHED_FIFO priorities
- Kernel
 - Implements SCHED_FIFO scheduling

Outline

- Scheduling virtual machines on a host
 - Virtuoso system
 - Challenges
- Periodic real-time scheduling
- VSched, our scheduler
- Evaluating our scheduler
 - Performance limits
 - Suitability for different workloads
- Conclusions and future work
 - Putting the user in direct control of scheduling

Basic Metrics

- miss rate
 - Missed deadlines / total deadlines
- miss time
 - Time by which deadline is missed when it is missed
 - We care about its distribution

 How do these depend on (period, slice) and number of VMs?

Reasons For Missing Deadlines

- Resolution misses: The period or slice is too small for the available timer and VSched overhead to support.
- Utilization misses: The utilization needed is too high (but less than 1).

Performance Limits

- Resolution
 - How small can period and slice be before miss rate is excessive?
- Utilization limit
 - How close can we come to 100% utilization of CPU?

Deterministic study

- Deterministic sweep over period and slice for a single VM
- Determines maximum possible utilization and resolution

- Safe region of operation for VSched

• We look at lowest resolution scenario here

Near-optimal Utilization

2 GHz P4 running a 2.4 kernel (10 ms timer)

Performance Limits on Three Platforms

Configuration	Maximum Utilization	Minimum Resolution
Machine 1	0.90	10 ms
Machine 2	0.75	0.2 ms
Machine 3	0.98	1 ms

- Machine 1: P4, 2GHz, Linux 2.4.20 (RH Linux 9) (10 ms timer).
- Machine 2: PIII, 1GHZ, Linux 2.4.18 patched with KURT 2.4.18-2 (~10 us timer).
- Machine 3: P4, 2GHz, Linux 2.6.8 (RH Linux 9) (1 ms timer).
- Beyond these limits, miss rates are <u>close to 100%</u>
- Within these limits, miss rates are close to 0%

Miss Times Small When Limits Exceeded

Miss Time (millisecond) < 2.5 % of slice

Randomized Study

- Testcase consists of
 - A random number of VMs
 - Each with a feasible, different, randomly chosen (*period, slice*) constraint
- We plot each testcase as a point in the following

Average Miss Rates Very Low and Largely Independent of Utilization and Number of VMs

Example: random testcases with 3 VMs

Miss Rates Grow At Very High Utilization

Example: random testcases with 3 VMs

Miss Time is Very Small When Misses Do Occur

Independence from number of VMs

- Miss rates are largely independent of the number of VMs after two VMs
 - more frequent context switches from one to two VMs
- Miss time is very small and independent of the number of VMs

User Study of Mixing Batch and Interactive VMs

- Each user ran an interactive VM simultaneously with a batch VM
 - P4 2GHz, 512MB Mem, Linux 2.6.3, VMWare GSX 3.1
 - Interactive VM: WinXP Pro VM
 - Batch VM: RH 7.3 VM with cycle soaker

Activities in Interactive VM

- Listening to MP3 (Microsoft Media Player)
- Watching MPEG (Microsoft Media Player)
- Playing 3D First Person Shooter Game (QUAKE II)
- Browsing web (Internet Explorer)
 - using multiple windows, Flash Player content, saving pages, and performing fine-grain view scrolling.

Setup

- Batch VM: (1 minute, 10 minutes) (10%)
- Varied *period* and *slice* of interactive VM
- For each activity, user qualitatively assessed effect of different combinations of (*period, slice*) to find minimum acceptable combination

Impressive Worst Case Results

(period, slice)(ms)	Quake(with sound)	MP3 playback	MPEG(with sound) playback	Web Browsing
5, 1	good	good	tiny audio jitter	good
6, 1	good	good	tiny audio jitter	good
7,1	tiny jitter	good	tiny audio jitter	good
<u>8, 1</u> 10-15%	small jitter	tiny jitter	tiny jitter	jitter
9,1 Utilization	jitter	noisy	tiny jitter	jitter
10, 1	jitter	noisy	jitter	jitter

- Most sensitive user can still tolerate applications at very low utilization
- Can clearly run a mix of interactive and batch VMs on the same machine, keeping users of both happy
- Considerable headroom for interactive VMs

Scheduling Batch Parallel Applications

- Can we linearly control the execution rate of a parallel application running on VMs mapped to different hosts in proportion to the cycles we give it? YES
- Can we protect such an application from external load? YES
- BSP benchmark; all-to-all communication; 4 cluster nodes; compute/communicate ratio = 0.5; MFLOP/s as our metric

Existence of (*period, slice*) constraint that achieves desired utilization while resulting in only a corresponding decrease in execution rate

39

VSched Makes Parallel Application Performance Impervious to External Load Imbalance

Contention: average number of competing processes that are runnable

Conclusions

- Proposed periodic real-time model for VMbased distributed computing
- Designed, implemented and evaluated a user-level scheduler (VSched)
- Mixed batch computations with interactive applications with no reduction in usability
- Applied VSched to schedule parallel applications

Future work

- Automating choosing schedules straightforwardly for all kinds of VMs
- Automating coordination of schedules across multiple machines for parallel applications
- Incorporate direct human input into the scheduling process
 - Forthcoming papers

Letting the Naïve User Choose Period and Slice

- Goal: Non-intrusive interface
 - Used only when user is unhappy with performance
 - Instantly manipulated to change the schedule
- Preview of further results
 - GUI (showing cost)
 - Non-centering joystick

- For More Information
 - Prescience Lab (Northwestern University)
 - http://www.presciencelab.org
 - Virtuoso: Resource Management and Prediction for Distributed Computing using Virtual Machines
 - <u>http://virtuoso.cs.northwestern.edu</u>
- VSched is publicly available from
 - http://virtuoso.cs.northwestern.edu