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Abstract

Most parallel machines, such as clusters, are space-sharedin or-
der to isolate batch parallel applications from each other and opti-
mize their performance. However, this leads to low utilization or po-
tentially long waiting times. We propose a self-adaptive approach to
time-sharingsuch machines that provides isolation and allows the ex-
ecution rate of an application to be tightly controlled by the adminis-
trator. Our approach combines a periodic real-time scheduler on each
node with a global feedback-based control system that governs the lo-
cal schedulers. We have developed an online system that implements
our approach. The system takes as input a target execution rate for
each application, and automatically and continuously adjusts the ap-
plications’ real-time schedules to achieve those rates with proportional
CPU utilization. Target rates can be dynamically adjusted.Applica-
tions are performance-isolated from each other and from other work
that is not using our system. We present an extensive evaluation that
shows that the system remains stable with low response times, and that
our focus on CPU isolation and control does not come at the significant
expense of network I/O, disk I/O, or memory isolation.

1 Introduction

Tightly-coupled computing resources such as clusters are
typically used to run batch parallel workloads. An application
in such a workload is typically communication intensive, exe-
cuting synchronizing collective communication. The Bulk Syn-
chronous Parallel (BSP) model [24] is commonly used to under-
stand many of these applications. In the BSP model, application
execution alternates between phases of local computation and
phases of global collective communication. Because the com-
munication is global, the threads of execution on differentnodes
must be carefully scheduled if the machine is time-shared. If a
thread on one node is slow or blocked due to some other thread
unrelated to the application, all of the application’s threads stall.

To avoid stalls and provide predictable performance for
users, almost all tightly-coupled computing resources today are
space-shared. In space-sharing [23], each application is given
a partition of the available nodes, and on its partition, it is the
only application running, thus avoiding the problem altogether

∗This work was partially done while this author was at Corporate Technol-
ogy Group, Intel Corporation, Hillsboro, OR, USA.

by providing complete performance isolation between running
applications. Space-sharing introduces several problems, how-
ever. Most obviously, it limits the utilization of the machine
because the CPUs of the nodes are idle when communication or
I/O is occurring. Space-sharing also makes it likely that appli-
cations that require many nodes will be stuck in the queue for
a long time and, when running, block many applications that
require small numbers of nodes. Finally, space-sharing per-
mits a provider to control the response time or execution rate
of a parallel job at only a very course granularity. Though it
can be argued theoretically that applications can be alwaysbuilt
such that computation and I/O overlap all the time, thus prevent-
ing stalls, practically speaking, this is rarely the case. We pro-
pose a new self-adaptive approach to time-sharing parallelap-
plications on tightly-coupled computing resources like clusters,
performance-targetted feedback-controlled real-time schedul-
ing. The goals of our technique are to provide

• performance isolation within a time-sharing framework that
permits multiple applications to share a node, and

• performance control that allows the administrator to finely
control the execution rate of each application while keeping its
resource utilization automatically proportional to execution rate.

Conversely, the administrator can set a target resource utiliza-
tion for each application and have commensurate application
execution rates follow.

In performance-targetted feedback-controlled real-time
scheduling, each node has a periodic real-time scheduler. The
local application thread is scheduled with a(period , slice)
constraint, meaning that it executesslice seconds everyperiod .
Notice thatslice/period is the utilization of the application
on the node. Our implementation uses our previously de-
scribed [11] and publicly available VSched tool. VSched is
a user-level periodic real-time scheduler for Linux that we
originally developed to explore scheduling interactive and
batch workloads together. Section 3 provides an overview.

Once an administrator has set a target execution rate for an
application, a global controller determines the appropriate con-
straint for each of the application’s threads of execution and
then contacts each corresponding local scheduler to set it.The
controller’s input is the desired application execution rate, given
as a percentage of its maximum rate on the system (i.e., as if it
were on a space-shared system). The application or its agent
periodically feeds back to the controller its current execution
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rate. The controller automatically adjusts the local schedulers’
constraints based on the error between the desired and actual
execution rate, with the added constraint that utilizationmust
be proportional to the target execution rate. In the common
case, the only communication in the system is the feedback of
the current execution rate of the application to the global con-
troller, and synchronization of the local schedulers through the
controller is very infrequent. Section 4 describes the global con-
troller in detail.

It is important to point out that our system schedules the CPU
of a node, not its physical memory, communication hardware,
or local disk I/O. Nonetheless, in practice, we can achieve quite
good performance isolation and control even for applications
making significant use of these other resources, as we show in
our detailed evaluation (Section 5). Mechanisms for physical
memory isolation in current OSes and VMMs are well under-
stood and can be applied in concert with our techniques. As
long as the combined working set size of the applications ex-
ecuting on the node does not exceed the physical memory of
the machine, the existing mechanisms suffice. Communication
has significant computational costs, thus, by throttling the CPU,
we also throttle it. The interaction of our system and local disk
I/O is more complex. Even so, we can control applications with
considerable disk I/O.

2 Related work

Our work ties to gang scheduling, implicit co-scheduling,
real-time schedulers, and feedback control real-time schedul-
ing. As far as we aware, we are the first to develop real-time
techniques for scheduling parallel applications that provide per-
formance isolation and control. We also differ from these areas
in that we show how external control of resource use (by a clus-
ter administrator, for example) can be achieved while maintain-
ing commensurate application execution rates. That is, we can
reconcile administrator and user concerns.

The goal of gang scheduling [18, 8] is to “fix” the block-
ing problems produced by blindly using time-sharing local node
schedulers. The core idea is to make fine-grain scheduling de-
cisions collectively over the whole cluster. For example, one
might have all of an application’s threads be scheduled at identi-
cal times on the different nodes, thus giving many of the benefits
of space-sharing, while still permitting multiple applications to
execute together to drive up utilization, and thus allowingjobs
into the system faster. In essence, this provides the performance
isolation we seek, while performance control depends on sched-
uler model. However, gang scheduling has significant costs in
terms of the communication necessary to keep the node sched-
ulers synchronized, a problem that is exacerbated by finer grain
parallelism and higher latency communication [10]. In addition,
the code to simultaneously schedule all tasks of each gang can
be quite complex, requiring elaborate bookkeeping and global
system knowledge [22].

Implicit co-scheduling [1] attempts to achieve many of the
benefits of gang scheduling without scheduler-specific commu-

nication. The basic idea is to use communication irregularities,
such as blocked sends or receives, to infer the likely state of the
remote, uncoupled scheduler, and then adjust the local sched-
uler’s policies to compensate. This is quite a powerful idea, but
it does have weaknesses. In addition to the complexity inherent
in inference and adapting the local communication schedule,
the approach also doesn’t really provide a straightforwardway
to control effective application execution rate, responsetime, or
resource usage.

The feedback control real-time scheduling project at the Uni-
versity of Virginia [15, 20, 14, 16] had a direct influence on our
thinking. In that work, concepts from feedback control theory
were used to develop resource scheduling algorithms to give
quality of service guarantees in unpredictable environments to
applications such as online trading, agile manufacturing,and
web servers. In contrast, we are using concepts from feedback
control theory to manage a tightly controlled environment,tar-
geting parallel applications with collective communication.

Feedback-based control was also used to provide CPU reser-
vations to application threads running on single machine based
on measurements of their progress [21], and for dynamic
database provisioning for web servers [9]. There are a wide
range of implementations of periodic real-time schedulers, for
example [2, 17], including numerous kernel extensions for
Linux, for example [7, 19].

3 Local scheduler

In the periodic real-time model, a task is run forslice

seconds everyperiod seconds. Using earliest deadline first
(EDF) schedulability analysis [12], the scheduler can determine
whether some set of(period , slice) constraints can be met. The
scheduler simply uses dynamic priority preemptive scheduling
with the deadlines of the admitted tasks as priorities.

VSched is a user-level implementation of this approach for
Linux that offers soft real-time guarantees. It runs as a Linux
process that schedules other Linux processes. Because the
Linux kernel does not have priority inheritance mechanisms,
nor known bounded interrupt service times, it is impossiblefor
a tool like VSched to provide hard real-time guarantees to or-
dinary processes. Nonetheless, as we show in an earlier pa-
per [11], for a wide range of periods and slices, and under even
fairly high utilization, VSched almost always meets the dead-
lines of its tasks, and when it misses, the miss time is typically
very small. VSched supports(period , slice) constraints rang-
ing from the low hundreds of microseconds (if certain kernel
features are available) to days. Using this range, the needsof
various classes of applications can be described and accommo-
dated. VSched allows us to change a task’s constraints within
about a millisecond.

VSched is a client/server system. The VSched server is
a daemon running on Linux that spawns the scheduling core,
which executes the scheduling scheme described above. The
VSched client communicates with the server over an encrypted
TCP connection. In this work, the client is driven by the global
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Figure 1. Structure of global control.

controller and we schedule individual Linux processes.
The performance of VSched has been evaluated on several

different platforms. It can achieve very low deadline miss rates
up to quite high utilizations and quite fine resolutions. VSched
can use over 90% of the CPU even on relatively slow hard-
ware and older kernels (IntelR© PentiumR© III, 2.4 kernel) and
can use over 98% of the CPU on more modern configurations
(Intel R© PentiumR© 4, 2.6 kernel). The mechanisms of VSched
and its evaluation are described in much more detail in an earlier
paper [11] and the software itself is publicly available.

4 Global controller

The control system consists of a centralized feedback con-
troller and multiple host nodes, each running a local copy of
VSched, as shown in Figure 1. A VSched daemon is responsi-
ble for scheduling the local thread(s) of the application(s) under
the yoke of the controller. The controller sets(period , slice)
constraints using the mechanisms described in Section 3. Cur-
rently, the same constraint is used for each VSched. One thread
of the application, or some other agent, periodically communi-
cates with the controller using non-blocking communication.

4.1 Inputs

The maximum application execution rate on the system in
application-defined units isRmax. The set point of the con-
troller is supplied by the user or the system administrator
through a command-line interface that sends a message to the
controller. The set point isrtarget and is a percentage ofRmax.
The system is also defined by its threshold for error,ǫ, which is
given as percentage points. The inputs∆slice and∆period spec-
ify the smallest amounts by which the slice and period can be
changed. The inputsminslice andminperiod define the smallest
slice and period that VSched can achieve on the hardware.

The current utilization of the application is defined in terms
of its scheduled period and slice,U = slice/period . The user
requires that the utilization be proportional to the targetrate,
that is, thatrtarget − ǫ ≤ U ≤ rtarget + ǫ.

The feedback inputrcurrent comes from the parallel appli-
cation we are scheduling and represents its current execution
rate as a percentage ofRmax. To minimize the modification of
the application and the communication overhead, our approach
only requires high-level knowledge about the application’s con-
trol flow and only a few extra lines of code.

4.2 Control algorithm

The control algorithm (or simply the algorithm) is responsi-
ble for choosing a(period , slice) constraint to achieve the fol-
lowing goals

1. The error is within threshold:rcurrent = rtarget ± ǫ, and

2. That the schedule is efficient:U = rtarget ± ǫ.

The algorithm is based on the intuition and observation that
application performance will vary depending on which of the
many possible(period , slice) schedules corresponding to a
given utilizationU we choose, and the best choice will be ap-
plication dependent and vary with time. For example, a finer
grain schedule (e.g. (20ms, 10ms)) may result in better appli-
cation performance than coarser grain schedules (e.g. (200ms,
100ms)). At any point in time, there may be multiple “best”
schedules.

The control algorithm attempts to automatically and dynam-
ically achieve goals 1 and 2 in the above, maintaining a partic-
ular execution ratertarget specified by the user while keeping
utilization proportional to the target rate.

We define the error as

e = rcurrent − rtarget.

At startup, the algorithm is given an initial ratertarget. It
chooses a(period , slice) constraint such thatU = rtarget and
period is set to a relatively large value such as 200 ms. The
algorithm is a simple linear search for the largestperiod that
satisfies our requirements.

When the application reports a new current rate measure-
mentrcurrent and/or the user specifies a change in the target
ratertarget, e is recomputed and then the following is executed:

• If |e| > ǫ decreaseperiod by ∆period and decreaseslice by
∆slice such thatslice/period = U = rtarget. If
period ≤ minperiod then we resetperiod to the same value as
used at the beginning and again setslice such thatU = rtarget.

• If |e| ≤ ǫ do nothing.

It should be noticed that the algorithm always maintains the
target utilization and searches the(period , slice) space from
larger to smaller granularity, subject to the utilization constraint.
The linear search is, in part, done because multiple appropriate
schedules may exist. We do not preclude the use of algorithms
that walk the space faster, but we have found our current algo-
rithm to be effective.

5 Evaluation

In presenting our evaluation, we begin by explaining the ex-
perimental framework. Then we show the range of control that
the scheduling system has made available. This is followed by
an examination of using the algorithm described above to pre-
vent the inevitable drift associated with simply using a local
real-time scheduler. Next, we examine the performance of the
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algorithm in a dynamic environment, showing their reactionto
changing requirements. We then illustrate how the system re-
mains impervious to external load despite the feedback. Next,
we show how the system scales as it controls increasing num-
bers of parallel applications. Finally, we examine the effects of
local disk I/O and memory contention.

5.1 Experimental framework

As mentioned previously, Bulk Synchronous Parallel
(BSP [5]) model is used to characterize many of the batch par-
allel workloads that run in tightly coupled computing resources
such as clusters. In most of our evaluations we used a synthetic
BSP benchmark, called Patterns, written for PVM [4]. Patterns
is described in more detail in a previous paper [6], but the salient
points are that it can execute any BSP communication pattern
and run with different compute/communicate (comp/comm) ra-
tios and granularities. In general, we configure Patterns torun
with an all-to-all communication pattern on four nodes of our
IBM e1350 cluster (IntelR© XeonR© 2.0 GHz, 1.5 GB RAM,
Gigabit Ethernet interconnect). Each node runs VSched, anda
separate node is used to run the controller. Note that all of our
results involve CPU and network I/O.

We also evaluated the system using an NAS (NASA Ad-
vanced Supercomputing) benchmark. In particular, we use the
PVM implementation of the IS (Integer Sort) benchmark devel-
oped by White et al. [25]. It performs a large integer sort, sort-
ing keys in parallel as seen in large scale computational fluid
dynamic (CFD) applications. IS combines integer computation
speed and communication with, unlike Patterns, different nodes
doing different amounts of computation and communication.

5.2 Range of control

To illustrate the range of control possible using periodic real-
time scheduling on the individual nodes, we ran Patterns with
a compute/communicate ratio of 1:2, making it quite commu-
nication intensive. Note that this configuration is conservative:
it is far easier to control a more loosely coupled parallel appli-
cation with VSched. We ran Patterns repeatedly, with different
(period , slice) combinations.

Figure 2 shows these test cases. Each point is an execution of
Patterns with a different (period , slice), plotting the execution
rate of Patterns as a function of Patterns utilization on theindi-
vidual nodes. Notice the line on the graph, which is the ideal
control curve that the control algorithm is attempting to achieve,
control over the execution rate of the application with propor-
tional utilization (rcurrent = rtarget = U ). Clearly, thereare
choices of(period , slice) that allow us to meet all of the re-
quirements.

5.3 Schedule selection and drift

Although there clearly exist(period , slice) schedules that
can achieve an execution rate with (or without) proportional

Figure 2. Compute rate as a function of utiliza-
tion for different (period , slice) choices.

Figure 3. Elimination of drift using global feed-
back control; 1:1 comp/comm ratio.

utilization, we cannot simply use only the local schedulersfor
several reasons:

• The appropriate(period , slice) is application dependent
because of differing compute/communicate ratios, granularities,
and communication patterns. Making the right choice shouldbe
automatic.

• The user or system administrator may want to dynamically
change the application execution ratertarget. The system
should react automatically.

• Our implementation is based on asoft local real-time scheduler.
This means that deadline misses will inevitably occur and this
can cause timing offsets between different application threads to
accumulate. We must monitor and correct for these slow errors.
Notice that this is likely to be the case for a hard local real-time
scheduler as well if the admitted tasks vary across the nodes.

Figure 3 illustrates what we desire to occur. The target appli-
cation execution rate is given in iterations per second, here be-
ing 0.006 iterations/second. The current execution ratercurrent

is calculated after each iteration and reported to the controller.
This is Patterns running with a 1:1 compute/communicate ratio
on two nodes. The lower curve is that of simply using VSched
locally to schedule the application. Although we can see that
the rate is correct for the first few iterations, it then drifts down-
ward, upward, and once again downward over the course of the
experiment. The roughly straight curve is using VSched, the
global controller, and the control algorithm. We can see that
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the tendency to drift has been eliminated using global feedback
control.

5.4 Evaluating the control algorithm

We studied the performance of the control algorithm using
three different compute/communicate ratios (high (5:1) ratio,
medium (1:1) ratio, and low (1:5) ratio), different target ex-
ecution ratesrtarget, and different thresholdsǫ. In all cases
∆period = 2 ms, where∆period is the change in period ef-
fected by VSched when the application execution rate goes out-
side of the threshold range, theslice is then adjusted such that
U = rtarget.

Figure 4 shows the results for high, medium, and low test
cases with a 3% threshold. We can see that the target rate is
easily and quickly achieved, and remains stable for all three test
cases. Note that the execution rate of these test cases running at
full speed without any scheduling are slightly different.

Next, we focus on two performance metrics:
• Minimum threshold: What is the smallestǫ below which control

becomes unstable?
• Response time: for stable configurations, what is the typical

time between when the target execution ratertarget changes and
when thercurrent = rtarget ± ǫ ?

Being true for all feedback control systems, the error threshold
will affect the performance of the system. When the threshold ǫ
is too small, the controller becomes unstable and fails because
the change applied by the control system to correct the erroris
even greater than the error. For our control algorithm, whenthe
error threshold is< 1%, the controller will become unstable.
Figure 5 illustrates this behavior. Note that while the system is
now oscillating, it appears to degrade gracefully.

Figure 6 illustrates our experiment for measuring the re-
sponse time. The target rate is changed by the user in the middle
of the experiment. Our control system quickly adjusts the ex-
ecution rate and stabilizes it. It shows that the response time
is about 32 seconds, or two iterations, for the case of 1:1 com-
pute/communicate ratio. The average response time over four
test cases (1 high, 2 medium, and 1 low compute/communicate
ratios) is 30.68 seconds. In all cases, the control algorithm
maintainsU = rtarget as an invariant by construction.

5.5 Summary of limits of the control algo-
rithm

Figure 7 summarizes the response time, communication cost
to support the feedback control, and threshold limits of ourcon-
trol system. Overall we can control with a quite small threshold
ǫ. The system responds quickly, on the order of a couple of
iterations of our benchmark. The communication cost is minus-
cule, on the order of just a few bytes per iteration. Finally,these
results are largely independent of the compute/communicate ra-
tio.

The exceptionally low communication involved in
performance-targetted feedback-controlled real-time schedul-

Figure 5. System in oscillation when error
threshold is made too small; 1:1 comp/comm ra-
tio.

Figure 6. Response time of control algorithm; 1:1
comp/comm ratio.

ing is a natural consequence of the deterministic and predictable
periodic real-time scheduler being used on each node.

5.6 Dynamic target execution rates

As we mentioned earlier, using the feedback control mecha-
nism, we can dynamically change the target execution rates and
our control system will continuously adjust the real-time sched-
ule to adapt to the changes. To see how our system reacts to user
inputs over time, we conducted an experiment in which the user

Figure 8. Dynamically varying execution rates;
1:1comp/comm ratio.
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(a) high (5:1) comp/comm ratio (b) medium (1:1) comp/comm ratio (c) low (1:5) comp/comm ratio

Figure 4. System in stable configuration for varying comp/co mm ratio.

High (5:1) compute/communicate ratioMedium (1:1) compute/communicate ratioLow (1:5) compute/communicate ratio
Response Threshold Feedback Response Threshold Feedback Response Threshold Feedback
time limit comm. time limit comm. time limit comm.
29.16 s 2 % 32 bytes/iter 31.33 s 2 % 32 bytes/iter 32.01 s 2 % 32 bytes/iter

Figure 7. Response time and threshold limits for the control algorithm.

adjusted his desired target rate four times during the execution
of the Patterns application. As shown in Figure 8, the control
algorithm works well. After the user changes the target rate, the
algorithm quickly adjusts the schedule to reach the target.

5.7 Ignoring external load

Any coupled parallel program can suffer drastically from ex-
ternal load on any node; the program runs at the speed of the
slowest node. We have previously shown that the periodic real-
time model of VSched can shield the program from such exter-
nal load, preventing the slowdown [11]. Here we want to see
whether our control system as a whole can still protect a BSP
application from external load.

We executed Patterns on four nodes with the target execution
rate set to half of its maximum rate. On one of the nodes, we
applied external load, a program that contends for the CPU us-
ing load trace playback techniques [3]. Contention is defined as
the average number of contention processes that are runnable.
Figure 9 illustrates the results. At roughly the 15th iteration,
an external load is placed on one of the nodes in which Pat-
terns is running, producing a contention of 1.0. We note thatthe
combination of VSched and the feedback controller are able to
keep the performance of Patterns independent of this load. We
conclude that our control system can help a BSP application
maintain a fixed stable performance under a specified execution
rate constraint despite external load.

5.8 NAS IS Benchmark

When we ran the NAS IS (Integer Sort) benchmark without
leveraging our control system, we observed that different nodes
have different CPU utilizations. This is very different from the

Figure 9. Performance of control system under
external load; 3:1 comp/comm ratio; 3% thresh-
old.

Patterns benchmark, which does roughly the same amount of
computation and communication on each node. In our experi-
ment, for a specific configuration of NAS IS executing on four
nodes, we observed an average utilization of∼28% for two
nodes and∼14% average utilization for the other two nodes.

This variation has the potential to challenge our control sys-
tem, since in our model we assume the same target utilization
U on each node, and we apply the same schedule on each node.
We ran an experiment where we set the target utilization to be
half of the maximum utilization among all nodes, i.e. 14%. Fig-
ure 10 illustrates the performance in this case. We can see that
the actual execution rate is successfully brought to withinǫ of
the target rate.

We are currently designing a system in which the global con-
troller is given the freedom to set a different schedule on each
node thus making our control system more flexible.
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Figure 10. Running NAS benchmark under con-
trol system; 3% threshold.

Figure 11. Running of two Patterns benchmarks
under the control system, 1:1 comp/comm ratio.

5.9 Time-sharing multiple parallel applica-
tions

To see how well we can provide time-sharing for multiple
parallel applications, we simultaneously executed multiple Pat-
terns benchmarks on the same four nodes of our cluster.

Figure 11 shows the results of running two Patterns applica-
tions, each configured with a 1:1 compute/communicate ratio.
One was configured with a target rate of 30%, with the other set
to 40%. We can clearly see that the actual execution rates are
quickly brought to withinǫ of the target rates and remain there
for the duration of the experiment.

Next, we consider what happens as we increase the num-
ber of Patterns benchmarks running simultaneously. In the
following, each Patterns benchmark is set to execute with
identical 10% utilization. We ran Patterns with a 3:1 com-
pute/communicate ratio. Figure 12 shows our results. Each
graph shows the execution rate (iterations/second) as a function
of the iteration, as well as the two 3% threshold lines. Fig-
ure 12(a) contains two such graphs, corresponding to two si-
multaneously executing Patterns benchmarks, (b) has three, and
so on.

Overall, we maintain reasonable control as we scale the num-
ber of simultaneously executing benchmarks. Further, overthe
thirty iterations shown, in all cases, the average execution rate
meets the target, within threshold.

We do notice a certain degree of oscillation when we run
many benchmarks simultaneously. Our explanation is as fol-
lows. When VSched receives and admits a new schedule sent
by the global controller, it will interrupt the current taskand
re-select a new task (perhaps the previous one) to run based on
its deadline queue. As the number of parallel applications in-
creases, each process of an application on an individual node
will have a smaller chance of running uninterrupted through-
out its slice. In addition, there will be a smaller chance of each
process starting its slice at the same time.

The upshot is that even though the process will continue to
meet its deadlines locally, it will be less synchronized with pro-
cesses running on other nodes. This results in the application’s
overall performance changing, causing the global controller to
be invoked more often. Because the control loop frequency is
less than the frequency of these small performance changes,the
system begins to oscillate. However, the degradation is grace-
ful, and, again, the long term averages are well behaved.

5.10 Effects of local disk I/O

Although we are only scheduling the CPU resource, it is
clear from the above that this is sufficient to isolate and control
a BSP application with complex collective communications of
significant volume. Is it sufficient to control such an application
when it also extensively performs local disk I/O?

To study the effects of local disk I/O on our scheduling sys-
tem, we modified the Patterns benchmark to perform varying
amounts of local disk I/O. In the modified Patterns, each node
writes some number of bytes sequentially to the local IDE hard
disk during each iteration. It is ensured that the data is written
to the physical disk by usingfsync() call.

In our first set of experiments, we configured Patterns with
a very high (145:1) compute/communicate ratio, and 0, 1, 5,
10, 20, 40, and 50 MB per node per iteration of local disk I/O.
Our target execution rate was 50% with a threshold of 3%. Fig-
ure 13 shows the results for 10, 20, and 40 MB/node/iter. 0,
1, 5 are similar to 10, while 50 is similar to 40. For up to 10
MB/node/iter, our system effectively maintains control ofthe
application’s execution rate. As we exceed this limit, we de-
velop a slight positive bias; the application runs faster than de-
sired despite the restricted CPU utilization. The dominantpart
of the time spent on local disk I/O is spent waiting for the disk.
As more I/O is done, a larger proportion of application exe-
cution time is outside of the control of our system. Since the
control algorithm requires that the CPU utilization be equal to
the target execution rate, the actual execution rate grows.

In the second set of experiments, we fixed the local disk
I/O to 10 MB/node/iter (the maximum controllable situationin
the previous experiment) and varied the compute/communicate
ratio, introducing different amounts of network I/O. We used
a target rate of 50%. We used seven compute/communicate
ratios ranging from 4900:1 to 1:3.5. Figure 14 shows the
results for 4900:1, 2:1, and 1:3.5. For high to near 1:1
compute/communicate ratios, our system can effectively con-
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Figure 12. Running multiple Patterns benchmarks; 3:1 comp/ comm ratio; 3% threshold.

trol the application’s execution rate even with up to 10
MB/node/iteration of local I/O, and degrades gracefully after
that.

Our system can effectively control the execution rates of ap-
plications performing significant amounts of network and lo-
cal disk I/O. The points at which control effectiveness begins

to decline depends on the compute/communicate ratio and the
amount of local disk I/O. With higher ratios, more local diskI/O
is acceptable. We have demonstrated control of an application
with a 1:1 ratio and 10 MB/node/iter of local disk I/O.
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Figure 13. Performance of control system with a high (145:1) comp/comm ratio and varying local disk I/O.

(a) high (4900:1) comp/comm ratio (b) medium (2:1) comp/comm ratio (c) low (1:3.5) comp/comm ratio

Figure 14. Performance of control system with 10 MB/node/it er of disk I/O and varying comp/comm ratios.

Figure 15. Running two Patterns benchmarks un-
der the control system; high (130:1) comp/comm
ratio. The combined working set size is slightly
less than the physical memory.

5.11 Effects of physical memory use

Our technique makes no attempt to isolate memory, but the
underlying node OS certainly does so. Is it sufficient?

To evaluate the effects of physical memory contention on our
scheduling system, we modified the Patterns benchmark so that
we could control its working set size. We then ran two instances
of the modified benchmark simultaneously on the four nodes of
our cluster. We configured the first instance with a working

set of 600 MB and a target execution rate of 30%, while the
second was configured with a working set size of 700 MB and a
target rate of 40%. Both instances had a compute/communicate
ratio of around 130:1. The combined working set of 1.3 GB is
slightly less than the 1.5 GB of memory of our cluster nodes.

We used the control algorithm to schedule the two instances,
and Figure 15 shows the results of this experiment. We see that
despite the significant use of memory by both instances, our
system maintains control of both applications’ execution rates.

Our results suggest that unless the total working set on the
machine is exceeded, physical memory use has little effect on
the performance of our scheduling system. It is important to
point out that most OS kernels, including Linux, have mecha-
nisms to restrict the physical memory use of a process. These
mechanisms can be used to guarantee that the physical memory
pressure on the machine does not exceed the supply. A virtual
machine monitor such as Xen or VMware provides additional
control, enforcing a physical memory limit on a guest OS kernel
and all of its processes.

6 Conclusions and future work

We have proposed, implemented, and evaluated a new
self-adaptive approach to time-sharing parallel applications
on tightly coupled compute resources such as clusters. Our
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technique, performance-targetted feedback-controlled real-time
scheduling, is based on the combination of local schedul-
ing using the periodic real-time model and a global feedback
control system that sets the local schedules. The approach
performance-isolates parallel applications and allows adminis-
trators to dynamically change the desired application execution
rate while keeping actual CPU utilization automatically propor-
tional to the application execution rate. Our implementation
takes the form of a user-level scheduler for Linux and a central-
ized controller. Our evaluation shows the system to be stable
with low response times. The thresholds needed to prevent con-
trol instability are quite reasonable. Despite only isolating and
controlling the CPU, we find that memory, communication I/O,
and local disk I/O follow.

We are now focusing on how to apply our feedback control
approach to a wider range of workloads such as web applica-
tions that have more complex communication and synchroniza-
tion behavior, and high-performance parallel scientific applica-
tions that have performance requirement which are typically not
know a priori and change as the applications proceed [13]. In
related work, xwe are considering how to exploit direct feed-
back from the end-user in a scheduling system.
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