
OPPONENT MODELING IN POKER USING MACHINE LEARNING TECHNIQUES

Patrick McNally & Zafar Rafii

Northwestern University Evanston, IL, 60201, USA
PatrickMcNally2013@u.northwestern.edu

ZafarRafii2011@u.northwestern.edu

ABSTRACT

This paper details the results of plying several machine learn-
ing techniques to the task of predicting an opponent’s next ac-
tion in the poker game Texas Hold’em. Hold’em is a game of
imperfect information, deception and chance played between
multiple competing agents. These complexities make it a rich
game upon which to use machine learning models because
the emergent statistical patterns are often subtle and difficult
for a person to recognize. To this end, we explore a variety
of features for predicting action, showing which appear to be
the strongest. Furthermore, we show that as more rounds of
betting are observed for a particular hand, it becomes easier
to predict action. Finally, we propose a feature to differentiate
players in terms of their style of play that is easily calculated
for new opponents in real time.

1. INTRODUCTION

In recent years, much progress has been made on computer
gameplay in games of complete information such as chess,
where computers have succeeded in surpassing even the top
chess players. On the other hand, games of incomplete in-
formation such as poker have been less studied and artificial
poker bots are still below the level of that of professional play-
ers. Unlike board games such as chess or checkers where the
entire game state is completely visible for all the participants,
poker is a complex stochastic game involving a number of
attributes such as imperfect knowledge (hidden hands), mul-
tiple competing agents (two players or more), risk manage-
ment (betting) and deception (bluffing), which actually make
it a difficult but interesting problem for developing an artifi-
cial intelligent agent.

One of the major pieces necessary for developing a com-
petitive poker agent is an accurate opponent model. This is
because, in poker, simply ”playing the cards” is often not
enough, and many advanced strategies and expected value
computations hinge on how an opponent is expected to play.
To this end, an accurate model of an opponent (a good idea
of what they are likely to do in a given situation) is incredibly
valuable information. A good opponent model informs your
strategy and helps you to gain a greater edge to press over

and over again. Machine learning techniques are particularly
suited to problems of this nature. Given a large enough rel-
evant data set, they can suss out subtle statistical patterns in
behavior that human players would be unable to recognize.
We propose to bring two machine learning models to bear on
the simple problem of opponent modeling: Artificial Neural
Networks and Decision Trees. We hypothesize these tech-
niques can provide accurate predictions of opponent actions.

The paper is organized as follows. Section 2 introduces
the Texas Hold’em game and the database used for the op-
ponent modeling. The two machine learning models are pre-
sented in section 3. Experimental results are then given in
section 4. Finally, conclusion and perspectives are drawn in
5.

2. THE GAME

2.1. The Texas Hold’em

Fig. 1. A Texas Hold’em game with a player and his 2 hidden
private cards and the 5 community cards face up on the board.

Texas Hold’em is perhaps the most popular poker game
in the casinos and poker card rooms across North America
and Europe, as well as online, especially since the 2000s due
to massive exposure on television and Internet. Hold’em is a
multiplayer community card game where each player may use
any combination of the five community cards and the player’s



own two hole cards to make a poker hand, in contrast to poker
variants like stud or draw where each player holds a separate
individual hand. Because each player starts with only two
cards and the remaining cards are shared, it is an excellent
game for strategic analysis (including mathematical analysis),
and also interesting in the perspective of machine learning
techniques.

The rules of Texas Hold’em are summarized as follows.
Play begins with each player being dealt two cards face down.
After a ”pre-flop” betting round, the dealer deals a flop, three
face-up community cards. The flop is followed by a second
betting round. Then, a single community card called the turn
or fourth street is dealt, followed by a third betting round. A
final single community card called the river or fifth street is
then dealt, followed by a fourth betting round and the show-
down, if necessary.

2.2. The Database

For several years, before the advent of real-money online
poker servers, there have been IRC channels with poker deal-
ing bots and ”fake money” stakes. From 1995 to 2001, 10
million complete hands of poker were collected using an ob-
serving bot called Observer that sat in on IRC poker channels
and logged the details of every game. This hand database has
been made publicly available to further the development of
Poker Artificial Intelligence research [4].

Although these hands do not represent ”real money” play
nor are there any guarantees of quality of play, their ease of
acquisition and volume make them a very good place to start
a machine learning experiment.

Once aquired, this database had to be refined into the
input-output vector pairs used for training. The four actions
we wished to predict were fold, check, call and bet. The input
features we decided on using were the following:

• hand value - community cards available to everyone are
rated from 0 to 1.0 with a straight flush being 1.0 and a
high card being 0.0.

• number of suited cards - the highest number of suited
cards on the table.

• number of consecutive cards - the highest number of
cards whose values follow in a row, i.e. the number of
straight cards.

• the player’s previous action - the most recent action
taken by the player in the round.

• the player’s position at the table - position determines
betting order. A higher position is often considered
stronger as you get to see other player’s actions before
deciding on your own.

• amount required to call - the number of small bets, if
any, required to match in order to stay in the round.

• the player’s total number of bets made in the round -
this feature counts bets made only when no amount is
required to stay in the hand.

• the player’s total number of raises made in the round -
this feature counts bets made when a smaller amount is
required to stay in the hand.

• the player’s total number of calls made in the round
- this feature counts how many times the player has
called in the round.

• player aggressiveness - this feature is pre-computed for
each player in the database. It is simply the ratio of
aggressive actions (bet and raise) to total actions over
the course of the player’s history. This feature can also
be computed fairly easily for new opponents on the fly
by keeping tallies of their aggressive and total actions.

• the betting round in the hand - whether the betting is
pre-flop, on the flop, on the turn or on the river.

Most of these features are simply pieces of a given ta-
ble state. One problem for any feature set based solely on
the state of the table is that player’s styles are not accounted
for. Given the exact same situation, two players may consis-
tently make different choices. How to best characterize the
play style of a given player is a tremendous problem. There
are notions of ”tight” and ”loose” players in poker that corre-
spond to overly risky or overly conservative play respectively.
It is often very difficult to arbitrarily recognize tight or loose
actions much as it is very difficult, even for very experienced
players, to estimate the skill of a new opponent without a thor-
ough hand history.

We propose a very simple metric to differentiate players
from one another: the ratio of raises and bets to total actions.
We call this feature player aggressiveness above. This ra-
tio is easy to compute and tends to differ quite a bit from
player to player. This value ranges from less than a percentage
point for some players to nearly 50%, with most players sit-
ting at around 15% of their actions considered ”aggressive”.
We believe this feature will help greatly in differentiating one
player’s behavior from another.

3. THE BASELINE

3.1. Decision Trees

Due to their short training time we chose to use a basic pruned
decision tree to establish a performance baseline for our mod-
els. These decision trees could be trained in a matter of sec-
onds on different sets of our features, providing insight into
the value of each.



3.2. Artificial Neural Networks

Given that certain key features in our data were continuous
in nature, we expected drastically better results from Ar-
tificial Neural Networks when compared to decision trees.
Though there were improvements, the gains were not nearly
as marked as we would expected. Furthermore Neural Net-
works take significantly longer to train. Due to this and time
constraints, the parameters of our experiment were not as
thorough as we would have liked. Specifically, we would
have liked to have trained many more networks with varying
numbers of hidden nodes in order to determine the proper
number for a network structure.

4. RESULTS

Using decision trees we systematically examined the value of
each of our features. The data is such that around 36% of all
actions were checks (i.e. the player elected to stake no money
in the pot). The other three actions occurred in similar fre-
quency to one another, but much less frequently than checks.
So, a naive predicter that always guessed check would be cor-
rect about 36% of the time. One interesting phenomenon that
arises, though, is that one feature, amount required to call, can
trivially remove checking as a possible guess because if a bet
is required to stay in the hand, checking is no longer a pos-
sibility by the rules of the game. In other words, we can use
the knowledge that checking is not possible when a player is
required to match a bet to help our predictions. We can guess
check whenever the amount required to call is 0.0, then we
can guess the other most common action when that amount
is greater than 0.0. In fact, ’amount required to call’ alone is
enough to get us to 57% accuracy with a decision tree.

Unfortunately, none of the other features provide such a
dramatic gain in accuracy by themselves. In fact only ag-
gressiveness and previous action provide any immediate gain
beyond the initial 57% offered by amount required to call at
all (61.0% and 62.8% respectively). This suggests that the
relationships between the features of the game state are com-
plex and dependent on one another. In fact, when all the fea-
tures are combined to train a decision tree, the accuracy jumps
nearly ten point to 66.7%.

Interestingly, without player aggressiveness, a decision
tree only achieves 63.6% accuracy. Having an idea of how
often a player makes an aggressive action appears to provide
a great deal of information in terms of player behavior.

Another interesting thing to note is that roughly 35% of
all actions in the database are coming from the first round of
betting (out of four), while only around 13% come from the
last round. This is simply a result of players dropping from
play as the hand progresses, but it means that a large chunk of
the data consists of early-round behavior, which can be very
different from late-round behavior. Betting and checking, for
example, are the most common actions in the first round by a

large margin, while folding and calling become more promi-
nent in subsequent rounds.

This should suggest that the round of betting can signify a
lot of information that is pertinent to player behavior. In fact,
we found that it is much easier to predict a player’s action
in a later round than an early round. The following figure
shows both a decision tree’s and an artificial neural network’s
accuracy when trained on samples of a specific round only.
You can clearly see the trend of increased accuracy in the later
two rounds.

round DT accuracy ANN accuracy
Round 0 63.0 % 55.8 %
Round 1 65.7 % 65.19 %
Round 2 70.1 % 70.65 %
Round 3 68.8 % 69.0 %

Accuracy of decision tree and artificial neural networks
trained on a specific round.

You can also clearly see the differences between neural
networks and decision trees. Decision trees actually outper-
fom neural networks substantially for the first round and fall
ever so slightly behind in the later rounds. It should be noted
that our networks were trained for a very brief number of
epochs and better performance is likely possible.

Finally, we trained an artificial neural network on the fea-
tures with 32 hidden nodes for 5,000 epochs. Unfortunately
training neural networks takes a great deal of time. A proper
exploration with neural networks would have systematically
performed every experiment with many networks, each con-
sisting of different numbers of hidden nodes to establish the
correct network structure. Due to time limitations this was
not feasible. Furthermore, we discovered that when we did
train neural networks for a short number of epochs, the re-
sults were often better than decision trees only by fractions of
percents. Nevertheless, poker is all about pressing tiny advan-
tages over the long term so more experimentation should be
done to exhaustively determine the best parameters for net-
work structure. Ultimately our network achieved levels of
accuracy closely comparable to that of decision trees.

5. CONCLUSION

This paper presented our feature representation for the task of
opponent modeling in the popular game of Texas Hold’em.
We presented accuracy figures for models trained on our data
and discussed which features appeared to provide the most
gains. We proposed and proceded to show that the ratio of
aggressive actions to total actions for a player over the course
of their game history, a feature that can be easily computed
on the fly for a new opponent, is a very valuable feature in
predicting action. Furthermore, we have shown that action
in later rounds of betting is easier to predict than in earlier
rounds of betting. In the future we would like to see more



work in terms of expanding the number of features considered
and establishing the correct parameters for a neural network
trained for this task, as our preliminary models show promise.

6. REFERENCES

[1] Darse Billings, Denis Papp, Jonathan Schaeffer, and Du-
ane Szafron. Opponent modeling in poker, 1998.

[2] Aaron Davidson. Using artifical neural networks to
model opponents in texas hold’em, 1999.

[3] Mark Deckert and Karen Glocer. Opponent modeling in
poker, 2007.

[4] Michael Maurer. Irc poker database. http://games.
cs.ualberta.ca/poker/IRC/.

[5] Wikipedia. Texas hold ’em. http://en.
wikipedia.org/wiki/Texas_hold_’em.

[6] Ian H. Witten and Eibe Frank. Data mining: Practical
machine learning tools and techniques (weka), 2005.

http://games.cs.ualberta.ca/poker/IRC/
http://games.cs.ualberta.ca/poker/IRC/
http://en.wikipedia.org/wiki/Texas_hold_'em
http://en.wikipedia.org/wiki/Texas_hold_'em

	 Introduction
	 The Game
	 The Texas Hold'em
	 The Database

	 The Baseline
	 Decision Trees
	 Artificial Neural Networks

	 Results
	 Conclusion
	 References

