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Overview 

• Hypothesis Testing: How do we know our learners are 
“good” ? 
– What does performance on test data imply/guarantee about 

future performance? 

 
• Computational Learning Theory: Are there general laws 

that govern learning? 
– Sample Complexity: How many training examples are needed to 

learn a successful hypothesis? 
 

– Computational Complexity: How much computational effort is 
needed to learn a successful hypothesis? 
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Definition 
• The true error of hypothesis h, with respect to the 

target concept c and observation distribution D is the 
probability that h  will misclassify an instance drawn 
according to D 

 

 

 

 

• In a perfect world, we’d like the true error to be 0 
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Definition 
• The sample error of hypothesis h, with respect to the 

target concept c and sample S is the proportion of S 
that that h  misclassifies: 

 

  errorS(h) = 1/|S| xS  (c(x), h(x))  
 

 where  (c(x), h(x)) =  0 if c(x) = h(x),  
            1 otherwise 



Problems Estimating Error 

 



Example on Independent Test Set 

 



Estimators 

 



Confidence Intervals 

 

and n*errorS(h), n*(1-errorS(h)) each > 5 



Confidence Intervals 

• Under same conditions… 



Life Skills 

• “Convincing demonstration” that certain 
enhancements improve performance? 

 

• Use online Fisher Exact or Chi Square tests to 
evaluate hypotheses, e.g: 

– http://people.ku.edu/~preacher/chisq/chisq.htm 

http://people.ku.edu/~preacher/chisq/chisq.htm
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Computational Learning Theory 

• Are there general laws that govern learning? 

– No Free Lunch Theorem: The expected accuracy of any 
learning algorithm across all concepts is 50%. 

 

• But can we still say something positive? 

– Yes. 

– Probably Approximately Correct (PAC) learning 



The world isn’t perfect 
• If  we can’t provide every instance for training, a consistent 

hypothesis may have error on unobserved instances. 

 

 

 

 

 

 

 

• How many training examples do we need to bound the 
likelihood of error to a reasonable level?  

     When is our hypothesis Probably Approximately Correct (PAC)? 

Instance Space X 
 
 
 
 
 
 
 
 

Training  set 

Hypothesis H 
 
 

 
 
 
 

Concept C 
 
 



Definitions 

• A hypothesis is consistent if it has zero error 
on training examples 

 

• The version space (VSH,T) is the set of all 
hypotheses consistent on training set T in our 
hypothesis space H 

– (reminder: hypothesis space is the set of concepts 
we’re considering, e.g. depth-2 decision trees) 



Definition: e-exhausted 
IN ENGLISH:  

 The set of hypotheses consistent with the training data 

T is e-exhausted if, when you test them on the actual 
distribution of instances, all consistent hypotheses have 
error below e  

IN MATH: 
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A Theorem 

m

H,T  |H|e VSP

c

mT

H

e

e





exhausted)-ε NOT is(

1...0any for  THEN,

concept  of examplesdrawn  

randomlyt independen  contains set  

 training& finite, is  space hypothesis If



Proof of Theorem 
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Proof of Theorem 
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Proof of Theorem (continued) 
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Using the theorem 
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Probably Approximately Correct (PAC) 
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Using the bound 
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Plug in e,  , and H to get a number of training examples m that will 
“guarantee” your learner will generate a hypothesis that is 
Probably Approximately Correct.  

 
NOTE: This assumes that the concept is actually IN H, that H is finite, and that 

your training set is drawn using distribution D 



Problems with PAC 

• The PAC Learning framework has 2 disadvantages: 
 
1) It can lead to weak bounds 
 
2)Sample Complexity bound cannot be  established 

for infinite hypothesis spaces 
 

• We introduce the VC dimension for dealing with 
these problems 



Shattering 
Def: A set of instances S is shattered by hypothesis set H iff  for 
every possible concept c on S there exists a hypothesis h in H 
that is  consistent with that concept. 
 



Can a linear separator shatter this? 

The ability of  H to shatter a set of instances is a measure 
of its capacity to represent target concepts defined over 
those instances  

NO! 



Can a quadratic separator shatter this? 



Vapnik-Chervonenkis Dimension 

Def: The Vapnik-Chervonenkis dimension, 
VC(H) of hypothesis space H defined over 
instance space X is the size of the largest finite 
subset of X shattered by H.  If arbitrarily large 
finite sets can be shattered by H, then VC(H) is 
infinite. 

 



How many training examples needed? 

• Upper bound  on m using VC(H) 
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