Hypothesis Testing and
Computational Learning Theory

Doug Downey EECS 349 Winter 2014

With slides from Bryan Pardo, Tom
Mitchell



Overview

Hypothesis Testing: How do we know our learners are
o V4 ?
good”
— What does performance on test data imply/guarantee about
future performance?

Computational Learning Theory: Are there general laws
that govern learning?

— Sample Complexity: How many training examples are needed to
learn a successful hypothesis?

— Computational Complexity: How much computational effort is
needed to learn a successful hypothesis?



Some terms

X 1s the set of all possible instances

C 1sthe set of all possible concepts ¢
where c: X —{0,1}

H Is the set of hypotheses considered
by a learner, H c C

L Is the learner

D Is a probability distribution over X
that generates observed instances



Definition

* The true error of hypothesis h, with respect to the
target concept ¢ and observation distribution D is the

probability that h will misclassify an instance drawn
according to D

error, = P [c(X) = h(X)]

xeD

* In a perfect world, we’d like the true error to be 0



Definition

 The sample error of hypothesis h, with respect to the
target concept c and sample S is the proportion of S
that that h misclassifies:

error{(h) = 1/|S| 2. 0 (c(x), h(x))

where o (c(x), h(x)) = O if c(x) = h(x),
1 otherwise



Problems Estimating Error

1. Bias: If S is training set. errorg(h) is
optimistically biased

bias = Elerrors(h)] — errorp(h)

For unbiased estimate, h and S must be chosen
independently

I~2

. Variance: Even with unbiased S. errors(h) may
still vary from errorp(h)



Example on Independent Test Set

Hypothesis h misclassifies 12 of the 40 examples in
S
. 12
rrorg(h) = — = .30
errors(h) 20

What is errorp(h)?



Estimators

Experiment:

1. choose sample S of size n according to
distribution D

2. measure errors(h)

errors(h) is a random variable (i.e., result of an
experiment)

errors(h) is an unbiased estimator tor errorp(h)

Given observed errorg(h) what can we conclude
about errorp(h)?



Confidence Intervals

It

e S contains n examples. drawn independently of
h and each other

e n > 30 and n*error((h), n*(1-errori(h)) each >5
Then

e With approximately 95% probability, errorp(h)
lies in interval

~ errors(h)(1 — errors(h)
rrors(h) + 196, TTOrsU (L= errors(h)
n




Confidence Intervals

e Under same conditions...

e With approximately N% probability, errorp(h)
lies in interval

| errors(h)(1 — errorqg(h)
f'-:-'f"f'()'f'f-,'(,.’.) :}: 2\ 1 - ( ) ( - ( ) )

- T

where

zy: [0.67 1.00 1.28 1.64 1.96 2.33 2.58




Life Skills

e “Convincing demonstration” that certain
enhancements improve performance?

* Use online Fisher Exact or Chi Square tests to
evaluate hypotheses, e.g:

— http://people.ku.edu/~preacher/chisq/chisg.htm



http://people.ku.edu/~preacher/chisq/chisq.htm

Overview

 Computational Learning Theory: Are there general laws
that govern learning?

— Sample Complexity: How many training examples are needed to
learn a successful hypothesis?

— Computational Complexity: How much computational effort is
needed to learn a successful hypothesis?



Computational Learning Theory

* Are there general laws that govern learning?

— No Free Lunch Theorem: The expected accuracy of any
learning algorithm across all concepts is 50%.

e But can we still say something positive?
— Yes.
— Probably Approximately Correct (PAC) learning



The world isn’t perfect

* If we can’t provide every instance for training, a consistent
hypothesis may have error on unobserved instances.

Instance Space X

Hypothesis H

Concept C

* How many training examples do we need to bound the
likelihood of error to a reasonable level?

When is our hypothesis Probably Approximately Correct (PAC)?



Definitions

* A hypothesis is consistent if it has zero error
on training examples

* The version space (VS ;) is the set of all
hypotheses consistent on training set T in our
hypothesis space H

— (reminder: hypothesis space is the set of concepts
we’re considering, e.g. depth-2 decision trees)



Definition: ge-exhausted

IN ENGLISH:
The set of hypotheses consistent with the training data

T is &-exhausted if, when you test them on the actual
distribution of instances, all consistent hypotheses have

error below €
IN MATH:

VS, Is ¢ -exhausted for concept c

and sampledistribution D, If....
VheVS,;,errory(h)<e¢



A Theorem

If hypothesisspace H Is finite, & training
set T contains m independent randomly
drawn examples of conceptc

THEN,forany0<e<1...

P(VS,; is NOT ¢ -exhausted) < |H[e™



Proof of Theorem

If hypothesish has trueerror g, the probability of it
getting a single random exampe right Is :

P(h got 1example right) =1-¢
Ergo the probability of h getting m examples right is:

P(h got m examples right) = (1-¢)™



Proof of Theorem

If there are k hypothesesin H with error at least
g, call the probability at least of thosek hypotheses
got m instances rignt P(at least one bad h looks good).

This prob. is BOUNDEDby k(1-¢)™

P(at least one bad h looks good)s k(1-¢)"

!

“Union” bound



Proof of Theorem (continued)
Since k <|H|, it follows that k(l-¢)™ <|H|(1-¢)"
If 0<eg<1,then(l—¢)<e™”

Therefore...
P(at least one bad h looks good) < k(l-¢)™ <|H|(1-¢)™ <|H[e™"

Proof complete!

We now have a bound on the likelihood that a
hypothsess consistent with thetraining data
will have error > ¢



Using the theorem

| et's rearrange tosee
how many training
examples we need
toset a bound 6 on
the likelihood our
trueerroris ¢.

Hle™™ <6
InQ—Ie‘g”‘]s In
In(]HD+ In(e‘gm] <
In(|H|)— em <
In(H|)—In(5) < em

%(In(]H\)—In(&))g m




Probably Approximately Correct (PAC)

%(anHD—ln(a))sm
L]

, The likelihood a
The worst error hypothesis . .
; _ hypothesis consistent
we’ll tolerate space size

with the training data
will have error €

|

number of training examples



Using the bound

2 (In H|)-In(5))<m
&

Plugin & O, and H to get a number of training examples m that will
“guarantee” your learner will generate a hypothesis that is
Probably Approximately Correct.

NOTE: This assumes that the concept is actually IN H, that H is finite, and that
your training set is drawn using distribution D



Problems with PAC

 The PAC Learning framework has 2 disadvantages:
1) It can lead to weak bounds

2)Sample Complexity bound cannot be established
for infinite hypothesis spaces

 We introduce the VC dimension for dealing with
these problems



Shattering

Def: A set of instances S is shattered by hypothesis set H iff for
every possible concept ¢ on S there exists a hypothesis hin H
that is consistent with that concept.




Can a linear separator shatter this?

NO!
®@ o

The ability of H to shatter a set of instances is a measure
of its capacity to represent target concepts defined over
those instances



Can a quadratic separator shatter this?




Vapnik-Chervonenkis Dimension

Def: The Vapnik-Chervonenkis dimension,
VC(H) of hypothesis space H defined over
instance space X is the size of the largest finite
subset of X shattered by H. If arbitrarily large
finite sets can be shattered by H, then VC(H) is

infinite.



How many training examples needed?

 Upper bound on m using VC(H)

m> 1(4Iogz(2/5)+8VC(H) log, (13/ ¢))
E



