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ABSTRACT
Web Information Extraction (WIE) systems extract billions
of unique facts, but integrating the assertions into a coherent
knowledge base and evaluating across different WIE tech-
niques remains a challenge. We propose a framework that
utilizes natural language to integrate and evaluate extracted
knowledge bases (KBs). In the framework, KBs are inte-
grated by exchanging probability distributions over natural
language, and evaluated by how well the output distribu-
tions predict held-out text. We describe the advantages of
the approach, and detail remaining research challenges.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
search and retrieval; H.3.5 [Information Storage and Re-
trieval]: Online Information ServicesWeb-based services

Keywords
Knowledge Extraction; Knowledge Integration; Language
Modeling

1. INTRODUCTION
Extracting knowledge automatically from the Web is known

as Web Information Extraction (WIE), and is a task of broad
and increasing interest. Over the past decade, a variety of
research studies and prototypes have investigated WIE tech-
niques [1–11]. WIE has recently been pursued in industry in
the form of question-answering systems like IBM’s Watson
[12] and Web search aids such as the Google Knowledge
Graph and Microsoft Satori. WIE presents a promising
route toward achieving Tim Berners-Lee’s vision of a Se-
mantic Web, and one day acquiring the knowledge needed
to enable human-level artificial intelligence.

Existing WIE systems vary along two key dimensions: the
type of content they target for extraction (Web tables, text,
Wikipedia, etc.), and the representation of the extracted
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knowledge (individual tuples or frames, or additions to given
ontology). Because WIE systems are so diverse, it is difficult
to integrate knowledge across extracted KBs: as discussed
below, existing schema matching techniques appear to be
insufficient (see Section 3). Further, it is unclear how to
evaluate across extraction approaches that target incompa-
rable knowledge representation schemes. To deliver on the
promise of WIE, new methods are required that allow differ-
ent system builders to work together to construct a massive
body of knowledge.

In this position paper, we propose a framework for inte-
grating and evaluating WIE systems. The approach hinges
on representing extracted knowledge in terms of probabil-
ity distributions over natural language (NL). Many existing
WIE systems already utilize such distributions as input, at
least implicitly—as a simple example, the distribution of
terms C and x in the extraction pattern “C such as x” is
commonly used to extract x’s that are members of the class
C, as in the phrase “cities such as Boston” [2, 13]. Asser-
tions that occur more frequently in text (i.e., for which the
extraction pattern has higher probability) are deemed more
likely to be correct [14]. Our contention in this paper is that
a generalization of this capability, in which KBs import and
export distributions over language, can enable automated
integration of WIE systems. Further, we believe that the
quality of the output distributions (according to some mea-
sure) forms a promising metric for evaluating and optimizing
WIE systems.

We envision a large-scale research effort in which different
parties continuously extract KBs in a variety of ways, and
the KBs selectively share knowledge with each other in nat-
ural language in an effort to encode a vast, high-precision,
globally-interoperable body of knowledge. As discussed in
Sections 3 and 4 below, utilizing NL for knowledge base in-
tegration and evaluation has distinct advantages: it enables
KB integration without requiring a commitment to any sin-
gle ontology, and it enables KB optimization over trillions of
readily available evaluation examples (in the form of running
text on the Web). However, operationalizing the proposed
approach entails a number of research challenges, detailed
in Section 5. We begin by discussing previous work in WIE.

2. WEB INFORMATION EXTRACTION
Web Information Extraction (WIE) is the task of extract-

ing knowledge from content on the Web. Different WIE
approaches target different types of Web content. Some sys-
tems extract knowledge from text across the Web [15], while
others focus on Wikipedia content [16, 17] or Web tables



[5, 6, 18]. Other approaches integrate knowledge solicited
from Web contributors [19]. Together, these KBs contain
billions of facts, spanning an enormous variety of topics.

WIE approaches also differ significantly in the degree of
representational structure in the extracted knowledge. For
example, some approaches extract independent propositions
or tuples (e.g. MayorOf(Bloomberg, New York City)) [4,
20], while others extract more comprehensive semantic frames
[11]. Some approaches organize extracted facts into an ontol-
ogy: these range from lightweight ontologies, often rooted in
Wikipedia [7–10], to rich knowledge representation systems
such as Cyc [1, 3].

The diversity of extracted facts and knowledge represen-
tation schemes presents a significant difficulty: it is unclear
how to best combine different systems or evaluate across dif-
ferent systems. We present our proposed solution to these
problems in the following sections.

3. NL FOR INTEGRATING KBS
If two KBs contain different sets of knowledge, represented

in different ways, how can the KBs share knowledge with
each other?

Previous work on this task includes data integration ap-
proaches from the database community, which attempt to
merge two different KBs into a single knowledge base [21].
This approach is limited in that it generally requires special-
purpose engineering or training examples for each pair of
KBs to be integrated.

A distinct, potentially more scalable approach involves
choosing one or more common reference ontologies with which
all other KBs can be integrated. This approach is employed
in the Linked Open Data project [22], in which different
knowledge bases link their statements to a handful of com-
mon shared vocabularies. Wikipedia is a typical reference
ontology for this task, and semi-automated methods for in-
tegrating with Wikipedia have been proposed for Cyc [23],
relational databases [24], and tuples extracted from text
[25]. This approach, while potentially much more scalable
than pairwise integration, is also heavily restrictive: a small
number of reference knowledge bases must be selected, and
choosing such KBs is difficult. Further, changes to a refer-
ence knowledge base can entail burdensome updates to how
each KB exports knowledge. While we believe integration
with Linked Open Data is an important component of KB
integration (and we discuss how to incorporate it in our ap-
proach in Section 5), we believe natural language integration
has distinct advantages as discussed below.

3.1 The NL Protocol
We propose an approach in which knowledge bases are in-

tegrated by exchanging natural language. Because KBs will
typically have uncertainty associated with their knowledge
and how it is expressed in language, we define a protocol that
exchanges not raw text but instead probability distributions
over language.

We begin by giving a concrete example of how two knowl-
edge bases can employ the protocol to exchange knowledge.
We then provide a formal definition of the protocol, and
discuss its advantages.

3.1.1 Concrete Example
Consider a knowledge base K with an objective of con-

structing a list of cities containing skyscrapers. Assume K

extracts information from Wikipedia tables, and it has not
found a table specifically listing this information. However,
K also has a set of lexical extraction patterns (as in e.g. [2]),
and utilizes these to determine it desires strings x that yield
high values of the product:

P (x and other cities) ∗ P (skyscraper in x) (1)

Given reliable probability estimates of the above expres-
sion, K can estimate which x’s are, in fact, cities with
skyscrapers using existing WIE techniques [2, 14].

K lacks its own textual corpus, so it employs the NL pro-
tocol to pose a query to another KB K′. Specifically, K
sends Equation 1 to K′, and requests that K′ return a list
of strings x and the estimated value of the product for each.

Assume K′ extracts from a textual corpus that includes
three answers with positive probability: Shanghai, New York
City, and Montreal. For concreteness, K′ simply returns a
distribution where each of these three strings has probability
0.2, and the remaining 0.4 of probability mass is distributed
uniformly over other phrases.

Based on the three “seed” examples with non-negligible
probability, the table extractor K can attempt to estimate
a more accurate distribution over x using its KB of ta-
bles along with the distributional hypothesis, the notion that
terms with similar meanings tend to appear in similar con-
texts [26]. Specifically, given a table column that contains
the seed cities, the other cells S in the same column are
likely to be semantically similar to the seeds. Thus, K can
adjust its distribution over x to give higher probability to
the strings S, and thereby estimate a more accurate distri-
bution. K then runs an existing WIE technique to estimate,
from the frequency information, which of the x’s are correct
assertions (that is, cities with skyscrapers). For simplicity,
we make the reasonable assumption that the WIE technique
concludes that the strings in S are cities with skyscrapers,
and all other strings are not.

In the example, the first table returned by the WikiTables
extraction system [27] when queried for the three seeds lists
the top 40 cities ranked in terms of “Global City Compet-
itiveness Index.” While this table does not explicitly refer
to skyscrapers, it happens that all 40 listed cities do, in
fact, contain skyscrapers. Thus, through the use of the NL
protocol coupled with distributional similarity, K is able to
compute a list of cities with skyscrapers that has perfect pre-
cision and dramatically higher recall than the original three
strings returned by K′.

This example illustrates how even when a knowledge base
may not contain the target relation or be based on text
(e.g. K need not contain any table listing all cities with
skyscrapers), it can leverage other KBs (in this case K′)
through the NL protocol. By exchanging knowledge, the
two KBs in the example are able to produce an answer to
a query that is dramatically better than either of the KBs
could produce in isolation.

3.2 NL Protocol: Formal Definition
Here, we present a candidate definition of the NL protocol,

which is capable of expressing the queries described in the
example above. A wide variety of other NL methods are also
conceivable for integrating KBs, and we discuss potential
variants of the protocol later in Section 5.

A KB implements the NL protocol by issuing and respond-
ing to queries. Formally, a query in the NL protocol is:



1. A set F of zero or more variable symbols, along with a
numeric length range in tokens for each variable.

2. A product of language probabilities ΠiP (wi), where
each wi is a sequence of tokens, and each token is either
a single textual word or a variable symbol.

3. An integer N specifying the number of highest-probability
results to return.

The response to an NL query consists of a series of N tuples,
where each tuple contains |F | strings (the string values of
the variables in the query) and an estimate for the requested
product of probabilities. Each of the strings is required to
have a length in tokens within the range specified for its vari-
able in the query, and the N tuples returned represent the
estimated highest-probability substitutions for the variables
in the given probability expression.

We explicitly choose to allow products of probability ex-
pressions (query component #2 above) because they enable
much more compact query responses. Consider the query
in Equation 1. The querying KB K could instead issue two
separate queries, one for P (x and other cities) and another
for P (skyscraper in x), and then multiply the results to ob-
tain the same response as in the original query. However, in
order to ensure the top R values for the product are in fact
obtained in this way, K would need to request a large num-
ber of tuples N >> R for both queries, whereas the original
query requires only N = R.

3.3 Advantages of the NL protocol
The primary advantages of the NL protocol are three-

fold. First, the communication medium (natural language)
is extremely expressive, and not tied to any single ontol-
ogy. Each KB must implement two methods, for reading and
writing knowledge in natural language, and it can then inte-
grate with every other KB implementing the protocol. Sec-
ondly, knowledge exchanged in the NL protocol is durable:
a fixed distribution PK(w) output by K at some point in
time remains informative, even if K later changes radically.
Third, the protocol is readily interpretable by humans,
because it is expressed in natural language.

4. NL FOR EVALUATING AND OPTIMIZ-
ING KBS

How to estimate the quality of an extracted KB is an open
question. Previous work has emphasized that extracted KBs
must ultimately be evaluated in terms of “end-tasks,” such
as decision making and question answering [28]. While end
task evaluation is necessary to ensure the knowledge can
yield useful technology, it can be cost-prohibitive: evalua-
tion with end-tasks generally requires direct human judg-
ments of performance. Unless we solicit new human input
often, we risk overfitting to a fixed objective. Thus, while we
believe end task evaluations are vital to periodically evalu-
ate competing approaches, due to their cost they cannot be
used for continuous optimization of KB constructors.

4.1 The NL Objective
We propose the NL Objective for KBs, in which a KB

K is evaluated in terms of how accurately its output distri-
bution PK(w) predicts held-out sentences w. This objective
has the advantage of not being biased toward a limited data
set; in fact, trillions of examples for training and evaluation
are available, in the form of running text on the Web.

Figure 1: Web Information Extraction (WIE) per-
formance of a Hidden Markov Model, as accuracy of
the HMM’s language model P (w) varies (reprinted
from [30]). Number labels indicate the number of la-
tent states in the HMM, and performance is shown
for three training corpus sizes (the full corpus con-
sists of approximately 60 million tokens). WIE ac-
curacy (in terms of area under the precision-recall
curve) tends to increase as language modeling ac-
curacy improves (i.e. perplexity decreases). WIE
accuracy correlates more strongly with perplexity
(-0.88, Spearman’s) than with corpus size (0.71) or
number of latent states (0.38).

A natural concern regarding the NL Objective is that what
it rewards—the accuracy of language prediction—is only a
surrogate for our ultimate goal of high-quality KBs. Pre-
dicting language can entail unproductive activities, such as
mimicking “reporting bias” [29] (the NL Objective involves
predicting what people choose to say, rather than what is
true in the world) and predicting misinformation (e.g. esti-
mating exactly how often people will assert that“Elvis killed
JFK”1).

Despite the limitations, we believe the NL Objective has
substantial utility for three reasons. First, while reporting
bias and misinformation do exist, for a broad set of fact
extraction mechanisms, veracity does tend to increase with
the frequency of assertion [2, 14]. In fact, empirical evidence
suggests that optimizing the standard perplexity metric in
language modeling can lead to corresponding increases in
WIE performance measures like precision and recall of ex-
tractions (see Figure 1). Secondly, it may be possible to
mitigate misinformation by adding a component to the NL
Objective that models the credibility of the Web site be-
ing predicted. Lastly, as discussed above, other evaluation
schemes are arguably even more problematic. We discuss
issues with the NL Objective further in Section 5.

5. KEY CHALLENGES
The NL Protocol and NL Objective present advantages as

well as unique challenges. In this section, we detail key limi-
tations of the techniques and remaining research challenges.

1This phrase occurs more than 30,000 times on the Web
according to a major search engine.



5.1 Developing APIs in the NL Protocol
A primary limitation of the NL Protocol is that—like nat-

ural language, but unlike Linked Open Data RDF—messages
in the NL Protocol are ambiguous. Given only the state-
ment that“Chicago is a city,” it is unclear whether the string
Chicago refers to a fictional city or a real one, or whether it
is the same meaning of Chicago in the phrase “that song by
Chicago was playing on the radio.”

We believe the ambiguity of language can be overcome to
build a powerful protocol, through the use of well-designed
queries. The query in the example in Section 3, for example,
mitigates ambiguity by querying for a product of two distinct
language probabilities. It is less likely that an erroneous
or ambiguous phrase occurs in both the skyscraper and the
city context, when compared to a single context alone. By
composing larger products of additional indicative phrases
(e.g. “cities including x,” “x and other cities,” etc.) we
would expect that, as the number of phrases increases and
if probability estimates are accurate, the high-probability
x’s would correspond to correct answers for any query. In
fact, it can be proved that under assumptions that hold
approximately in large corpora, such extraction techniques
are guaranteed to achieve high accuracy [14].

To make sense disambiguation explicit, it would be pos-
sible to augment the NL protocol to allow not only surface
strings, but also word classes of various types (e.g. parts of
speech or well-established semantic classes). One option is
to allow terms in queries that are not surface strings, but
instead indicate a reference to a particular Linked Data URI,
e.g.,“x is the mayor of <reference to en.wikipedia.org/Chicago,
Illinois>.” This would allow KBs to leverage Linked Open
Data URIs where they are well-established, but back off to
natural language in other cases. Of course, utilizing URIs
sacrifices some of the advantages of the NL protocol dis-
cussed above. New methods are needed to determine when
utilizing URIs rather than “pure” NL is appropriate.

Lastly, while in the NL protocol we focus on single phrases
w, the API can be generalized to a richer discourse model.
One simple example would allow distributions P (w|t), where
the distribution over phrases is conditioned on a given vector
of terms t appearing in the document containing the phrase.
We note that given sufficient contextual information, word
senses may become unambiguous from the context, obviat-
ing some of the need for non-NL URIs.

5.2 A Market for Knowledge
We expect that different KBs, constructed using different

methods and for different purposes, will specialize in differ-
ent knowledge. As a result, a new category of services need
to be developed that can advise a KB about which other KBs
can answer which questions. How should a KB combine evi-
dence across other KBs? And what incentive structures will
reward KBs for providing high-quality output, and help WIE
systems to focus on extracting new knowledge that is helpful
for other KBs? When a KB extracts new knowledge, should
it disseminate this to interested KBs rather than waiting to
be queried? New mechanisms would need to be designed for
these purposes.

5.3 Clarifying the NL Objective
While the experiments in Section 4 show that the per-

plexity measure correlates well with WIE performance for a
particular class of models (HMMs), in general the NL Ob-

jective requires further refinement.
In the limit, a KB that performs sufficiently well according

to the NL Objective will necessarily contain a vast, useful
body of knowledge. However, in the nearer-term, optimizing
the NL Objective in terms of standard metrics like perplexity
has the potential to be counter-productive. As a specific
example, extractors based on trigram models can actually
be shown to be less accurate for WIE than HMMs, but the
trigrams achieve better perplexity scores in modeling P (w)
through the use of careful backoff and smoothing techniques.

Thus, new metrics must be developed for evaluating dis-
tributions P (w). We desire metrics that vary monotonically
with the “knowledge content” of a KB. The ideal metric
would penalize semantic errors, rather than (for example)
rewarding particularly precise probability estimates on com-
mon phrases. The recent “adversarial evaluation” approach
for NL models represents one promising direction [31].

It is also important to note that even with trillions of
training examples, language model performance will typi-
cally remain an imperfect measure of KB capabilities. For
example, the NL Objective may not reflect whether a KB
can perform arithmetic (plenty of reasonable sums, such as
“25 plus 329,” never occur even in a corpus as large as the
Web). Characterizing what types of knowledge are, and are
not, reflected by the NL Objective is an important task.

5.4 Scaling Language Model Training
The NL Objective suggests that building more predictive

language models is an important direction for WIE. In par-
ticular, we require language models that can handle poten-
tially lengthy queries—i.e. models that infer which strings
are likely to occur, even if the strings never appear on the
Web. Latent variable models such as HMMs are one step
toward such a model; other promising avenues include deep
neural network language models [32] and recent models that
include language compositionality [33, 34].

While parallel training techniques have been developed for
many models [35, 36], training sophisticated models on large
corpora with large vocabularies is an ongoing challenge. Can
we develop new techniques that actively select human input
to improve the models? In some settings, carefully selecting
informative input can dramatically reduce the amount of
training required [37], but these techniques have not been
applied to modern statistical language models. A related
direction involves developing new learning approaches that
do not iterate over the entire corpus, but instead learn from
selected statistics computed over the data (e.g. [38]).

6. CONCLUSION
We proposed a framework that utilizes natural language

for integrating, evaluating, and optimizing extracted knowl-
edge bases (KBs). In the NL protocol, KBs exchange knowl-
edge by asking and answering queries about probability dis-
tributions over language. The NL Objective evaluates and
optimizes KBs in terms of their ability to accurately estimate
probabilities over language. Several research challenges re-
main. Our next steps include implementing the NL protocol
over existing extracted KBs, and evaluating its effectiveness
experimentally.
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