
Languages the Racket Way
2016 Language Workbench Challenge

Daniel Feltey
Northwestern University

daniel.feltey@eecs.northwestern.edu

Spencer P. Florence
Northwestern University

spencer.florence@eecs.northwestern.edu

Tim Knutson
University of Utah
tkkemo@gmail.com

Vincent St-Amour
Northwestern University

stamourv@eecs.northwestern.edu

Ryan Culpepper
Northeastern University

ryanc@ccs.neu.edu

Matthew Flatt
University of Utah
mflatt@cs.utah.edu

Robert Bruce Findler
Northwestern University

robby@eecs.northwestern.edu

Matthias Felleisen
Northeastern University
matthias@ccs.neu.edu

Abstract
Racket espouses the view that full-fledged problem solving
almost always calls for language design. In support of this
view, it implements a notion of linguistic reuse, which al-
lows programmers to rapidly develop and deploy new pro-
gramming languages. Together with DrRacket, its IDE, the
Racket ecosystem thus makes up a true language workbench.

This paper demonstrates Racket’s capabilities with an im-
plementation of the 2016 Language Workbench Challenge.
Building on a concise implementation of MiniJava, it shows
how it is easy it is to add new notation, constrain constructs,
and create IDE tools.

1. The Racket Manifesto in a Nutshell
Racket really is a programming-language programming lan-
guage (Felleisen et al. 2015). It provides both unique linguis-
tic support (Flatt and PLT 2010) for the rapid prototyping
of languages as well as an ecosystem with unmatched ele-
ments (Findler et al. 2002). As such, it is a first step toward
the idea of a language workbench (Erdweg et al. 2015) as
originally imagined by Bill Scherlis and Dana Scott in the
early 1980s (Scherlis and Scott 1983).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, .
Copyright © ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/

After explaining the linguistic elements of language de-
velopment in Racket (section 2), this paper illustrates Racket
as a language workbench starting with (section 3) an imple-
mentation of MiniJava (Roberts 2001).

Based on the MiniJava implementation, we present the
results of tackling three benchmark problems from the 2016
language workbench challenge. First, we demonstrate a so-
lution to the Tabular Notation problem in the Editing cate-
gory by adding notation to MiniJava so that programmers
can express finite-state machines as Unicode-based tables
(section 4). Second, we solve the Beyond-Grammar Restric-

tions benchmark from the Evolution and Reuse category by
showing how to constrain a break construct in MiniJava so
that is is valid only within the scope of while (section 5).
Third, we explain how to connect an implemented language,
such as MiniJava, with DrRacket; specifically, we show how
to add tools for program Restructuring, consistent with the
Editing benchmark category (section 6).

Our MiniJava implementation with all of the extensions
is available as a Racket package.1 Using the current version
of Racket2, run

raco pkg install lwc2016

to install it. To view a selection of sample MiniJava pro-
grams and experiment with the language extensions, select
the "Open Require Path. . . " entry under the "File" menu in
DrRacket and type lwc2016/examples/programs/.

1 http://pkgs.racket-lang.org
2 https://download.racket-lang.org/

http://pkgs.racket-lang.org
https://download.racket-lang.org/

2. The Racket Language Workbench
Racket promotes a language-oriented view of problem solv-
ing. Using Racket, programmers can quickly build lan-
guages to solve each aspect of a programming problem on
its own linguistic terms. As such, Racket programs are com-
posed of a number of modules, each implemented in the lan-
guage that is best suited for the module’s task. To represent
this moduleÑlanguage mapping, the first line of each mod-
ule specifies the language in which it is written. The Racket
ecosystem relies on this mapping for linguistic dispatch: a
mechanism by which a language publishes its implementa-
tion and linguistic meta-information—syntax coloring, in-
dentation, static analysis, etc.—to customize execution and
user experience for programs written in that language.

To support this language-development idiom, Racket
fully embraces the idea of linguistic reuse (Krishnamurthi
2000). According to this view, the development of a new
language consists of adding, subtracting, and re-interpreting
constructs and run-time facilities from a base language. Even
the installation of a new language takes place within the
Racket ecosystem: a language is itself a Racket component
that provides certain services, and each module’s language
specification (i.e., the initial #lang line) simply refers to
another module that implements the language (Flatt 2002).

A language implementation can be as simple as a plain
Racket module that exports specific constructs. A more so-
phisticated language variant consists of modules that im-
plement a reader—a lexer and parser for any imaginable
Unicode-based notation—and a semantics module. By using
specific tools and following certain conventions, program-
mers can produce languages that work well together.

More broadly, a programmer can implement a Racket
language in several different ways:

• as a plain interpreter that repeatedly traverses the code of
a client program;

• as a compiler that maps a client program to a target lan-
guage, either within or outside of the Racket ecosystem;

• as a Redex (Felleisen et al. 2010) reduction semantics; or
• as a linguistic derivative of an existing Racket language.

Racket strongly encourages this last approach, because it
delivers results more quickly while remaining as general as
any of the others. But, all of these approaches are useful
in certain situations, and on occasion, as in the case of
MiniJava, an implementation may borrow elements from
several approaches.

Deriving one language from another means creating a
translation of new linguistic constructs into those of the
base (or “parent”) language and a run-time library. Such
derivations inherit other elements of the run-time system
(the VM, the JIT compiler, the garbage collector, etc.). We
consider translation the critical part of language derivation.

Technically, the derivation works as follows. A language
module may export a subset of the constructs and func-
tions of some base language, which implicitly subtracts fea-
tures from that language; it may export additional features
and functions, which adds new capabilities; and it may re-
interpret existing features, say, function applications or con-
ditionals. The re-interpretation is accomplished by defining a
new construct or function in a module and exporting it under
the name of a feature that already exists in the base language.

A Racket programmer uses the syntax object system to
create new linguistic constructs. This system is a descendent
of Scheme and Lisp’s hygienic macro system (Clinger and
Rees 1991; Hart 1963; Kohlbecker et al. 1986). The system
represents syntactic terms via syntax objects, which include
properties of the source syntax as well as those specified by
a language implementor (Dybvig et al. 1992).

Like the Lisp macro system of lore, Racket’s syntax ob-
ject system allows the specification of rewriting rules on
syntax objects. An elaborator uses these rules to translate
a module from any language into Racket core syntax on an
incremental basis. Unlike Lisp or Scheme macros, Racket’s
rewriting rules provide sophisticated services. For example,
they automatically propagate source information so that they
can report error in terms of the original source notation. Sim-
ilarly, the rules almost automatically enforce context-free
constraints so that error messages use the concepts of the sur-
face language (Culpepper and Felleisen 2010). Lastly, these
rewriting rules can also articulate transformations on com-
plete modules and on existing linguistic constructs—giving
them the expressive power to track context-sensitive con-
straints and to assign new meaning to old words.

3. MiniJava via Racket
The Racket language proper consists of a module-oriented,
untyped functional language in the spirit of Lisp and Scheme.
In contrast, MiniJava (section 3.1) is a class-based, object-
oriented programming language in the spirit of Java. Using
Racket’s syntax system, it is nevertheless possible to create a
realistic implementation of MiniJava with a relatively small
effort—thanks to linguistic reuse.

This section provides an overview of the MiniJava im-
plementation (section 3.2) followed by a presentation of the
individual building blocks. Where necessary, the section also
explains Racket features on a technical basis.

3.1 MiniJava
Figure 1 displays a MiniJava program. Like any Java pro-
gram, it consists of a series of class definitions, one of them
designated as the “main” class. Classes have public methods
and fields. Each of these comes with a type signature, where
types are the names of classes plus the usual primitive types
(e.g., int). The body of a method may use the familiar state-
ments of an imperative language: assignments, conditionals,
and loops. MiniJava expressions are also the familiar ones.

#lang mini-java

class Main {
 public static void main(String [] args) {
 System.out.println((new Runner()).run(10));
 }
}

class Runner {
 Parity check;
 public int run(int n) {
 int current;
 check = new Parity();
 current = 0;
 while (current < n) {
 if (check.is_even(current)) {
 System.out.println(current);
 }
 else {}
 current = current + 1;
 }
 return 0;
 }
}

class Parity {
 public boolean is_odd(int n) {
 return (! (n == 0)) && this.is_even(n - 1);
 }
 public boolean is_even(int n){
 return (n == 0) || this.is_odd(n - 1);
 }
}

Figure 1: A sample MiniJava program

MiniJava lacks many of Java’s sophisticated features: ab-
stract classes, interfaces, packages, etc. The goal is to help
students in introductory courses, not to model the complexi-
ties of a real-world language.

3.2 From MiniJava to Core Racket: an Overview
Whereas a typical compiler’s front end parses a textual pro-
gram into an abstract syntax tree (AST), an incremental
Racket implementation separates this process into two dis-
tinct steps: the reader and the expander. The reader turns a
textual program into a syntax object. The expander uses a
suite of rewriting rules to elaborate this syntax object into
Racket’s kernel syntax. This latter phase conceptually em-
ploys a tower of languages, and the elaboration gradually
turns a program of one level into a language of the next
lower level. In reality, the layers of this tower are not sep-
arated through sharp boundaries, and the intermediate pro-
grams may never exist in a pure form.

Figure 2 presents the overall pipeline of the MiniJava im-
plementation in Racket. Step 1 turns the Java-like syntax into
a syntax object, a combination of the symbolic source pro-
gram and syntax properties; this object roughly corresponds
to an abstract syntax tree. Step 2 elaborates this AST into

a prefix variant of MiniJava in a conventional manner. The
choice of type elaboration over checking allows the injec-
tion of type annotations that help implement efficient method
calls (Flatt et al. 1998). The prefix variant of MiniJava is an
untyped, parenthesized version of MiniJava.

MiniJava

Abstract Syntax Tree

Parenthesized MiniJava

Racket

Fully-Expanded Code

1. Lexing + Parsing

2. Type Elaboration

3. Macro Expansion

4. Expansion to #%kernel

Figure 2: Structure of the MiniJava implementation

Once a MiniJava program has been elaborated into prefix
form, the regular expansion process takes over. Step 3 in-
dicates how parenthesized MiniJava programs are rewritten
into plain #lang racket constructs. This transformation is
articulated with a (relatively small) suite of rewriting rules
that map classes, method calls, and so on into functional
Racket constructs.

As mentioned in the preceding section, the implementa-
tion of mini-java consists of a reader module, which im-
plements steps 1 and 2, and a language module, which im-
plements the syntactic translation of step 3. The former em-
ploys Racket’s lexing and parsing libraries. While lexing and
parsing libraries require no explanation, the type elaboration
needs some discussion (section 3.3). The language module
consists of syntax rewriting rules and any functions in the
target code that Racket does not provide already (section 3.4,
but also section 3.5). Both of these modules are implemented
in the ordinary racket language.

Finally, step 4 indicates that the existing Racket language
elaborates the program into core Racket. The latter is known
as #%kernel. This step is well-established and does not
deserve any attention.

In contrast, the integration of #lang mini-java with Dr-
Racket deserves a thorough explanation (section 3.6). Essen-
tially, the pipeline of figure 2 preserves essential properties
across the various transformations. In turn, DrRacket imple-
ments a protocol between the expanded syntax and its editor,
which plug-in tools can exploit to implement an ecosystem
for a language such as MiniJava.

(provide (all-from-out (submod "typecheck.rkt" literals))
 (except-out (all-from-out "prefix-mini-java.rkt") #%module-begin)
 (rename-out [mj-module-begin #%module-begin]))

(define-syntax (mj-module-begin stx)
 (syntax-parse stx
 [(_ class ...)
 (define post-typechecking (typecheck-program #'(class ...)))
 (quasisyntax/loc stx
 (#%module-begin #,@post-typechecking))]))

Figure 3: Typechecking the abstract syntax tree

3.3 #lang mini-java: Parsing and Type Elaboration
Racket’s #lang reader mechanism wraps the entire content
of a module (everything below the language specification)
into a single syntactic object, a #%module-begin form. A
language-implementation module may therefore opt in to
linguistic dispatch by exporting its own #%module-begin
macro and thus take over the interpretation of an entire
module at once. The result of a #%module-begin expansion
must be a #%module-begin form in some other language,
usually the base language.

Figure 3 shows how mini-java exploits this mecha-
nism. The module defines a “module begin” construct as
mj-module-begin. The module’s export specification says
that mj-module-begin becomes the #%module-begin form
for the mini-java language. The implementation of mj-
module-begin expands to a #%module-begin that (through
an import not shown in the figure) implements our prefix
variant of MiniJava, but that #%module-begin is hidden
from a module that is implemented in the surface mini-java
language, which instead sees mj-module-begin.

Before expanding to an underlying #%module-begin
form, mj-module-begin hands the list of class definitions
(ASTs) to the auxiliary typecheck-program function. This
syntax-level function implements an ordinary recursive-
descent type elaboration mechanism on a MiniJava variant
using infix operations, and the result is a MiniJava program
using prefix forms.

The #%module-begin for prefix MiniJava forms turns out
to be Racket’s usual #%module-begin form, so Racket’s
usual macro expansion takes over the rest of the compila-
tion pipeline. By linguistic reuse, MiniJava variables become
Racket variables, MiniJava conditionals become Racket con-
ditionals, and only forms without Racket analogs synthesize
substantially new code.

3.4 #lang mini-java: Language Constructs
One form without a Racket precedent is MiniJava’s while
construct. A use of the construct appears on line 7 in the
left half of figure 5. The corresponding code in the right
column of the same figure shows the code that is synthesized

by expansion. Racket’s expander uses the relatively simple
rewriting rule from figure 4 to effect this translation.

(define-syntax (while stx)
 (syntax-parse stx
 [(while test:expr body ...)
 #`(letrec ([loop (λ ()
 (when test
 body ...
 (loop)))])
 (loop))]))

Figure 4: Definition of while in prefix MiniJava

The implementation of MiniJava’s while uses Racket’s
define-syntax form to bind while to a transformer func-

tion. The latter implements the compilation step for while
loops; the definition informs the macro expander that when-
ever a while AST node shows up, it must invoke the trans-
former on the node.

The definition of the while transformer function uses
syntax-parse, a powerful pattern matcher for defining
syntactic extensions (Culpepper and Felleisen 2010). This
macro contains a single pattern,

(while test:expr body ...)

which indicates that it expects to see while followed by
a test expression and any number of body elements. The
constraint :expr forces test to be an expression, while
body could be either a definition or an expression. If the ex-
pression constraint is violated, syntax-parse automatically
synthesizes an error message in terms of source notation and
source concepts.

The pattern matcher binds test and body for use within
the code-generation template. Such a template is specified
with #�¨ ¨ ¨ or

(quasisyntax/loc ¨ ¨ ¨)

This form resembles the quasiquote form that Racket in-
herits from Lisp. They differ in that quasisyntax/loc pro-
duces a syntax object instead of an S-expression and that it

 1 (class Runner 1 (define Runner:runtime-method-table
 2 (define-field check) 2 (vector
 3 (define-method run (n) 3 (λ (this n)
 4 (define-local current) 4 (define current #f)
 5 (= check (new Parity)) 5 (vector-set! this 1 (Parity:constructor))
 6 (= current 0) 6 (set! current 0)
 7 (while (< current n) 7 (letrec ([loop
 8 (if 8 (λ ()
 9 (send Parity check is_even current) 9 (when (< current n)
10 (compound 10 (if (let* ([receiver
11 (System.out.println current)) 11 (vector-ref this 1)]
12 (compound)) 12 [meth-table
13 (= current (+ current 1))) 13 (vector-ref
14 0)) 14 receiver
15 15 0)]
16 16 [meth
17 17 (vector-ref
18 18 meth-table
19 19 1)])
20 20 (meth receiver current))
21 21 (displayln current)
22 22 (void))
23 23 (set! current (+ current 1))
24 24 (loop)))])
25 25 (loop))
26 26 0)))
27 27
28 28 (define (Runner:constructor)
29 29 (vector Runner:runtime-method-table #f))
30 30
31 31 (define-syntax Runner
32 32 (static-class-info
33 33 #f
34 34 (make-immutable-free-id-table
35 35 (list (cons #'run 0)))
36 36 #'Runner:runtime-method-table
37 37 #'Runner:constructor
38 38 1))
39 39
40 (class Parity 40 (define Parity:runtime-method-table
41 (define-method is_odd (n) 41 (vector
42 (&& 42 (λ (this n)
43 (! (== n 0)) 43 (and (! (== n 0))
44 (send Parity this is_even (- n 1)))) 44 (let* ([meth-table (vector-ref this 0)]
45 (define-method is_even (n) 45 [meth (vector-ref meth-table 1)])
46 (|| 46 (meth this (- n 1)))))
47 (== n 0) 47 (λ (this n)
48 (send Parity this is_odd (- n 1))))) 48 (or (== n 0)
49 49 (let* ([meth-table (vector-ref this 0)]
50 50 [meth (vector-ref meth-table 0)])
51 51 (meth this (- n 1)))))))
52 52
53 53 (define (Parity:constructor)
54 54 (vector Parity:runtime-method-table))
55 55
56 56 (define-syntax Parity
57 57 (static-class-info
58 58 #f
59 59 (make-immutable-free-id-table
60 60 (list (cons #'is_odd 0) (cons #'is_even 1)))
61 61 #'Parity:runtime-method-table
62 62 #'Parity:constructor
63 63 0))

Figure 5: The Runner class in prefix-parenthesized MiniJava and its Racket expansion

supports automatic interpolation. With interpolation, macro
expansion splices the values of pattern variables into the
template—indeed, this is what makes the expression a tem-
plate. The /loc part means that it also moves along source-
location information.

Figure 5 shows the prefix version of the Runner class
from figure 1 and its expansion into Racket. The while form
on the left of figure 5 expands into the letrec expression,
spanning lines 7 through 25 on the right. As the definition of
while specifies, the loop’s condition becomes the guard to
Racket’s when and the body is copied into the body of when
before further expansion occurs.

The while macro exemplifies the importance of hygiene.
The macro relies on hygienic expansion to prevent the le-
trec-bound variable, loop, from conflicting with uses of
identically-named variables in the source syntax of while
forms. Hygiene eases the job of macro writers, allowing
them to write macros without worrying that their bindings
will conflict with those that appear at macro use sites. In ad-
dition to supporting local variables with hygiene, Racket’s
expansion process also ensures that free variables in the syn-
tax object in the template (letrec, l, and when in this case)
refer to the bindings in scope at the definition of the macro,
not at the use of the macro.

3.5 Inter-macro Communication
Isolated macro definitions do not suffice to transform Mini-
Java into Racket. Consider a new expression, which instan-
tiates a class. The name of the class is not enough to create
the object. The construction of an object also needs to know
how many slots to allocate for fields and how to connect with
the “vtable,” i.e., the method dispatch table of the class. In
short, the Racket form that defines a MiniJava class must
communicate with the Racket form that implements a new
expression. Racket builds on ordinary lexical scope to pro-
vide a communication channel for distinct macros for just
this purpose (Flatt et al. 2012).

To make this idea concrete, consider line 5 of figure 5. It
shows how our implementation of MiniJava expands

(new Parity)

from the left-hand column into

(Parity:constructor)

in the right-hand column, which is a call to the constructor
for the Parity class. For this translation, the new macro must
identify the constructor function for the Parity class—and
avoid all possible interference from other definitions.

Our implementation accomplishes this communication
with the seemingly simple, but rather unusual syntax trans-
former of figure 6. At first glance, this definition looks just
like the one for while from figure 4. The syntax-parse
form specifies an input pattern that consists of new and an
identifier that specifies a class. The template constructs uses

(define-syntax (new stx)
 (syntax-parse stx
 [(new the-class:id)
 #`[#,(static-class-info-constructor-id
 (syntax-local-value #'the-class))]]))

Figure 6: The implementation of new in prefix MiniJava

[¨ ¨ ¨] to construct an application, using brackets for empha-
sis instead of plain parentheses.3 A close look now reveals
an unusual concept, however, specifically the #,¨ ¨ ¨ or

(unsyntax ¨ ¨ ¨)

form. It escapes from the template, constructs code at com-
pile time via an arbitrary computation, and inserts that code
into the template in lieu of itself. The question is what this
computation affects and how it works.

To this end, we turn our attention to the expansion of the
Parity class from our running example. It is shown in fig-
ure 5 at line 40. MiniJava forms are compiled away to or-
dinary Racket code, which uses vectors to represent objects
and method tables. Critically, though, the class form for the
Parity class expands to three definitions:

• the run-time method table shared by all Parity instances,
• the constructor that creates instances, and
• a syntax definition of compile-time information about the
Parity class used to guide the expansion of other forms
that refer to Parity.

The first definition, Parity:runtime-method-table
(figure 5 line 40), is a vector storing the methods is_odd
and is_even. The second one, Parity:constructor on
line 53, is a function of no arguments for creating new in-
stances of the Parity class. Because the Parity class has
no fields, its instance vectors contain only a reference to the
method table. The third definition, that of Parity on line 56,
uses define-syntax, but in a rather surprising and unusual
manner.

While the preceding section employs define-syntax to
bind syntax-transforming functions to a name,4 here it binds
a variable to an ordinary value, specifically, a record. The
record constructor, static-class-info, is a function of
five values. Its instances thus store compile-time information
about the class: an identifier bound to the parent class infor-
mation (or #f if there is no parent class); a table mapping
method names to vector offsets; a syntax object referring to
the run-time method table; a syntax object that points to the
constructor; and a count of the fields in the class.

Now that the variable Parity is compile-time bound to
information, other macro computations may retrieve this in-

3 Racket uses [...] and (...) interchangeably.
4 The syntax system specially recognizes that while is bound to a function.

formation. Technically, these macros must use the syntax-
local-value procedure for this purpose. And that explains
the inner expression in the template of new in figure 6.
It is passed a syntax object that points to a class identi-
fier, and syntax-local-value uses this identifier to re-
trieve the static-class-info record. Next, the function
static-class-info-constructor-id is simply a field ac-
cessor (which would be written as a “.constructor_id”
suffix in infix-notation languages) that returns the value of
the second-to-last field in the record. In this case, the value
is the identifier #�Parity:constructor.

A reader may wonder why the new macro does not just
synthesize the name of the object constructor directly from
the name of the given class. Doing so looks natural, but
it may interfere with intermediate re-bindings of the class
name. Splicing syntax objects into the syntax object for
the template guarantees hygienic code synthesis and thus
automatically creates correctly scoped code.

The send macro, used for method calls, also makes use
of this technique. Our MiniJava type checker annotates send
forms with the name of the class of the receiver (which it
computes during type checking). The send macro uses the
static information bound to that class name to determine
the correct index into the class’s method table. The bodies
of the methods stored in Parity:runtime-method-table,
in figure 5, show the results of this expansion. Line 44 of
figure 5 shows a method call to is_even on the left and the
let* expression it transforms into on the right. The 1 on
line 45 is computed by using syntax-local-value to get
the static-class-info (as with new) and then looking up
is_even in the table on line 59.

This technique highlights the distinction between Racket’s
run-time and compile-time phases. The new and send macros
must call syntax-local-value at compile-time to access
static class information. In general, this means that arbi-
trary, possibly even side-effecting, code may need to run at
compile-time to expand a syntactic form. Racket addresses
the issue of mingling compile-time code with run-time code
through a phase distinction (Flatt 2002) that makes explicit
the execution time of a piece of code.

3.6 DrRacket Integration
Syntax bindings are but one of the communication mecha-
nisms available to Racket macros. Syntax properties provide
another one. Recall that Racket’s syntax objects are data
structures that include symbolic representations of program
fragments as well as additional syntax properties. Macros
may attach additional key-value pairs to syntax objects.
Just as syntax bindings allow communication between dis-
tinct macros, syntax properties open a communication chan-
nel between different processing passes, including external
tools (Tobin-Hochstadt et al. 2011).

DrRacket’s check syntax tool exploits this information to
provide a better user experience when editing source code.
It draws arrows between binding and bound occurrences

Figure 7: MiniJava type tool-tips in DrRacket

of variables and it renders information in tooltips. To get
the binding information and tooltip information, it consults
syntax properties, as well as just using the underlying lexical
information in the fully expanded program.

To illustrate the idea, our implementation of MiniJava at-
taches type information to syntax objects via syntax proper-
ties. In the example shown in figure 7, programmers can see
the type information via tool tips (Parity in this case), and
see binding information via arrows connecting identifiers.

Some MiniJava variables become Racket variables in the
fully expanded program, e.g., the parameter n of the run
method. Others, like check, are fields and are compiled into
vector references. Figure 5 shows this explicitly: the defini-
tion of the check field on line 2 is absent from the expanded
program and the reference to check on line 9 compiles into
the expression (vector-ref this 1) on line 11 of the ex-
panded program. DrRacket’s check syntax tool nonetheless
infers the correct binding structure for such variables and
displays binding arrows accordingly, as figure 7 shows.

4. Notation: Tabular Notation
Adding notation to our implementation of MiniJava is quite
straightforward. To illustrate this idea with a rather extreme
example, we present here the result of tackling the problem
of Tabular Notation from the Notation category. Specifically,
we explain how to add tabular notation to MiniJava for
specifying state machines via tables.

#lang mini-java

#2dstate-machine

 Receiver wait_0 wait_1

 zero System.out.println(0); System.out.println(1);
 wait_1 wait_1

 one System.out.println(2); System.out.println(3);
 wait_0 wait_0

class StateMachineRunner {
 public int doTheThing() {
 Receiver r;
 r = new Receiver();
 System.out.println(r.one());
 System.out.println(r.zero());
 System.out.println(r.zero());
 System.out.println(r.one());
 return 0;
 }
}

Figure 8: Tabular notation for state machines

Figure 8 presents an example state machine. The syntax
is purely textual, relying on Racket’s Unicode integration. A
programmer produces the table outline with Unicode charac-
ters. In the context of MiniJava, the table represents a two-
dimensional grid of transitions. Our implementation under-
stands it as an alternative notation for a class. This synthe-
sized class implements the corresponding state machine.

In figure 8, the first row in the table specifies the names
of the states: wait_0 and wait_1. The first column speci-
fies the names of the input symbols: zero and one. The cells
in the middle portion of the diagram specify what happens
in the given state when the given symbol is received; each
cell contains some arbitrary MiniJava code that runs for its
effect, followed by the name of a new state to transition to.
For example, when in the wait_0 state, if the zero input
comes, then the state machine will print out 0 and transi-
tion to the wait_1 state. The state machine is reified as a
MiniJava class, named by the single name in the upper-left
cell: Receiver. The inputs to the state machine are reified as
nullary methods on the class.

Finally, the second class in figure 8 shows a client of
the state machine class. The StateMachineRunner class is
a textual class definition. It refers to the state machine by
name and creates an instance. Following that, it sends this
state machine four inputs via method calls.

4.1 Assumptions
The implementation uses Racket’s existing 2d parsing pack-
age to parse the tabular notation. In addition the implemen-
tation requires that every state allow every transition.

4.2 Implementation
Implementing this extension requires changes to each phase
of our MiniJava implementation. First, we extend the lexer
with a new class of tokens for 2-dimensional tables, which
begin with the token #2dstate-machine. For this token,
the lexer uses Racket’s existing 2d syntax parser to find
the bounds of the table and break it into separate cells. The
original parser then handles the contents of each cell. After
parsing a 2d table, lexing resumes as usual.

After parsing, each table is a syntax object that corre-
sponds to an invocation of the 2dstate-machine macro. We
then extend the following phases to recognize these objects
and pass them along. The 2dstate-machine macro com-
piles tables to classes. Each transition becomes a method
which dispatches on the state, represented by an integer field.

4.3 Variants
One possible variant of this problem would be a tabular if or
switch form, which would dispatch on two scrutinees, one
selecting a row, the other a column.

4.4 Usability
DrRacket provides special support for inputting and editing
this tabular syntax.5 It is difficult to use outside of DrRacket.

5 See DrRacket’s manual for more: http://docs.racket-lang.org/
drracket/Keyboard_Shortcuts.html#(idx._(gentag._219._(lib.
_scribblings/drracket/drracket..scrbl)))

http://docs.racket-lang.org/drracket/Keyboard_Shortcuts.html#(idx._(gentag._219._(lib._scribblings/drracket/drracket..scrbl)))
http://docs.racket-lang.org/drracket/Keyboard_Shortcuts.html#(idx._(gentag._219._(lib._scribblings/drracket/drracket..scrbl)))
http://docs.racket-lang.org/drracket/Keyboard_Shortcuts.html#(idx._(gentag._219._(lib._scribblings/drracket/drracket..scrbl)))

4.5 Impact
In addition to the aforementioned changes to the lexer, each
phase is extended to recognize and pass along the state ma-
chine and the macro 2dstate-machine is added to compile
the state machines.

4.6 Composability
The 2dstate-machine form coexists with the solutions to
the other benchmarks, and would also compose with syn-
tactic extensions to statements. Future extensions using the
same tabular notation can reuse the majority of the imple-
mentation.

The 2dstate-machine macro cooperates with DrRacket’s
check syntax tool to recognize state names as bindings.

4.7 Limitations
Convenient usage of the 2d syntax is limited to DrRacket.

Racket’s 2d parser relies on read tables

6 to extend the
reader. MiniJava’s reader does not support read tables, which
led to using one of the 2d parser’s internal APIs.

4.8 Uses and Examples
This form of tabular notation is used by Racket’s 2dcond and
2dmatch forms. These forms are used in the implementation
of Redex (Felleisen et al. 2010).

4.9 Effort
Adding the 2d capabilities to the existing parser took 1-2
hours. The remaining work required about 140 lines of code
and took 2-3 hours. Work on editing support for the tabular
notation is ongoing.

5. Evolution and Reuse: Beyond-Grammar
Restrictions

This section presents our solution to the Beyond-Grammar

Restrictions benchmark problem in the Evolution category.
Our solution extends MiniJava with a break keyword that
is valid only within while loops. The implementation uses
Racket’s syntax parameters to control the meaning of a
binding depending on its context (Barzilay et al. 2011).

5.1 Assumptions
Our implementation technique for break relies on our use of
macros to implement MiniJava constructs, as syntax param-
eters interact with the expansion process.

5.2 Implementation
Syntax parameters are syntax bindings whose expansion can
be controlled by macros in their context. Specifically, macros
(such as while) may adjust the meaning of syntax parame-
ters (such as break) to make the latter behave as if they had

6 Racket’s read tables descend from Common Lisp (Steele 1994) and
MacLISP (Moon 1974), a modern Racket-specific treatment is found at
http://docs.racket-lang.org/reference/readtables.html

been lexically bound by the former. This is akin to the way
lexical scoping lets programmers adjust the meaning of an
identifier in some context by introducing a shadowing bind-
ing for it.

Figure 9 shows the definition of break, as well as an
extended version of while which cooperates with it. Orig-
inally, break is bound to a transformer which always raises
a syntax error, which statically rules out uses of break out-
side of while. The definition of while adjusts the meaning
of break (using syntax-parameterize) within its body to
instead call an escape continuation and break out of the loop.

5.3 Variants
One variant of this benchmark problem would be to add
Java’s super keyword to MiniJava. The super keyword, like
break, is valid only in certain contexts—in methods of child
classes, specifically.

This MiniJava implementation always breaks the nearest
enclosing loop, but break could accept a (literal) number as
a argument to allow breaking of nested loops.

5.4 Usability
Our addition of the break keyword to MiniJava is syntacti-
cally allowed wherever a statement is valid. The syntax pa-
rameter mechanism, however, disallows uses of break out-
side the body of while loops, as one would expect.

5.5 Impact
Beyond the changes to parenthesized MiniJava discussed
previously, implementing break requires changes to our
MiniJava lexer, parser, and type checker. We extend the lexer
to recognize the break keyword and produce a correspond-
ing token. Similarly, we modify the parser to produce ab-
stract syntax representing a use of break. The type checking
rule added for break always succeeds and produces a use
of the break syntax parameter in parenthesized MiniJava.
Overall, these changes are small and independent of the rest
of our MiniJava implementation.

5.6 Composability
Our addition of break to MiniJava integrates seamlessly
with our solutions to the other two benchmark problems.
This implementation would compose well with other in-
stances of the Beyond-Grammar Restrictions problem.

5.7 Limitations
Implementing language restrictions using syntax param-
eters necessitates a language that compiles via a set of
macros. An alternate implementation of MiniJava that di-
rectly produced fully-expanded Racket programs would not
be able to use this strategy. Our use of syntax parameters
relies on the nested shape of Racket’s syntax. The syntax-
parameterize form only adjusts the meaning of forms
nested inside of it.

http://docs.racket-lang.org/reference/readtables.html

(define-syntax-parameter break
 (λ (stx)
 (raise-syntax-error 'break "used outside of `while`" stx)))

(define-syntax (while stx)
 (syntax-parse stx
 [(while test:expr body ...)
 #`(let/ec local-break
 (syntax-parameterize ([break (λ (stx) #'(local-break))])
 (letrec ([loop (λ ()
 (when test
 body ...
 (loop)))])
 (loop))))]))

Figure 9: The break syntax parameter and its use in while

5.8 Uses and Examples
Racket uses syntax parameters in many of its core libraries
to restrict certain syntactic forms to specific contexts. For
example, Racket implements this using syntax parameters
to ensure that it is valid only within Racket’s class form.

5.9 Effort
Extending our implementation of MiniJava to support the
break keyword requires fewer than twenty lines of code.
The implementation took approximately thirty minutes, but
required familiarity with our MiniJava implementation and
the use of syntax parameters.

6. Editing: Restructuring
From the Editing category we tackled the Restructuring

benchmark problem. Specifically, we built a refactoring tool
for MiniJava which restructures if statements by swapping
the then and else branches and negating the condition.

6.1 Assumptions
We assume that we can modify the implementation of Mini-
Java to expose additional information about conditionals.

6.2 Implementation
Our restructuring tool relies on source location information
for conditionals, which it gets from our MiniJava implemen-
tation. To do this, we extended MiniJava’s if macro to at-
tach a syntax property mapping the key �refactor to a list
containing the source position and span of each each piece
of the if statement: the condition, the then branch, and the
else branch. Figure 10 shows this extension.

We implement our tool as a plugin for DrRacket (Findler
et al. 2002) which processes a program’s fully-expanded
syntax to find syntax objects with the �refactor syntax
property attached. These locations are where the refactoring
may apply. When a user applies the refactoring, the tool
rewrites the conditional within the editor’s buffer.

(begin-for-syntax
 (define (add-refactor-property stx val)
 (syntax-property stx 'refactor val))
 (define (get-refactor-property stx)
 (syntax-property stx 'refactor)))

(define-syntax (if stx)
 (syntax-parse stx
 [(if test then else)
 (add-refactor-property
 (syntax/loc this-syntax
 (r:if test then else))
 (list 'mini-java
 (syntax-loc stx)
 (syntax-loc #'test)
 (syntax-loc #'then)
 (syntax-loc #'else)))]))

Figure 10: A syntax property for the refactoring tool

6.3 Variants
A variant on this refactoring would be to transform between
expressions that use && and || using De Morgan’s laws.

In addition, it is worth noting that the implementation of
our refactoring tool is not MiniJava-specific. By parameter-
izing the refactoring rule over negation syntax, the tool gen-
eralizes across languages. To support the refactoring, a lan-
guage simply needs to attach the relevant syntax property to
its conditional form. As a proof of concept, we also extend
Racket’s if in this fashion.

6.4 Usability
As figure 11 shows, the if refactoring is accessed by right-
clicking inside of an if statement or using a keyboard short-
cut. The refactoring tool does not affect the usability of Dr-
Racket or the MiniJava language otherwise.

Figure 11: Using the refactoring tool in DrRacket

6.5 Impact
The refactoring tool proper is a standalone piece of code.
Otherwise, the only changes to our MiniJava implementation
are to the if macro, as discussed earlier.

6.6 Composability
Our restructuring tool composes automatically with other
DrRacket plug-ins. Additionally, it does not interfere with
our solutions to the other benchmark problems, except that
refactoring within a state-machine may break the alignment
of the tabular syntax.

6.7 Limitations
This refactoring makes sense only for conditionals with ex-
actly two branches. In a language such as Java, which also
has single-branch if statements, the tool would distinguish
these cases to determine where the refactoring applies.

6.8 Uses and Examples
Several tools built on top of Racket and DrRacket use syn-
tax properties to facilitate communication between tools and
language implementations. Specific examples include Dr-
Racket’s check syntax utility, Typed Racket’s type tool-tips,
and Racket’s feature-specific profiler (St-Amour et al. 2015).

6.9 Effort
The implementation of the if restructuring tool requires
under 200 lines of code, including the small changes made
to the MiniJava implementation. The implementation took
approximately one day, assuming a basic understanding of
the DrRacket plug-in system.

7. Conclusion
This paper introduces the key elements of the Racket lan-
guage workbench via the MiniJava sample language and
three benchmark challenges. Racket’s linguistic reuse capa-
bilities allows programmers to easily build new languages
and then extend and adapt them. Indeed, Racket’s unique
approach to linguistic reuse extends to its ecosystem.

Racket’s language-building facilities are the result of
a gradual evolution over its twenty year history: start-
ing from Lisp’s macro system; adding hygiene to pre-
serve lexical scope; introducing syntax objects to encap-
sulate hygiene, then extending those to carry arbitrary meta-
information; and finally integrating with Racket’s module
system to enable reader customization and linguistic dis-
patch. Throughout, Racket’s guiding principle of general-
izing language features—lexical scope, modules, etc.—and
giving programmers full access to them—on equal footing
with Racket’s authors—led us to a powerful tool for building
and extending languages (Felleisen et al. 2015).

Bibliography
Eli Barzilay, Ryan Culpepper, and Matthew Flatt. Keeping it Clean

with Syntax Parameters. In Proc. Wksp. Scheme and Functional

Programming, 2011.
William Clinger and Jonathan Rees. Macros that Work. In Proc.

Sym. Principles of Programming Languages, 1991.
Ryan Culpepper and Matthias Felleisen. Fortifying Macros. In

Proc. Intl. Conf. on Functional Programming, 2010.
R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic

Abstraction in Scheme. Lisp and Symbolic Computation 5(4),
1992.

Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence
Tratt, Remi Bosman, William R. Cook, Albert Gerritsen, An-
gelo Hulshout, Steven Kelly, Alex Loh, Gabriël Konat, Pedro
J. Molina, Martin Palatnik, Risto Pohjonen, Eugen Schindler,
Klemens Schindler, Riccardo Solmi, Vlad Vergu, Eelco Visser,
Kevin van der Vlist, Guido Wachsmuth, and Jimi van der Won-
ing. Evaluating and comparing language workbenches: Existing
results and benchmarks for the future. Computer Languages,

Systems & Structures 44, pp. 24–47, 2015.
Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Se-

mantics Engineering with PLT Redex. MIT Press, 2010.
Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram

Krishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-
Hochstadt. The Racket Manifesto. In Proc. Summit on Advances

in Programming Languages, 2015.
Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew

Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias
Felleisen. DrScheme: A Programming Environment for
Scheme. Journal of Functional Programming 12(2), 2002.

Matthew Flatt. Composable and Compilable Macros: You Want it
When? In Proc. Intl. Conf. on Functional Programming, 2002.

Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce
Findler. Macros that Work Together: Compile-Time Bindings,
Partial Expansion, and Definition Contexts. Journal of Func-

tional Programming 22(2), 2012.
Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.

Classes and Mixins. In Proc. Sym. Principles of Programming

Languages, 1998.
Matthew Flatt and PLT. Reference: Racket. PLT Inc., PLT-TR-

2010-1, 2010. http://racket-lang.org/tr1/
Timothy P. Hart. MACRO Definitions for LISP. MIT, AIM-057,

1963.
Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and

Bruce Duba. Hygienic Macro Expansion. In Proc. LISP and

Functional Programming, 1986.
Shriram Krishnamurthi. Linguistic Reuse. Ph.D. dissertation, Rice

University, 2000.
David Moon. MacLISP Reference Manual, Revision 0. MIT Project

MAC, 1974.
Eric Roberts. An Overview of MiniJava. In Proc. SIGCSE, 2001.
William L. Scherlis and Dana S. Scott. First Steps Towards Infer-

ential Programming. Carnegie Mellon University, CMU-CS-83-
142, 1983.

Vincent St-Amour, Leif Andersen, and Matthias Felleisen. Feature-
Specific Profiling. In Proc. International Conference on Com-

piler Construction, 2015.

Guy L. Steele Jr. Common Lisp: the language. Second edition.
Digital Press, 1994.

Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper,
Matthew Flatt, and Matthias Felleisen. Languages as Libraries.
In Proc. Conf. Programming Language Design and Implemen-

tation, 2011.

http://racket-lang.org/tr1/

	1 The Racket Manifesto in a Nutshell
	2 The Racket Language Workbench
	3 MiniJava via Racket
	3.1 MiniJava
	3.2 From MiniJava to Core Racket: an Overview
	3.3 #lang mini-java: Parsing and Type Elaboration
	3.4 #lang mini-java: Language Constructs
	3.5 Inter-macro Communication
	3.6 DrRacket Integration

	4 Notation: Tabular Notation
	4.1 Assumptions
	4.2 Implementation
	4.3 Variants
	4.4 Usability
	4.5 Impact
	4.6 Composability
	4.7 Limitations
	4.8 Uses and Examples
	4.9 Effort

	5 Evolution and Reuse: Beyond-Grammar Restrictions
	5.1 Assumptions
	5.2 Implementation
	5.3 Variants
	5.4 Usability
	5.5 Impact
	5.6 Composability
	5.7 Limitations
	5.8 Uses and Examples
	5.9 Effort

	6 Editing: Restructuring
	6.1 Assumptions
	6.2 Implementation
	6.3 Variants
	6.4 Usability
	6.5 Impact
	6.6 Composability
	6.7 Limitations
	6.8 Uses and Examples
	6.9 Effort

	7 Conclusion
	Bibliography

