
The crush package

Jesse A. Tov
tov@ccs.neu.edu

This document corresponds to crush v0.2, dated 2011/07/29.

Contents

1 Introduction 1

2 Command Reference 2

3 Implementation 3
3.1 Crushing Boxes . 3
3.2 Shrinking Boxes . 6

1 Introduction

The purpose of this package is to provide several methods for making boxes smaller,
which extend (and someone overlap with) LATEX’s \llap and \rlap commands.
Most provided commands deal with making boxes of width 0pt, while anchoring
the box in a specified place. For example, consider the following:

To get. . . type. . .
(Hello, world!) (\crushl{Hello, world!})

(Hello, world!) (\crushr{Hello, world!})

(Hello, world!) (\crushc{Hello, world!})

(3x2 + 4x− 2) $(\crushl{3x^2 + 4x - 2})$

(3x2 + 4x− 2) $(\crushr{3x^2 + 4x - 2})$

(3x2 + 4x− 2) $(\crushc{3x^2 + 4x - 2})$

3x+y+ z $3^{\crushl{x + y}} + z$

Hello! \fbox{\crushl[1em]{Hello!}}

There is also a command for minimizing the width of a box subject to not
increasing its height. For example, to get this:

Whereas recognition of the inherent dignity and of the equal
and inalienable rights of all members of the human family is

the foundation of freedom, justice and peace in the world, . . .

1

. . . write this:

\mbox{}\hfill\shrinkbox{\raggedleft

Whereas recognition of the inherent dignity and of the equal and

inalienable rights of all members of the human family is the

foundation of freedom, justice and peace in the world, \ldots}

In this case, \shrinkbox found the narrowest box in which the given text fits on
3 lines, since given the space available it could not fit on fewer than 3 lines.

2 Command Reference

\crushl [〈dimen〉] {〈text〉}
\crushr [〈dimen〉] {〈text〉}
\crushc [〈dimen〉] {〈text〉}

These commands typeset 〈text〉 in a horizontal box with width 〈dimen〉, which
defaults to 0pt. If the natural size of 〈text〉 exceeds 〈dimen〉, then the text will
extend beyond the box, which means it is likely to overlap the surrounding text.
The direction of the overhang is determined by the choice of command:

\crushl anchors the left edge of the text to the left edge of the box, which may
cause it to hang out to the right.

\crushr anchors the right edge of the text to the right edge of the box, which
may cause it to hang out to the left.

\crushc anchors the center of the text to the center of the box, which may cause
the text to hang out to both sides.

\uncrushl [〈dimen〉] {〈text〉}
\uncrushr [〈dimen〉] {〈text〉}

These commands kern by the width of 〈text〉, adjusted by 〈dimen〉, which de-
faults to 0pt. In particular, \uncrushl[〈dimen〉]{〈text〉} moves to the left by
the width of 〈text〉 less [〈dimen〉]; \uncrushr[〈dimen〉]{〈text〉} moves to the
right by the width of 〈text〉 plus [〈dimen〉]. (\uncrushr{〈text〉} is equivalent to
.)

\vcrush [〈pos〉] {〈width〉} {〈text〉}

This command is for crushing vertical-mode text. It sets 〈text〉 in a box of width
〈width〉 (in the style of the minipage environment). It then crushes the box to
width and height 0px. The 〈pos〉 argument specifies where with respect to the
text the new baseline of the box should be. It accepts all the same positions as

2

minipage, and an additional one: T, which puts the baseline at the top of the first
line of text in the box (whereas t uses the baseline of the first line in the box as
the baseline of the box).

\shrinkbox [〈pos〉] [〈dimen〉] {〈text〉}

This command typesets 〈text〉 in the narrowest box such that its height does not
increase. The optional argument 〈dimen〉 provides the maximum width for the
box, which otherwise defaults to \linewidth. This provides a minimal height for
the box, and the width is then minimized until making it narrower still would
increase the height. This may evaluate 〈text〉 several times, so any side effects
may happen an arbitrary number of times.

The optional argument [〈pos〉] gives the vertical position of the text in the
box, in the style of \parbox.

\textcrushl [〈dimen〉] {〈text〉}
\textcrushr [〈dimen〉] {〈text〉}
\textcrushc [〈dimen〉] {〈text〉}
\textuncrushl [〈dimen〉] {〈text〉}
\textuncrushr [〈dimen〉] {〈text〉}

The crushing and uncrushing commands normally select text or math mode auto-
matically, but in case they get confused, these are the same commands specialized
for text mode.

\mathcrushl [〈dimen〉] {〈math〉}
\mathcrushr [〈dimen〉] {〈math〉}
\mathcrushc [〈dimen〉] {〈math〉}
\mathuncrushl [〈dimen〉] {〈math〉}
\mathuncrushr [〈dimen〉] {〈math〉}

These are the commands specialized for math mode.

3 Implementation

3.1 Crushing Boxes

\crusher A box in which to save stuff to crush:

1 \newsavebox{\crusher}

\crushl

\crushr

\crushc

\uncrushl

\uncrushr

The main horizontal-mode crushing commands dispatch based on whether we’re
currently in math mode or text mode:

2 \newcommand\crushl{{%

3 \ifmmode\aftergroup\mathcrushl\else\aftergroup\textcrushl\fi

4 }}

3

5 \newcommand\crushr{{%

6 \ifmmode\aftergroup\mathcrushr\else\aftergroup\textcrushr\fi

7 }}

8 \newcommand\crushc{{%

9 \ifmmode\aftergroup\mathcrushc\else\aftergroup\textcrushc\fi

10 }}

11 \newcommand\uncrushl{{%

12 \ifmmode\aftergroup\mathuncrushl\else\aftergroup\textuncrushl\fi

13 }}

14 \newcommand\uncrushr{{%

15 \ifmmode\aftergroup\mathuncrushr\else\aftergroup\textuncrushr\fi

16 }}

\mathcrush@helper

\m@thcrush@helper

\mathcrush@helper{〈cmd〉}{〈math〉}−→ 〈cmd〉{$〈style〉〈math〉$}, where 〈style〉
is the current math style.

17 \newcommand\mathcrush@helper[1]{\mathpalette{\m@thcrush@helper{#1}}}

18 \newcommand\m@thcrush@helper[3]{#1{$#2#3$}}

\mathcrushl

\mathcrushr

\mathcrushc

\mathuncrushl

\mathuncrushr

These are the math versions of the crushing and uncrushing macros, which are
called by the main versions when in math mode. They use the text versions to
do the actual work, using \mathcrush@helper to get the contents back in math
mode and in the right size.

19 \newcommand\mathcrushl[1][0pt]{\mathcrush@helper{\textcrushl[#1]}}

20 \newcommand\mathcrushr[1][0pt]{\mathcrush@helper{\textcrushr[#1]}}

21 \newcommand\mathcrushc[1][0pt]{\mathcrush@helper{\textcrushc[#1]}}

22 \newcommand\mathuncrushl[1][0pt]{\mathcrush@helper{\textuncrushl[#1]}}

23 \newcommand\mathuncrushr[1][0pt]{\mathcrush@helper{\textuncrushr[#1]}}

\textcrushl This is the implementation of \crushl for text mode. It sets the text in a box,
drops the box in it right away, then kerns backward by its width and adjusts by
any kern requested in the optional argument:

24 \newcommand\textcrushl[2][0pt]{%

25 \sbox{\crusher}{#2}%

26 \usebox\crusher

27 \kern-\wd\crusher

28 \kern#1%

29 }

\textcrushr This is the implementation of \crushr for text mode. It sets the text in a box,
kerns backward by its width, adjusts by any kern requested in the optional argu-
ment, and then drops in the box:

30 \newcommand\textcrushr[2][0pt]{%

31 \sbox{\crusher}{#2}%

32 \kern-\wd\crusher

33 \kern#1%

34 \usebox\crusher

35 }

4

\crush@textcrushclen

\textcrushc

For \crushc we need to do half of the adjustment on each side of actually using
the box. We use a dimension register to parse any user-specified adjustment so
that we can then multiply that by 0.5.

36 \newlength{\crush@textcrushclen}

37 \newcommand\textcrushc[2][0pt]{%

38 \sbox{\crusher}{#2}%

39 \setlength{\crush@textcrushclen}{#1}%

40 \addtolength{\crush@textcrushclen}{-\wd\crusher}%

41 \kern0.5\crush@textcrushclen

42 \usebox\crusher

43 \kern0.5\crush@textcrushclen

44 }

\textuncrushl

\textuncrushr

For uncrushing, we just measure the text and then kern either its width or the
negation of its width:

45 \newcommand\textuncrushl[2][0pt]{%

46 \sbox{\crusher}{#2}%

47 \kern-\wd\crusher

48 \kern#1%

49 }

50 \newcommand\textuncrushr[2][0pt]{%

51 \sbox{\crusher}{#2}%

52 \kern\wd\crusher

53 \kern#1%

54 }

\vcrush This is a little more complicated, as we have to handle the T position ourselves,
and its necessary to deal with both width and height.

55 \newcommand\vcrush[3][c]{%

Start by setting the given text in a minipage and saving that in a box. We use
the position and width specified by the given arguments.

56 \sbox\crusher{%

57 \begin{minipage}[#1]{#2}%

58 #3%

59 \end{minipage}%

60 }%

Now we’re going to create a second box, setting its width again as specified, but
we’ll use \vskips to adjust the height:

61 \sbox\crusher{%

62 \vbox{%

63 \setlength{\hsize}{\wd\crusher}%

64 \ifx T#1\relax

For T, we drop in the box and then skip back upward by both its depth and height,
which effectively moves the baseline to the top of the box:

65 \usebox\crusher

66 \vskip-\ht\crusher

67 \vskip-\dp\crusher

68 \else

5

For anything but T, minipage already put the baseline in the right place, so we
adjust away the height of the box before dropping in the box and the depth
afterward:

69 \vskip-\ht\crusher

70 \usebox\crusher

71 \vskip-\dp\crusher

72 \fi

73 }%

74 }%

75 \usebox\crusher

76 }

3.2 Shrinking Boxes

We use binary search on the width of the box, under the constraint that the height
does not increase.

\shrinkboxheighttolerance

\shrinkboxwidthtolerance

First, we define the tolerances for the search. We default to a height tolerance of
0.5ex, because different line breaking may cause slight adjustments in the height
of a box without changing the number of lines in the box. The width tolerance of
1pt means that we should find a box within 1pt of the narrowest possible box.

77 \newlength{\shrinkboxheighttolerance}

78 \newlength{\shrinkboxwidthtolerance}

79 \setlength{\shrinkboxheighttolerance}{0.5ex}

80 \setlength{\shrinkboxwidthtolerance}{1pt}

\@shrink@box@a

\@shrink@box@b

We’ll use two boxes in our binary search. At any given time, \@shrink@box@a
will be narrower than \@shrink@box@b. We also maintain the invariant that
\ht\@shink@box@b doesn’t increase above the initial height of the maximum width
box.

81 \newsavebox{\@shrink@box@a}

82 \newsavebox{\@shrink@box@b}

\@shrink@box@ht

\@shrink@box@wd

These are temporaries for when we have to measure and compare boxes:

83 \newdimen\@shrink@box@ht

84 \newdimen\@shrink@box@wd

\shrinkbox We need to handle two optional arguments. Here we check for the first, 〈pos〉, and
dispatch to \shrinkbox@pos to receive it if it is supplied, or default it to c and
the width to \linewidth, otherwise.

85 \newcommand\shrinkbox{%

86 \@ifnextchar [

87 \shrinkbox@pos

88 {\shrinkbox@start{c}{\linewidth}}%

89 }

6

\shrinkbox@pos Here we get the optional argument 〈pos〉 and check if there’s a second, which
would be 〈width〉. If the second optional argument isn’t supplied, the default is
\linewidth.

90 \def\shrinkbox@pos[#1]{%

91 \@ifnextchar [

92 {\shrinkbox@width{#1}}

93 {\shrinkbox@start{#1}{\linewidth}}%

94 }

\shrinkbox@width Get the second optional argument.

95 \def\shrinkbox@width#1[#2]{%

96 \shrinkbox@start{#1}{#2}%

97 }

\shrinkbox@start

\shrink@box@kont

Here we initialize the parameters for the binary search. We start the maximum
width as the supplied 〈width〉 (which defaults to \linewidth, and try setting the
text with that width and 1

10 of that width. We then start the loop, passing it
〈pos〉 and 〈text〉, since we will likely have to set the text again.

98 \newcommand\shrinkbox@start[3]{%

99 \setlength{\@shrink@box@wd}{#2}%

100 \sbox\@shrink@box@a{\parbox[#1]{0.1\@shrink@box@wd}{#3}}%

101 \sbox\@shrink@box@b{\parbox[#1]{\@shrink@box@wd}{#3}}%

102 \def\shrink@box@kont{\shrink@box@loop{#1}{#3}}%

103 \shrink@box@kont%

104 }

\shrinkbox@loop This is the main loop for the binary search.

105 \newcommand\shrink@box@loop[2]{%

Get the differences of heights and widths of the two boxes into the two dimen-
sion registers. (We rely on the invariant that assume that box a is (non-strictly)
narrower and taller than box b.)

106 \setlength{\@shrink@box@ht}{\ht\@shrink@box@a}%

107 \addtolength{\@shrink@box@ht}{\dp\@shrink@box@a}%

108 \addtolength{\@shrink@box@ht}{-\ht\@shrink@box@b}%

109 \addtolength{\@shrink@box@ht}{-\dp\@shrink@box@b}%

110 \setlength{\@shrink@box@wd}{\wd\@shrink@box@b}%

111 \addtolength{\@shrink@box@wd}{-\wd\@shrink@box@a}%

Check if the heights of the two boxes are within the tolerance. If they are, then
we should search narrower, but if the heights are very different, this means the
narrow box is too narrow.

112 \ifdim\@shrink@box@ht<\shrinkboxheighttolerance

Check the widths are within the tolerance. If they are, then the search is done,
since the two boxes have met.

113 \ifdim\@shrink@box@wd<\shrinkboxwidthtolerance

7

\shrink@box@kont We set \shrink@box@kont to what we want to do next, which is to use the smaller
box (though it shouldn’t matter, since they’re the same size):

114 \def\shrink@box@kont{\mbox{\usebox\@shrink@box@a}}%

Here the heights are the same but the width are different, so we need to make the
wide box narrower. We begin by getting the mean of the width of the boxes in
\@shrink@box@wd:

115 \else

116 \setlength{\@shrink@box@wd}{0.5\@shrink@box@wd}%

117 \addtolength{\@shrink@box@wd}{\wd\@shrink@box@a}%

Then replace the context of the wider box with a new box of the average width:

118 \sbox\@shrink@box@b{\parbox[#1]{\@shrink@box@wd}{#2}}%

119 \fi

Here the heights are different, so the narrower box needs to get wider. Again we
get the mean box width, but we use it to replace the narrower box.

120 \else

121 \setlength{\@shrink@box@wd}{0.5\@shrink@box@wd}%

122 \addtolength{\@shrink@box@wd}{\wd\@shrink@box@a}%

123 \sbox\@shrink@box@a{\parbox[#1]{\@shrink@box@wd}{#2}}%

124 \fi

Back in \shrinkbox@start, we initialized \shrink@box@kont to run the loop
each time. Here, it will recur unless we’ve determined that it’s time to stop and
redefined it to actually output the box.

125 \shrink@box@kont

126 }

Change History

v0.2
General: Initial documented release 1

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@shrink@box@a
. . . 81, 81, 100,
106, 107, 111,

114, 117, 122, 123

\@shrink@box@b
. . . 81, 82, 101,
108, 109, 110, 118

\@shrink@box@ht . . .
. . . 83, 83, 106,
107, 108, 109, 112

\@shrink@box@wd . . .

8

83, 84, 99, 100,
101, 110, 111,
113, 116, 117,
118, 121, 122, 123

C
\crush@textcrushclen

. 36,
36, 39, 40, 41, 43

\crushc (1), 2, 2, 8
\crusher . . 1, 25, 26,

27, 31, 32, 34,
38, 40, 42, 46,
47, 51, 52, 56,
61, 63, 65, 66,
67, 69, 70, 71, 75

\crushl (1), 2, 2, 2
\crushr (1), 2, 2, 5

H
\hsize 63

I
\ifmmode . 3, 6, 9, 12, 15

K
\kern 27, 28, 32, 33, 41,

43, 47, 48, 52, 53

L
\linewidth . (3), 88, 93
\llap (1)

M
\m@thcrush@helper .

. 17, 17, 18

\mathcrush@helper .
. . . (4), 17, 17,
19, 20, 21, 22, 23

\mathcrushc . 3, 9, 19, 21

\mathcrushl . 3, 3, 19, 19

\mathcrushr . 3, 6, 19, 20

\mathpalette 17

\mathuncrushl
. 3, 12, 19, 22

\mathuncrushr
. 3, 15, 19, 23

\mbox 114

minipage 2

N

\newdimen 83, 84

\newlength . . 36, 77, 78

\newsavebox . . . 1, 81, 82

P

\parbox (3),
100, 101, 118, 123

\phantom (2)

R

\rlap (1)

S

\sbox 25, 31, 38,
46, 51, 56, 61,
100, 101, 118, 123

\setlength 39,
63, 79, 80, 99,
106, 110, 116, 121

\shrink@box@kont 98,
102, 103, 114, 125

\shrink@box@loop . .
. 102, 105

\shrinkbox . . (2), 2, 85
\shrinkbox@loop . . . 105
\shrinkbox@pos . . 87, 90
\shrinkbox@start . .

. 88, 93, 96, 98, 98
\shrinkbox@width 92, 95
\shrinkboxheighttolerance

. . . 77, 77, 79, 112
\shrinkboxwidthtolerance

. . . 77, 78, 80, 113

T
\textcrushc

. . . 3, 9, 21, 36, 37
\textcrushl . 3, 3, 19, 24
\textcrushr . 3, 6, 20, 30
\textuncrushl

. 3, 12, 22, 45
\textuncrushr

. 3, 15, 23, 45

U
\uncrushl 2, 2, 11
\uncrushr 2, 2, 14
\usebox 26, 34,

42, 65, 70, 75, 114

V
\vbox 62
\vcrush 2, 55
\vskip . . . 66, 67, 69, 71

9

	Contents
	1 Introduction
	2 Command Reference
	3 Implementation
	3.1 Crushing Boxes
	3.2 Shrinking Boxes

	Change History
	Index
	Symbols
	C
	H
	I
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V

