
EECS 211 Lab 3
Using CLion, and more practice with Vectors and Loops
Winter 2017

Today we will be installing an IDE (Integrated Development Envi-
ronment) called CLion to make development of our C++ programs a
little bit easier. In addition, we will be practicing our programming
tools we’ve learned over the last few weeks!

Installing CLion

The first thing we will be doing today will be installing CLion in
order to make writing C++ programs easier and more user friendly.
First, go to JetBrains’s website and apply for a student account: JetBrains is the developer of CLion and

lots of other developer tools
www.jetbrains.com/shop/eform/students

Once you submit your information, you will be receiving a confirma-
tion email. Click confirm, then you will immediately receive a second
email with a link to complete your JetBrains registration. For the in-
stallation of CLion, we will have slightly different steps for Windows
and Mac laptops:

Windows

Before installing CLion on Windows, you need to install a C++
toolchain. Download MinGW from here: A toolchain consists of a compiler and

other programming tools.
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%

20Win32/Personal%20Builds/mingw-builds/installer/mingw-w64-install.exe/

download

Follow the prompts to install MinGW—all the default options should
suffice. Take note of where you install it, as you will have to config-
ure CLion to find it.

Then go to this link to get CLion:

https://www.jetbrains.com/clion/

Press Download, then install CLion through their steps and login to
your JetBrains account in order to activate your CLion editor. When
prompted for the toolchain location, provide the path where you
installed MinGW; this should be a directory that contains subdirecto-
ries with names like bin and lib. Check all of the “Create associations”
boxes when they appear. Besides that, the default installation settings
should work fine. Don’t worry about Plugins.

www.jetbrains.com/shop/eform/students
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/installer/mingw-w64-install.exe/download
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/installer/mingw-w64-install.exe/download
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/installer/mingw-w64-install.exe/download
https://www.jetbrains.com/clion/


eecs 211 lab 3 2

Mac

OS X automatically installs its toolchain when you attempt to use it A toolchain consists of a compiler and
other programming tools.from the command line for the first time. Thus, to install developer

tools, run the Terminal.app program (from /Applications/Utilities) to get a
command prompt. At the prompt, type

$ clang

and press return. If it prints “clang: error: no input files”
then you have it installed already. Otherwise, a dialog box will pop
up and offer to install the command-line developer tools for you. Say
yes.

Then go to this link to get CLion:

https://www.jetbrains.com/clion/

Press Download, then install CLion through their steps and login to
your JetBrains account in order to activate your CLion editor. The
default installation settings should work fine. Don’t worry about Plugins.

Using our first CLion Project

Once you have CLion installed, download the zip file from the course
site:

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab03.

zip

Once you have downloaded the zip file onto your laptop, extract the
zip file into its own folder. Make sure you keep track of which folder
it’s in! Next, open up CLion and Click on File –> Open Project, and
click on the Lab 3 project that you just unzipped.

Once you open the project, test out the output from the program
already loaded on your screen. In order to do this, look into the top
right corner of your CLion Window. Press the button that has a down
arrow with 1s and 0s. This is the Build button. This will essentially
set up our CMake environment we previously would have to build
on the command line. Then, press the arrow that looks like a play One big advantage of IDEs are their

ability to abstract out the command
line.

button just to the right of that, called the Run button. The first time
you press it, in the “Executable” line, click the dropdown menu
down to “lab3.” Next hit Apply, then you can hit Run. Notice in the
subwindow on the bottom of your CLion window. You can now see
our nice message in the output! This should remind you of DrRacket
from EECS 111. You have a top window where you edit your code,
and a bottom window which displays the output of your code when
it runs.

https://www.jetbrains.com/clion/
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab03.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab03.zip


eecs 211 lab 3 3

Continuing with Vectors and structs

If you remember from class, a Vector is a way of storing a group of
items together of the same type. The basic syntax of a vector for a
declaration is:

vector<type> varName;

You can initialize the vector with a set of values using the follow-
ing notation:

vector<type> varName = {var1, var2, varN};

Notice in the lab that we created a struct called Dog which is
located in our Dog.h which has a few member variables. In this lab,
you will be the owner of a dog sanctuary, where you want to make
sure that all the dogs are happy and getting along well together. Back
in lab3.cpp, in your main function, we created a few instances of Dogs
and gave them names, ages, and happiness ratings. We also created Note that the happiness rating is at the

discretion of your assistant and may be
wrong, but they’re doing their best so
cut them some slack!

a vector of the type Dog called dogs, initialized to contain all of the
Dogs that we created. Feel free to create one or two of your own dogs
and add them to the vector!

The first thing that you will be doing is trying to find the youngest
dog at your sanctuary, so that you can warn guests to the sanctu-
ary about them teething on the guests’ fingers. Go to the function That could stop donations from coming

in to help out all the dogs!skeleton we gave you for youngestDog in Dog.cpp, and try to write
a function that will return the Dog who is the youngest. You will
probably want to use a for loop, which you may recall has the form:

for (size_t i = 0; i < vectorName.size(); ++i) {

// Do stuff here with i, for example:

cout << vectorName[i] << ’\n’;

}

We put an example foreach loop in the main function to help you
out. Remember that you should be returning

the youngest Dog, not the youngest
Dog’s age.

Call the function you just wrote in the main function, and print
out the name of the youngest dog from your function’s result using
cout.

This time you just have to press the run button, and it will auto-
matically build your program for you and run it!

Now, once you have written youngestDog, write a similar function
called happiestDog where you have to find the happiest Dog in the
vector, and return that dog.

Again, go back to the main function and call your new function on
the dogs vector, and print out the name of the happiest dog.

Once you have found your happiest and youngest dogs, let’s
create a function that can help you find a dog’s owner given only



eecs 211 lab 3 4

the dog’s name. Fill in the function findOwner which takes in both a
vector<Dog> and a string, where you have to return the name of the
Dog’s owner which you found from the vector.

Once you have this, try it out by calling it in your main function to
ensure that you are able to find the name of a Dog’s owner, and test
out a few examples, printing out the names of the dog owners.

Dealing with Errors

Now, let’s consider the case where the dog name inputted to the
findOwner function is not in the dogs vector. In this case, let’s try Hopefully the dog sanctuary can find

the dog soon though!and print an error to the output, so we know that we have a weird
solution. We can use cerr to print out this to the output window for
our special error output.

Call findOwner with arguments which should create this error to
occur. Notice the color of the text in your output window for the
error!

Now, remember from class that while cerr will output an error in
your output window, it will not cause the program to fail/exit. Now,
let’s assume that if you can’t find the dog name in the dogs vector
that you want to stop running the program. We can throw a runtime

error using the following syntax:

throw runtime_error("Message for the error");

Now, notice when you run the program again, in the same call you
made before to findOwner, when you hit the error, instead of silently
outputting an error, your code will stop running entirely. You can
test this out by adding a cout line after your call to findOwner, and see
that it never runs!

Testing

For your homework, you will be writing your own tests to test the
code. We have provided you with tests already for this lab, but it is
important that you understand how to run unit tests using CLion, so
we will go over that now.

Click on the dog_test.cpp file that we have provided in the project.
Notice how we have already written your tests. For your homework,
you will have to write your own! Now let’s run the tests to see if
your code passes. In order to do so, go to the top right corner of
your CLion window, and click on the dropdown menu in between
the build and run buttons. You’ll notice that your dropdown menu
currently says "lab3". Now, go down to “dog_test” and select that.
Press run, and you will see the results of the tests running!



eecs 211 lab 3 5

If you want to go back and run your main code, you can easily go
back to the dropdown menu and select “lab3” instead of “dog_test.”

Please feel free to post on Piazza with any questions, or ask your
TA!


	Installing CLion
	Using our first CLion Project
	Continuing with Vectors and structs
	Dealing with Errors
	Testing

