
EECS 211 Lab 8
Inheritance
Winter 2017

In this week’s lab, we will be going over inheritance, and doing
some more practice with classes.

If you have any lingering questions during the lab, don’t hesitate
to ask your peer mentor!

Getting the code

Download the zip file from the course site:

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab08.

zip

After you have downloaded the zip file onto your laptop, extract the
zip file into its own folder. Make sure you keep track of which folder
it’s in! Next, open up CLion and Click on File –> Open Project, and
click on the Lab 8 project that you just unzipped.

Once you open the project, try building the lab and then running
the lab6 executable. You should see some output printed in your
output subwindow. If you need a reminder on how to build and
run code in CLion, consult lab 3/4 or ask your TA. Once this works,
you’re ready to start the lab!

Inheritance

General Idea

Inheritance is an incredibly important idea, central to object ori-
ented design. The main concept to understand for inheritance is the
parent-child relationship. This is represented in C++ with a base class
which contains the general information that a set of child classes,
called derived classes, inherit from. In situations where you have dif-
ferent variants of something which share several common required
functions and data members, inheriting from one base class can not
only help you abstract your code, but also help you have better code
organization.

An Example

Let’s say we are creating a geometry program which has a bunch
of different shapes we want to use. We could create a shape base
class that has circles, rectangles, and triangles all inheriting from our
shape parent, or base class. As you can imagine, some common fields

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab08.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab08.zip


eecs 211 lab 8 2

we may want would be things like the size of the perimeter of the
shape. However, for the circles we may also want to add a radius
field, and for the rectangles and triangles we may want to add length
and width fields.

The Protected Access Modifier

So far you had only seen public and private access modifiers. With
public data members and functions, both you and any other class can
access those fields. With private data members and functions, only
other member functions of your class can access those private data
members and functions. However, there is a third access modifier
called protected. With protected access modifiers, like private you
and your member functions are able to access the data member or
function. However, your derived classes now also are able to access
that same field! This basically becomes a way to make things private
to only you and your derived classes, and is extremely common and
important to object oriented design.

Representing This All in C++

In order to represent this in C++, we would first need to make the
Shape base class, then create the derived classes from the Shape base.

This looks something like this:

class Shape{

protected:

double perimeter_;

public:

void setPerimeter(double perimeter){

perimeter_ = perimeter;

}

// Virtual function:

virtual void print(){

cout<<"I am a Shape! \n";

}

};

class Rectangle: public Shape {

private:

double length_;

double width_;

public:

// Basic setters and getters:

void setLength(double length){



eecs 211 lab 8 3

length_ = length;

}

void setWidth(double width){

width_ = width;

}

double length(){

return length_;

}

double width(){

return width_;

}

// Area function:

double area(){

return width_ * length_;

}

void print(){

cout<<"I am a Rectangle! \n";

}

};

class Circle: public Shape {

private:

double radius_;

public:

void setRadius(double radius){

radius_ = radius;

}

double getRadius(){

return radius_;

}

// Area function:

// Notice how we are able

// to access the perimeter data member

double area(){

// area for circle =

// .5 * perimeter * radius

return .5 * perimeter * radius_;

}

void print(){

cout<<"I am a Circle! \n";

}



eecs 211 lab 8 4

};

Notice how for the area function of the Circle derived class, we are
able to access the perimeter_ data member from the parent shape. If
the perimeter_ data member of Shape had a private access modifier as
opposed to a protected access modifier, we wouldn’t be able to access
it.

Virtual Functions

Virtual functions are functions defined in a base class that will give
the derived class’s function with the same name, return types, and
arguments precedent over the virtual function. Let’s say we have our
print function for our Shape base class as defined above, with one
difference - let’s suppose that the print isn’t virtual. If that function
was not virtual, and you were to write the following code (assuming
we have the shapes from above, where both the Shape and each of the
derived classes have a print function defined):

Circle* circ;

Shape* shp = circ;

shp->print();

// --> Outputs:

// "I am a Shape!"

Since shp is using its print function, which is not a virtual func-
tion, even though shp points to a Circle, we are still using the base,
Shape class’s print function.

Now, if our Shape defined its print function as a virtual function
as we do actually have above, we would instead be using the derived,
Circle print function. This is illustrated below:

Circle* circ;

Shape* shp = circ;

shp->print();

// Outputs:

// "I am a Circle!"

Notice how with the exact same code besides changing the print
function to virtual, we are now able to have our derived class’s
function take priority! As you get more practice with inheritance, this
will become increasingly useful!



eecs 211 lab 8 5

Pure Virtual Functions

A pure virtual function is very similar to a virtual function. A pure
virtual function is a virtual function that is required to implemented
by a derived class that is not abstract. This means that a derived class
which is not abstract must implement the pure virtual function. We A non-abstract class doesn’t have any

pure virtual methods, like Circle in our
example above.

denote a pure virtual function by placing "= 0" in its declaration. For
example, in the Shape class we used above, we could make print a
pure virtual function as follows:

class Shape{

public:

// Pure virtual function:

virtual void print() = 0;

};

Abstract Base Classes

You want abstract base classes in situations where the parent is a
class that you can’t create without getting more specific. For example,
you can’t just have a generic vehicle. Instead, you would need to
have a specific type of a vehicle, like a car or a boat. In C++, abstract
base classes are defined simply as classes which have pure virtual
functions. In the example above, Shape is an abstract base class
because it has a pure virtual function. Abstract base classes, along
with virtual functions, as you’d suspect, allow you to easily abstract
concepts out into more generic ideas!

Practice Problems

For this section, we will be working with an abstract base class called
Vehicle and creating functions for its derived classes.

For our Vehicle class, its Drive function is a pure virtual function,
making it an abstract base class. However, we do need to define Drive
for our 3 inherited classes, our Boat, our Car, and our Plane.

A function to calculate distance looks something like distance
= velocity * time. In Vehicle.h we defined a DELTA_TIME variable to
signify the time that is supposed to pass in between each movement
call.

Implement the Drive Function

For our Car class, make your car move forward proportional to it’s
movement speed data member. This should be multiplied with



eecs 211 lab 8 6

DELTA_TIME then added to its position data member inherited from
the Vehicle class.

For the Plane class, assume that each engine gives you an addi-
tional 100 mph of speed. Use this to calculate the plane’s speed,
then from there you can find the distance moved, and add that to its
inherited position data member.

For the Boat class, assume the boat’s speed to be 20 mph if it’s a
sailboat, or 50 mph if it’s a motor boat, as determined by its move-

mentType_ data member. Use this to determine a speed, and again
move the boat’s inherited position.

Implement moveForDistance and moveForTime

Now, once you define these functions, go to your lab8.cpp File, and fill
in two functions: moveForDistance and moveForTime.

For moveForDistance, move the Vehicle passed in using its Drive
function until the position has changed by the specified distance.

For moveForTime, move the Vehicle passed in using its Drive func-
tion until the desired amount of time has passed.

Race Time!

Implement the function race, which takes in a vector of shared point-
ers to Vehicles and a distance. the function should move each Vehicle
over the specified distance and return the shared pointer to the Vehi-
cle that moved over the distance in the least amount of time.


	Getting the code
	Inheritance
	General Idea
	The Protected Access Modifier
	Virtual Functions
	Abstract Base Classes
	Polymorphism Practice
	Practice Problems

