
EECS 211 – Fundamentals of Computer Programming II Homework #3

Homework #3
Released: 01-25-2018

Due: 02-01-2018 11:59pm

In this homework, we are going to turn our effort in homework 2 into two tiny libraries, the circle library
and the prime library. Both libraries comes with three files and a main program:

• circle_lib.h contains the declarations of the APIs of the circle library. These include read_circle()
and overlapped(c1, c2).

• circle_lib.cpp contains the actual implementation of the circle APIs.

• circle_test.cpp contains the unit tests of the circle library.

• circle.cpp is the main program that uses the circle library to perform computation. In other words,
this program is the “client” of the circle library.

Similarly,

• prime_lib.h contains the declarations of the APIs of the prime library. These include is_prime(p),
generate_primes(n) and check_is_prime(p).

• prime_lib.cpp contains the actual implementation of the prime APIs.

• prime_test.cpp contains the unit tests of the prime library.

• prime.cpp is the client of the prime library.

To start this homework, first fill in the implementation of the functions read_circle, overlapped and
is_prime using your homework 2 solution. Also, complete the stub main function in circle.cpp by using
your code from homework 2 so that circle.cpp will run the same as in homework 2 except that it invokes
the circle library.

In the following sections, we are going to extend the prime library to implement Eratosthenes sieve
algorithm, improve the APIs to handle incorrect arguments and write unit tests for these two libraries.

1 Find Primes, Again
1.1 Generate All Primes
Implement the function vector<int> generate_primes(int n) that uses the sieve of Eratosthenes to gen-
erate all primes between 2 and n. The concept of the sieve of Eratosthenes is to identify all composite
numbers by marking the multiples of prime numbers on a table instead of using trial division to find factors.
First, the algorithm will create a big table containing every integers between 2 and n. Then, for the first
number p that is not crossed out, record it as prime and cross all its multiples out from the table.

Every composite number must have a prime factor that is smaller than itself. Thus, all composite numbers
would have been crossed out by that prime factor before we examine it. Therefore whenever we see a number
that is not crossed out from the table, it must be a prime.

To implement this,

1. Declare a vector of booleans, vector<bool> sieve;, to represent the big table. The size of sieve
should be n+1 so that we can use sieve[i] to represent whether i is crossed out from the table or not.

2. Mark sieve[i] as true for i between 2 and n.

3. Loop from 2 to n. Whenever we encounter a number i such that sieve[i] == true, mark sieve[i*2],
sieve[i*3], sieve[i*4], . . . as false.

4. Now, all i such that sieve[i] == true are prime numbers.

1

EECS 211 – Fundamentals of Computer Programming II Homework #3

1.2 Test Primality, Again
Implement the function bool check_is_prime(const std::vector<int>& primes, int p) that uses trial
division over primes to test whether p is a prime. So instead of dividing p by all integers between 2 and
p− 1, this function should only check the primes between 2 and p− 1.

We guarantee that the given vector primes will always be big enough to check p.

1.3 The main Function
prime.cpp contains a provided main function that calls the prime library. First, main will read a positive
integer n and use generate_prime to generate all primes up to n. Then, for every subsequent positive integer
p, main will invoke check_is_prime with the generated primes and p to check whether p is a prime and
print the corresponding string. main will terminate upon reading a zero.

Examples
1

When given the input

10
2
3
4
96
97
98
0

./prime should print

yes
yes
no
no
yes
no

2

When given the input

1000000
1000000007
1000000009
1000000011
2147483643
2147483647
0

./prime should print

yes
yes
no
no
yes

2

EECS 211 – Fundamentals of Computer Programming II Homework #3

2 Handle Errors
In this section, we are going to improve the APIs by checking whether their arguments are valid or not. For
simplicity, if any of the arguments is not reasonable, throw a runtime_error with the error message you
like (which, of course, should be informative and readable).

• Modify bool overlapped(Circle c1, Circle c2); to ensure that both c1 and c2 have non-negative
radius. If not, throw a runtime_error.

• Modify bool is_prime(int p);, bool check_is_prime(const vector<int>& primes, int p); and
vector<int> generate_primes(int n); to ensure that they are only called with positive integers (i.e.
p, n ≥ 1). If not, throw a runtime_error.

• Modify bool check_is_prime(const vector<int>& primes, int p); to ensure that primes is non-
empty. If not, throw a runtime_error.

3 Write Unit Tests
In this section, please improve the quality of the two libraries by writing appropriate unit tests to check that
the APIs work well under specified conditions.

3.1 bool overlapped(Circle c1, Circle c2);
• Write unit tests for this function. Also do check that this function does not treat tangent circles as

overlapping.

• Write unit tests to check that this function does throw an exception for erroneous arguments.

3.2 bool is_prime(int p);
• Write unit tests to check that this function works for 1 ≤ p ≤ 5.

• Write unit tests to check that this function does throw an exception for erroneous arguments.

3.3 vector<int> generate_primes(int n);
• Write unit tests to check that this function works for some n which is not a prime.

• Write unit tests to check that this function works for some n which is a prime.

• Write unit tests to check that this function does throw an exception for erroneous arguments.

3.4 bool check_is_prime(const vector<int>& primes, int p);
• Write unit tests to check that this function works for 1 ≤ p ≤ 5.

• Write unit tests to check that this function and is_prime agrees with each other.

• Write unit tests to check that this function do throw an exception for erroneous arguments.

3

