
EECS 211 Lab 2
Control Statements, Functions and Structures

Winter 2018

Today we are going to practice navigating in the shell and writing
basic C++ code.

Getting Started

Let’s get started by logging into a remote Northwestern server. We
did this last week, but if you need help remembering the steps, they
are included below. The list of remote Northwestern servers

can be found here: http://www.mccormick.
northwestern.edu/eecs/documents/
current-students/student-lab-hostnames.pdfWindows

Open PuTTY. You’ll need to enter a hostname to login to. The link
on the right will take you to a list of student lab hostnames (such as
tlab-03.eecs.northwestern.edu or batman.eecs.northwestern.edu). Ensure
SSH is selected, then press Open. When prompted, enter your EECS
username and password (not necessarily the same as your NetID
password) and you’re good to go.

Mac/Linux

Open up your terminal. At the prompt, use the ssh command of the
form

$ ssh [eecs-id]@[eecs-host].eecs.northwestern.edu

where [eecs-id] is your EECS username (probably your NetID) and
[eecs-host] is replaced by one of the EECS hostnames from the list
of student lab hostnames (such as tlab-03.eecs.northwestern.edu or
batman.eecs.northwestern.edu). When prompted, type in your EECS
username and password (not necessarily your NetID password),
press Enter again, and you should be logged in remotely!

Getting the code

Recall our basic Unix commands: cd, ls, mkdir, and pwd. What do they
stand for and what do they do? Ask your TA if you don’t remember. Or ask Google.

Use the following wget command to download the code into your
directory of choice. It’s easiest to just use your home directory, which
is where you start out when you first log in to the server.

$ wget http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab02.zip

http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf
http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf


eecs 211 lab 2 2

Once we have our ZIP file, we will need to turn it in file directory
using the unzip command.

$ unzip eecs211-lab02.zip

You should now have a directory called eecs211-lab02.

Setting up the build system

Type the $ dev command into the shell to ensure that you are using
the correct developer toolset. You must do this every time you open
a remote connection and plan on using CMake. Next, change your
directory to eecs211-lab02. Make a new subdirectory called build and
navigate into it. Then, the first time you set up the project, use the
command cmake in order to setup the CMake build system. Note the two periods, which tell cmake

to run on the parent of the current
working directory.$ cmake ..

Writing the code

Navigate to your eecs211-lab02 directory, and open up lab2.cpp in
Emacs using

$ emacs -nw lab2.cpp

Notice that there is already some skeletons of functions and some
code in main() here.

Iteration

First, find the function called sumNumbers.We are going to use this Notice that sumNumbers is going to
return an int.function to sum up all of the numbers from 1 to num. If you remem-

ber from class, we have a few ways of iterating through numbers,
most notably for and while. We will be using both, but first we will be
using while.

While loops

As we learned in class, a while loop has the following syntax: Note that in while loops we usually will
use a boolean expression for <expr> (an
expression which returns True or False)while (<expr>) {

// Looping through code here

// Until <expr> is false

}

Use a while loop inside our sumNumbers in order to add the
numbers from 1 to num together. Make sure to use a return statement Remember that we have the ++ and +=

functions to help us.to return the sum that we aggregated!



eecs 211 lab 2 3

Once you think that your function works as intended, save and
exit emacs, then navigate to the build directory. If you remember C-x C-s to save and C-x C-c to exit

from last week, we used the make command in order to turn our C++
file into machine code. Making sure you are in the build directory,
type in

$ make lab2
Remember, make works as follows:
$ make [target]. Target is the name of
the executable file that will be built by
the make command.

If everything works, if we list our files, we should now see a file
called lab2. Enter the command

$ ./lab2

See if your value looks right! If it doesn’t, don’t worry, Rome wasn’t
built in a day. Go back to your lab2 directory and try and see what
went wrong. Play around with the value of numBound and see how it Error messages may look scary, but in

reality, they’re there to help you! Not
intimidate you!

affects the result.

For loops

Once we have everything working with our while loop, let’s work
on using a for loop. To help you remember the syntax, here is an
example of a for loop to print out the values from 1 to 5

for (int i = 1; i <= 5; ++i) {

// Note that the code inside the curly braces is the code

// That is ran each iteration of the for loop

cout << i << ’\n’;

}

Go back to our sumNumbers function, and try to replace your while
loop expression with a for loop to accomplish the same task.

Once you are done, again, navigate into your build directory, then
make and run your file. See if everything looks the same! If not, no
worries, go back and try again!

Structs

Structs are an important tool in C++ for grouping data together. In
your lab2.cpp you will notice that we created an Apple structure for
you. This is so that we can organize attributes of Apples together in How ’bout ’dem apples?

a convenient way. If you look inside our Apple struct, we decided
that we will want to know the weight, the variety, and the color of
our apples. In our main(), we created an example of a Red Delicious
Apple. Now, create your own type of apple (you’ll need to define it
as a type Apple), and give it those three attributes. Add in a print
statement (we gave you an example one) to print out your new



eecs 211 lab 2 4

Apple. Navigate back to your build directory, and then make and run
your lab2 file! Hopefully everything works as expected! If not, don’t
fret or get upset, go back and make changes!

Now that we know all about Apples, let’s create our own structure.
Define a structure of your favorite animal, and give your animal three
attributes, with one of them being age. Don’t forget to give your
attributes types. You can create a new struct that looks very similar
to the Apple we created. Don’t forget the semi-colon after the

closing brace.Once you have created your animal, go into main() and create an
instance of your animal, assign it those three attributes, and then
create a print statement to print out information about your animal.
These print statements are getting annoying; we’ll tackle that soon.

Navigate back to your build directory, make and run lab2, and see
if your new animal shows up the way that you intended. Hopefully
everything works! If not, as usual, go back and try and find what
went wrong and update your code.

Creating your own function

So far, we’ve been filling in skeleton functions that were provided
for you. Now it’s time to write your own function from scratch.
Remember how annoying it was to type out the cout lines each time
you wanted to print out your animal? We’re going to abstract that
out and replace it with a simple call to a function!

Write a function called printAnimal that uses cout to print out
your animal’s three attributes. Note that this should take in one
argument(of the same type as your animal struct). Think about what
type your function should be! Note that the void return type signifies

that nothing is returnedOnce you wrote your function, go to your main function and
replace your print statement with a call to printAnimal(). remember to pass your animal instance

to the functionGo back to your build directory, make and run lab2, and see if
everything still works!

Control statements

Now that we have gotten the hang of structs and functions, let’s
practice our control statements. Go back to our printAnimal function.
Remember from hw1 and class that if statements have the basic
following syntax:

if (<test-expression>) {

// run if <test-expression> evaluates to true

} else {

// run if <test-expression> evaluates to false

// note that you don’t necessarily need an else case



eecs 211 lab 2 5

}

Using an if and else statement, check your animals age and add to
your printAnimal function a line to print out “This animal is old!” if
the animal is at least 10 and print out “This animal is not that old” if
the animal is younger than 10.

Go back to the build directory, make and run lab2, and see if this
feature is working!


	Getting Started
	Getting the code
	Writing the code

