
EECS 211 Lab 4
Shared Pointers and References

Winter 2017

Today we will be getting comfortable with shared pointers and
references. We’ll review what they are, how to use them, and what
they are useful for. This can be a very tricky subject, so don’t get
discouraged if it is a bit difficult at first.

Getting the code

Download the zip file from the course site:

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab04.

zip

After you have downloaded the zip file onto your laptop, extract the
zip file into its own folder. Make sure you keep track of which folder
it’s in! Next, open up CLion and Click on File –> Open Project, and
click on the Lab 4 project that you just unzipped.

Once you open the project, try building the lab and then running
the lab4 executable. You should see a friendly message printed in
your output subwindow. If you need a reminder on how to build and
run code in CLion, consult lab 3 or ask your TA. Once this works,
you’re ready to start the lab!

Shared Pointers

A pointer is a variable. It’s similar to other variables that we’ve
learned about so far, however, there’s one big distinction. A pointer
itself doesn’t actually contain the data that you tend to use in your
functions. Instead, a pointer’s data is actually just where it points to
in memory. But, at the place where that pointer points in memory,
there can be the typical data that we are used to seeing. You need to
tell C++ in advance what data type will be stored where the pointer
points to, using the following syntax:

shared_ptr<DATA_TYPE> ptr_name;

However, this is just creating a null pointer, without actually creating We’ll get into these more in a bit.

an address in memory for our pointer. If we want to create a spot in
memory for our pointer, we use the following syntax:

shared_ptr<DATA_TYPE> ptr_name = make_shared<DATA_TYPE>();

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab04.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab04.zip


eecs 211 lab 4 2

If you can look in your lab4.cpp, you can see we created a shared_ptr
called crazy_ptr using the following syntax:

shared_ptr<Circus> crazyPtr = make_shared<Circus>();

*crazyPtr = crazyCircus;

The first line of this code declares our shared_ptr to point to a
Circus in memory. The next line tells the place in memory that
crazy_ptr points to to hold a Circus that we previously defined called
crazy_circus. This is done through dereferencing crazy_ptr, a.k.a. putting
an asterisk before the shared_ptr. This gives us the value at the place
in memory our shared_ptr points to.

Null Pointers

If we are creating a shared_ptr by just declaring it without defining
it with make_shared, we get what is called a null pointer, which is
represented in C++ by nullptr. When creating libraries and API’s, it is
very important to consider the case where your function receives a Really important.

nullptr as input, as a nullptr can’t be de-referenced.

Why Use Shared Pointers?

When you start a C++ program, you get allocated a certain amount
of memory for your program to store local variables, where you are
in your program, and your program itself in a place called the Stack. The size of your stack varies depending

on your operating system, your com-
piler version, and a few other factors,
but generally nowadays it’ll be around 1

MB

This stack is limited in memory, so when you start getting bigger
data structures you want to define, you will realize quickly how easy
it is to run out of space on your stack creating what is called a Stack
Overflow. Now, to avoid this, you can define a small pointer on your
stack, which points to a place in memory in the free store, a big pool
of memory on your computer that is not already allocated to your
program. Defining a shared_ptr itself on your stack does not take
up much memory, but the object it points to may take up a lot of
memory. This is why it is important to have that object be in free
store, and just access that data through our pointers.

For example, in the lab4.cpp, you can see that crazy_ptr, our
pointer to the crazy_circus, only took up 16 bytes of memory, but
the crazy_circus itself took up 160 bytes of memory.

References
The caller is the function that calls
another function (the callee), while the
callee is the function that is called by
the caller

If you remember from class, passing a variable by reference allows
the callee to borrow a reference to the variable passed by the caller.
Thus means that the caller and callee are operating on the same



eecs 211 lab 4 3

variable. So, if the callee modifies the variable, the result is visible
to the caller. This is denoted by an ampersand before the argument
name in the function definitions and declarations.

When a variable is passed by copy, the caller passes a copy of the
variable to the callee. This means that the caller and callee have two
different variables with the same value. So, if the callee modifies the
parameter, the result is not visible to the caller.

This is probably still a bit confusing, so go to circus.cpp and check
out the two functions passed_by_copy and passed_by_reference. While
these functions are identical on the outside, notice how they can
affect the variables passed into the functions from int main(). In
lab4.cpp we print out name and owner after each function call and
notice how after the passed_by_copy function call, name and owner are
still the same as before the function call. Also notice how after the
passed_by_reference function call, the variables values were changed by
that function.

Practicing with Shared Pointers and References

Now that we’ve reviewed how and why to use shared pointers
and references, let’s get some practice. Open up circus.cpp in CLion.
There’s several function skeletons waiting to be implemented. Give
them a try and see if you can get them working - if things aren’t
making sense, don’t hesitate to ask your TA! We’ve included a set of
test cases in circus_test.cpp, which you can run after you build your
code.


	Getting the code
	Shared Pointers
	References
	Practicing with Shared Pointers and References

