
EECS 211 Lab 7
Raw Pointers and Memory Management

Winter 2017

In this week’s lab, we will be going over raw pointers and memory
management. You already know pointers and the idea of memory
management from shared pointers, but we will be taking a deeper
dive into how pointers really work without the nice abstractions.

If you have any lingering questions during the lab, don’t hesitate
to ask your peer mentor!

Getting the code

Download the zip file from the course site:

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab07.

zip

After you have downloaded the zip file onto your laptop, extract the
zip file into its own folder. Make sure you keep track of which folder
it’s in! Next, open up CLion and Click on File –> Open Project, and
click on the Lab 7 project that you just unzipped.

Once you open the project, try building the lab and then running
the lab6 executable. You should see some output printed in your
output subwindow. If you need a reminder on how to build and
run code in CLion, consult lab 3/4 or ask your TA. Once this works,
you’re ready to start the lab!

Basic Raw Pointer Syntax

De-referencing

Raw pointers are no different than shared pointers in the sense
that they store an address in memory. There are a few differences,
however. One difference is the syntax.

When you create a shared pointer, you have to use the shared
pointer notation to create one, like this:

shared_ptr<TYPE> sharedPtr;

This will initialize sharedPtr to be nullptr.
To create a raw pointer type, you simply put an asterisk next to the

type of the variable name, like this:

Node* nodePtr;

http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab07.zip
http://users.eecs.northwestern.edu/~jesse/course/eecs211/lab/eecs211-lab07.zip

eecs 211 lab 7 2

This creates a raw pointer to a Node,
but the generic notation is TYPE*
rawPtr

Once you have both a nodePtr or a sharedPtr, you can de-reference
them the exact same way! Assuming pointers to Nodes, here is how
you de-reference them!

// Assuming rawPtr and sharedPtr are pointers to Nodes

// which are filled in without errors

*rawPtr; //Gives you the Node stored at rawPtr’s address

*sharedPtr; // Gives you the Node stored at sharedPtr’s address.

// You can also use the -> operator for a class to de-reference

// and access a member variable or function.

rawPtr-> data ;

// de-references rawPtr and then access it’s data field

sharedPtr ->findNextCommonDataField()

// de-references sharedPtr then uses

// its member function, findNextCommonDataField.

Getting an address of a variable

One other cool thing you have the ability to do with raw pointers is
to set them equal to the address of stack variables. This is not something you want to do

with shared pointers, as that can get
ugly real quick

To do this, we employ the ampersand which is used to pass vari-
ables by reference:

double dub = 5.0;

double* dubPtr = &dub;

// This makes dubPtr equal to dub’s address on the stack.

// if you check, dub now equals the value at dubPtr,

// *dubPtr, which equals 5

CHECK_EQUAL(dub, *dubPtr); // returns True.

// If you change the value of dub, when

// you derefence dubPtr, the value will be consistent

// with the new value of dub

dub = 7.5;

CHECK_EQUAL(dub, *dubPtr); // still return true

// *dubPtr = 7.5;

// Likewise, if you change the value of

// *dubPtr, the value of dub will change as well

eecs 211 lab 7 3

*dubPtr = 10.0;

CHECK_EQUAL(dub, *dubPtr); // true still

// dub now is equal to 10.0

Memory Management

When you are allocating space on the heap for your objects with raw
pointers and shared pointers, the idea is identical, but the syntax is
slightly different. For shared pointers, as you remember, the syntax
looks something like this:

shared_ptr<TYPE> sharedPtr = make_shared<TYPE>();

This allocates space on the heap for sharedPtr, giving it the number of
bytes that TYPE takes up. Then sharedPtr is given the address for the
beginning of that contiguous set of memory in the heap.

For raw pointers, the syntax looks something like this:

TYPE* rawPtr = new TYPE();

Just like with the sharedPtr, rawPtr has space on the heap allocated
for it, giving rawPtr the address of the start of a contiguous set of
memory in the heap of the same size as TYPE.

However, unlike with shared pointers, raw pointers require a
much larger sense of caution! When you are done using a shared
pointer, under the hood, C++ gives that memory in the heap back to
your operating system, so you are able to use that for other applica-
tions. Think about the 200 chrome tabs you

have open and all the memory they are
eating

However, when you are done using a raw pointer, you have to
manually tell your operating system that it can use the memory that
your object took up on the heap.

The syntax looks like this:

delete rawPtr;

One thing to consider additionally, is that if you are done using
an array, you have to de-reference the array using the special array
notation:

delete[] arrayPtr;

While the syntax is simple, knowing when to de-allocate your
memory can be tricky! If you don’t de-allocate properly, you’re

going to end up with memory leaks,
meaning you’re going to lose all of your
precious chrome tabs!!!

Most of de-allocating memory is just remembering when you are
done using the pointer, then using the simple delete syntax!

eecs 211 lab 7 4

We talking about practice!
https://www.youtube.com/watch?v=
eGDBR2L5kzIIn lab7.cpp, fill in the function getLength in order to return the length

of an array passed in (remember from above that an array is just
stored as pointer). This will return the number of elements in the
array, not the number of contiguous bytes in memory the array takes
up. To make this easier, we will guarantee that the last element of
the array is 0, and no other element will be equal to 0. We pass in
the sizeof of each element, which you can choose to use, but it is
definitely not necessary.

Also in lab7.cpp, fill in the function swapValues, which takes in
two raw pointers and swaps the values stored at those addresses in
memory.

Now, if you remember from lectures or EECS 111, a binary search
tree is a tree structure where all nodes to the left of your node have
data smaller than you, and all nodes to your right have data bigger
than you. for today assume no duplicate values of

dataIf you go to TreeNode.cpp, you will see a few functions for you to
fill in.

First, fill in the function findLargest, which will traverse your tree
and return the largest element in your tree’s TreeNode*

Next, fill in the function largestLessThan, which goes through
your tree, and finds the largest TreeNode with a data less than the
specified upper bound passed in.

Now, write the function largestBetween, which goes through your
tree and finds the largest TreeNode between the two bounds, and if
there is no element between the two bounds, then throw an exception.
Note that this is almost identical to the previous function, minus the
exception throwing.

Write a function insertNode that adds a TreeNode to the tree with
the specified data. Work under the assumption that no TreeNode

already exists what that same data amount in the tree.
Write the destructor function for the TreeNode class. This may

seem exceptionally challenging as you may think you need to tra-
verse through the tree first, then de-allocate each node recursively.
However, in C++, when you call delete on an object, if any of that ob-
ject’s members also have a destructor, they are also called by default,
making this easier for you.

Some Challenges

Fill in the function removeNode, which removes a TreeNode from the
original TreeNode.

When you remove the element, it is important to think about

https://www.youtube.com/watch?v=eGDBR2L5kzI
https://www.youtube.com/watch?v=eGDBR2L5kzI

eecs 211 lab 7 5

where the left and the right children are supposed to go in the tree
when you re-assign them. In addition, don’t forget to de-allocate
memory for the removed TreeNode.

	Getting the code
	Basic Raw Pointer Syntax
	Memory Management
	We talking about practice!

