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Kinds of graphs



A graph (undirected)
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G = (V ,E)

V = {a,b, c,d,e, f ,g,h, i, j, k, `}
E = {{a,b}, {a, c}, {a,d}, {a, f}, {b,d}, {c, f},

{c,h}, {c, j}, {d,g}, {e,g}, {e, i}, {e,m},
{f ,g}, {f , j}, {g, j}, {g, k}, {h, i}, {h, j}, {i, j}}3



A directed graph

with cycles
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G = (V ,E)

V = {a,b, c,d,e, f}
E = {(a,b), (b, c), (c,d), (c, f), (d,d), (d,e), (e, f), (f ,e)}
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A DAG (directed acyclic graph)
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A weighted, directed graph
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G = (V ,E,w)

V = {a,b, c,d,e, f}
E = {(a,b), (b, c), (c,d), (c, f), (d,d), (d,e), (e, f), (f ,e)}
w = {(a,b) 7→ 1, (b, c) 7→ 2, (c,d) 7→ 1, (c, f) 7→ 12, . . .}
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A little graph theory



Some graph definitions
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If {v,u} ∈ E then v and u are adjacent
If {v0, v1}, {v1, v2}, . . . , {vk−1, vk} ∈ E then there is a path from
v0 to vk , and we say v0 and vk are connected
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Components

a

b
c

d

e

f

g
h

i

j

A subgraph of nodes all connected to each other is a connected
component; here we have two
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Degree

The degree of a vertex is the number of adjacent vertices:

degree(v,G) =
∣∣{u ∈ V : {u, v} ∈ E}

∣∣ where G = (V ,E)

The degree of a graph is the maximum degree of any vertex:

degree(G) = max
v∈V

degree(v,G) where G = (V ,E)

Sometimes we will refer to the degree as d, such as when we
say that a particular operation is O(d).
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Some digraph definitions
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If (v,u) ∈ E, v is the direct predecessor of u and u is the direct
successor of v
If (v0, v1), (v1, v2), . . . , (vk−1, vk) ∈ E then there is a path from v0
to vk ; we say that vk is reachable from v0
If vk and v0 are mutually reachable from each other, they are
strongly connected
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Strongly connected components
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In a digraph, a subgraph of vertices all strongly connected to
each other is a strongly connected component; here we have a
connected graph with two SCCs
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Dense versus sparse
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Programming with graphs



A graph ADT

Looks like (V ,E) (as above)
Operations:

• newVertex(Graph): Integer
• addEdge(Graph, Integer, Integer): Void
• hasEdge(Graph, Integer, Integer): Bool
• getVertices(Graph): IntegerSet
• getNeighbors(Graph, Integer): IntegerSet

Invariants:

• V = {0, 1, . . . , |V | − 1}
•
⋃

E ⊆ V
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Graph ADT laws

1. {g = (V ,E)} newVertex(g) = n {g = (V ∪ {n},E)} where
n = max(V) + 1

2. {g = (V ,E) ∧ n,m ∈ V} addEdge(g,n,m) {g =
(V ,E ∪ {{n,m}})}

3. {g = (V ,E) ∧ {n,m} ∈ E} hasEdge(g,n,m) = >
4. {g = (V ,E) ∧ {n,m} 6∈ E} hasEdge(g,n,m) = ⊥
5. {g = (V ,E)} getVertices(g) = V
6. {g = (V ,E)} getNeighbors(g,n) = {m ∈ V : {m,n} ∈ E}
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A digraph ADT

Looks like (V ,E) (as above, E contains ordered pairs of
vertices)
Operations:

• newVertex(Graph): Integer
• addEdge(Graph, Integer, Integer): Void
• hasEdge(Graph, Integer, Integer): Bool
• getVertices(Graph): IntegerSet
• getSuccessors(Graph, Integer): IntegerSet
• getPredecessors(Graph, Integer): IntegerSet

Invariants:

• V = {0, 1, . . . , |V | − 1}
• ∀(v,u) ∈ E. v ∈ V ∧ u ∈ V
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Digraph ADT laws

1. {g = (V ,E)} newVertex(g) = n {g = (V ∪ {n},E)} where
n = max(V) + 1

2. {g = (V ,E) ∧ n,m ∈ V} addEdge(g,n,m) {g =
(V ,E ∪ {(n,m)})}

3. {g = (V ,E) ∧ (n,m) ∈ E} hasEdge(g,n,m) = >
4. {g = (V ,E) ∧ (n,m) 6∈ E} hasEdge(g,n,m) = ⊥
5. {g = (V ,E)} getVertices(g) = V
6. {g = (V ,E)} getSuccessors(g,n) = {m ∈ V : (n,m) ∈ E}
7. {g = (V ,E)} getPredecessors(g,n) = {m ∈ V : (m,n) ∈

E}
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A weighted digraph ADT
Looks like (V ,E,w) (as above)
Operations:

• newVertex(Graph): Integer
• setEdge(Graph, Integer, Weight∞, Integer): Void
• getEdge(Graph, Integer, Integer): Weight∞
• getVertices(Graph): IntegerSet
• getSuccessors(Graph, Integer): IntegerSet
• getPredecessors(Graph, Integer): IntegerSet

where Weight∞ is either a numeric weight or infinity

Additional invariant:

• ∀v,u ∈ V :

I If (v,u) ∈ E then w(v,u) < ∞
I If (v,u) 6∈ E then w(v,u) = ∞
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Weighted digraph ADT laws

1. {g = (V ,E,w)} newVertex(g) = n {g = (V ∪ {n},E,w)}
where n = max(V) + 1

2. {g = (V ,E,w) ∧ n,m ∈ V} setEdge(g,n,a,m) {g =
(V ,E ∪ {(n,m)},w{(n,m) 7→ a})}

3. {g = (V ,E,w) ∧ (n,m) ∈ E} getEdge(g,n,m) = w(n,m)

4. {g = (V ,E,w) ∧ (n,m) 6∈ E} getEdge(g,n,m) = ∞
5. {g = (V ,E,w)} getVertices(g) = V
6. {g = (V ,E,w)} getSuccessors(g,n) = {m ∈ V : (n,m) ∈

E}
7. {g = (V ,E,w)} getPredecessors(g,n) = {m ∈ V : (m,n) ∈

E}
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Graph representation



Two graph representations

There are two common ways that graphs are represented on a
computer:

• adjacency list
• adjacency matrix
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Adjacency list
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In an array, store a list of neighbors (or successors) for each
vertex:

1 2

0 2

0 1 3

2
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Adjacency matrix
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Store a |V |-by-|V | matrix of Booleans indicating where edges
are present:

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0
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A directed adjacency matrix example
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0 1 2 3 4 5
0 0 1 0 0 0 0
1 0 0 1 0 0 0
2 0 0 0 1 0 1
3 0 0 0 1 1 0
4 1 0 0 0 0 1
5 1 1 0 1 1 0
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With weights
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0 1 2 3 4 5
0 ∞ 2 ∞ ∞ ∞ ∞
1 ∞ ∞ 7 ∞ ∞ ∞
2 ∞ ∞ ∞ −4 ∞ 1
3 ∞ ∞ ∞ 10 8 ∞
4 1 ∞ ∞ ∞ ∞ 0
5 2 3 ∞ 4 5 ∞
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Space comparison

Adjacency list—has a list for each vertex, and the total length of
all the lists is the number of edges: O(V + E)

Adjacency matrix—is |V | by |V | regardless of the number of
edges: O(V2)

When might we want to use one or the other?
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Time comparison

adj. list adj. matrix
addEdge/setEdge

O(setInsert(d)) O(1)
getEdge/hasEdge O(setLookup(d)) O(1)

getSuccessors O(|Result|) O(V)
getPredecessors O(V + E) O(V)
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Next time: graph search
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