
Graphs and their representations

EECS 214, Fall 2017

Kinds of graphs

A graph (undirected)

a

b

c

d

f
g

hi

e
j

k

`

m

n

o

G = (V ,E)

V = {a,b, c,d,e, f ,g,h, i, j, k, `}
E = {{a,b}, {a, c}, {a,d}, {a, f}, {b,d}, {c, f},

{c,h}, {c, j}, {d,g}, {e,g}, {e, i}, {e,m},
{f ,g}, {f , j}, {g, j}, {g, k}, {h, i}, {h, j}, {i, j}}3

A directed graph

with cycles

a

b
c

d

e

f

G = (V ,E)

V = {a,b, c,d,e, f}
E = {(a,b), (b, c), (c,d), (c, f), (d,d), (d,e), (e, f), (f ,e)}

4

A directed graph

with cycles

a

b
c

d

e

f

G = (V ,E)

V = {a,b, c,d,e, f}
E = {(a,b), (b, c), (c,d), (c, f), (d,d), (d,e), (e, f), (f ,e)}

4

A directed graph with cycles

a

b
c

d

e

f

G = (V ,E)

V = {a,b, c,d,e, f}
E = {(a,b), (b, c), (c,d), (c, f), (d,d), (d,e), (e, f), (f ,e)}

4

A directed graph with cycles

a

b
c

d

e

f

G = (V ,E)

V = {a,b, c,d,e, f}
E = {(a,b), (b, c), (c,d), (c, f), (d,d), (d,e), (e, f), (f ,e)}

4

A DAG (directed acyclic graph)

a b

c

d e

f g h

i j

k `

m

5

A weighted, directed graph

1

2

1

6

3

77

−3−3 00

12

2

2

a

b
c

d

e

f 4

G = (V ,E,w)

V = {a,b, c,d,e, f}
E = {(a,b), (b, c), (c,d), (c, f), (d,d), (d,e), (e, f), (f ,e)}
w = {(a,b) 7→ 1, (b, c) 7→ 2, (c,d) 7→ 1, (c, f) 7→ 12, . . .}

6

A little graph theory

Some graph definitions

a

b
c

d

e

f

g
h

i

j

If {v,u} ∈ E then v and u are adjacent
If {v0, v1}, {v1, v2}, . . . , {vk−1, vk} ∈ E then there is a path from
v0 to vk , and we say v0 and vk are connected

8

Some graph definitions

a

b
c

d

e

f

g
h

i

j

If {v,u} ∈ E then v and u are adjacent

If {v0, v1}, {v1, v2}, . . . , {vk−1, vk} ∈ E then there is a path from
v0 to vk , and we say v0 and vk are connected

8

Some graph definitions

a

b
c

d

e

f

g
h

i

j

If {v,u} ∈ E then v and u are adjacent
If {v0, v1}, {v1, v2}, . . . , {vk−1, vk} ∈ E then there is a path from
v0 to vk , and we say v0 and vk are connected

8

Components

a

b
c

d

e

f

g
h

i

j

A subgraph of nodes all connected to each other is a connected
component; here we have two

9

Degree

The degree of a vertex is the number of adjacent vertices:

degree(v,G) =
∣∣{u ∈ V : {u, v} ∈ E}

∣∣ where G = (V ,E)

The degree of a graph is the maximum degree of any vertex:

degree(G) = max
v∈V

degree(v,G) where G = (V ,E)

Sometimes we will refer to the degree as d, such as when we
say that a particular operation is O(d).

10

Degree

The degree of a vertex is the number of adjacent vertices:

degree(v,G) =
∣∣{u ∈ V : {u, v} ∈ E}

∣∣ where G = (V ,E)

The degree of a graph is the maximum degree of any vertex:

degree(G) = max
v∈V

degree(v,G) where G = (V ,E)

Sometimes we will refer to the degree as d, such as when we
say that a particular operation is O(d).

10

Degree

The degree of a vertex is the number of adjacent vertices:

degree(v,G) =
∣∣{u ∈ V : {u, v} ∈ E}

∣∣ where G = (V ,E)

The degree of a graph is the maximum degree of any vertex:

degree(G) = max
v∈V

degree(v,G) where G = (V ,E)

Sometimes we will refer to the degree as d, such as when we
say that a particular operation is O(d).

10

Some digraph definitions

a

b
c

d

e

f

If (v,u) ∈ E, v is the direct predecessor of u and u is the direct
successor of v
If (v0, v1), (v1, v2), . . . , (vk−1, vk) ∈ E then there is a path from v0
to vk ; we say that vk is reachable from v0
If vk and v0 are mutually reachable from each other, they are
strongly connected

11

Some digraph definitions

a

b
c

d

e

f

If (v,u) ∈ E, v is the direct predecessor of u and u is the direct
successor of v

If (v0, v1), (v1, v2), . . . , (vk−1, vk) ∈ E then there is a path from v0
to vk ; we say that vk is reachable from v0
If vk and v0 are mutually reachable from each other, they are
strongly connected

11

Some digraph definitions

a

b
c

d

e

f

If (v,u) ∈ E, v is the direct predecessor of u and u is the direct
successor of v
If (v0, v1), (v1, v2), . . . , (vk−1, vk) ∈ E then there is a path from v0
to vk ; we say that vk is reachable from v0

If vk and v0 are mutually reachable from each other, they are
strongly connected

11

Some digraph definitions

a

b
c

d

e

f

If (v,u) ∈ E, v is the direct predecessor of u and u is the direct
successor of v
If (v0, v1), (v1, v2), . . . , (vk−1, vk) ∈ E then there is a path from v0
to vk ; we say that vk is reachable from v0

If vk and v0 are mutually reachable from each other, they are
strongly connected

11

Some digraph definitions

a

b
c

d

e

f

If (v,u) ∈ E, v is the direct predecessor of u and u is the direct
successor of v
If (v0, v1), (v1, v2), . . . , (vk−1, vk) ∈ E then there is a path from v0
to vk ; we say that vk is reachable from v0
If vk and v0 are mutually reachable from each other, they are
strongly connected

11

Strongly connected components

a

b
c

d

e

fg

h

In a digraph, a subgraph of vertices all strongly connected to
each other is a strongly connected component; here we have a
connected graph with two SCCs

12

Dense versus sparse

1
2

3

4 5

6

7
1

2

3

4 5

6

7

13

Programming with graphs

A graph ADT

Looks like (V ,E) (as above)
Operations:

• newVertex(Graph): Integer
• addEdge(Graph, Integer, Integer): Void
• hasEdge(Graph, Integer, Integer): Bool
• getVertices(Graph): IntegerSet
• getNeighbors(Graph, Integer): IntegerSet

Invariants:

• V = {0, 1, . . . , |V | − 1}
•
⋃

E ⊆ V

15

A graph ADT

Looks like (V ,E) (as above)
Operations:

• newVertex(Graph): Integer
• addEdge(Graph, Integer, Integer): Void
• hasEdge(Graph, Integer, Integer): Bool
• getVertices(Graph): IntegerSet
• getNeighbors(Graph, Integer): IntegerSet

Invariants:

• V = {0, 1, . . . , |V | − 1}
•
⋃

E ⊆ V

15

Graph ADT laws

1. {g = (V ,E)} newVertex(g) = n {g = (V ∪ {n},E)} where
n = max(V) + 1

2. {g = (V ,E) ∧ n,m ∈ V} addEdge(g,n,m) {g =
(V ,E ∪ {{n,m}})}

3. {g = (V ,E) ∧ {n,m} ∈ E} hasEdge(g,n,m) = >
4. {g = (V ,E) ∧ {n,m} 6∈ E} hasEdge(g,n,m) = ⊥
5. {g = (V ,E)} getVertices(g) = V
6. {g = (V ,E)} getNeighbors(g,n) = {m ∈ V : {m,n} ∈ E}

16

A digraph ADT

Looks like (V ,E) (as above, E contains ordered pairs of
vertices)
Operations:

• newVertex(Graph): Integer
• addEdge(Graph, Integer, Integer): Void
• hasEdge(Graph, Integer, Integer): Bool
• getVertices(Graph): IntegerSet
• getSuccessors(Graph, Integer): IntegerSet
• getPredecessors(Graph, Integer): IntegerSet

Invariants:

• V = {0, 1, . . . , |V | − 1}
• ∀(v,u) ∈ E. v ∈ V ∧ u ∈ V

17

Digraph ADT laws

1. {g = (V ,E)} newVertex(g) = n {g = (V ∪ {n},E)} where
n = max(V) + 1

2. {g = (V ,E) ∧ n,m ∈ V} addEdge(g,n,m) {g =
(V ,E ∪ {(n,m)})}

3. {g = (V ,E) ∧ (n,m) ∈ E} hasEdge(g,n,m) = >
4. {g = (V ,E) ∧ (n,m) 6∈ E} hasEdge(g,n,m) = ⊥
5. {g = (V ,E)} getVertices(g) = V
6. {g = (V ,E)} getSuccessors(g,n) = {m ∈ V : (n,m) ∈ E}
7. {g = (V ,E)} getPredecessors(g,n) = {m ∈ V : (m,n) ∈

E}

18

A weighted digraph ADT
Looks like (V ,E,w) (as above)
Operations:

• newVertex(Graph): Integer
• setEdge(Graph, Integer, Weight∞, Integer): Void
• getEdge(Graph, Integer, Integer): Weight∞
• getVertices(Graph): IntegerSet
• getSuccessors(Graph, Integer): IntegerSet
• getPredecessors(Graph, Integer): IntegerSet

where Weight∞ is either a numeric weight or infinity

Additional invariant:

• ∀v,u ∈ V :

I If (v,u) ∈ E then w(v,u) < ∞
I If (v,u) 6∈ E then w(v,u) = ∞

19

A weighted digraph ADT
Looks like (V ,E,w) (as above)
Operations:

• newVertex(Graph): Integer
• setEdge(Graph, Integer, Weight∞, Integer): Void
• getEdge(Graph, Integer, Integer): Weight∞
• getVertices(Graph): IntegerSet
• getSuccessors(Graph, Integer): IntegerSet
• getPredecessors(Graph, Integer): IntegerSet

where Weight∞ is either a numeric weight or infinity
Additional invariant:

• ∀v,u ∈ V :

I If (v,u) ∈ E then w(v,u) < ∞
I If (v,u) 6∈ E then w(v,u) = ∞

19

Weighted digraph ADT laws

1. {g = (V ,E,w)} newVertex(g) = n {g = (V ∪ {n},E,w)}
where n = max(V) + 1

2. {g = (V ,E,w) ∧ n,m ∈ V} setEdge(g,n,a,m) {g =
(V ,E ∪ {(n,m)},w{(n,m) 7→ a})}

3. {g = (V ,E,w) ∧ (n,m) ∈ E} getEdge(g,n,m) = w(n,m)

4. {g = (V ,E,w) ∧ (n,m) 6∈ E} getEdge(g,n,m) = ∞
5. {g = (V ,E,w)} getVertices(g) = V
6. {g = (V ,E,w)} getSuccessors(g,n) = {m ∈ V : (n,m) ∈

E}
7. {g = (V ,E,w)} getPredecessors(g,n) = {m ∈ V : (m,n) ∈

E}

20

Graph representation

Two graph representations

There are two common ways that graphs are represented on a
computer:

• adjacency list
• adjacency matrix

22

Adjacency list

0

1
23

In an array, store a list of neighbors (or successors) for each
vertex:

1 2

0 2

0 1 3

2

23

Adjacency matrix

0

1
23

Store a |V |-by-|V | matrix of Booleans indicating where edges
are present:

0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0

24

A directed adjacency matrix example

0

1
2

3

4

5

0 1 2 3 4 5
0 0 1 0 0 0 0
1 0 0 1 0 0 0
2 0 0 0 1 0 1
3 0 0 0 1 1 0
4 1 0 0 0 0 1
5 1 1 0 1 1 0

25

With weights

2

7

−4

8

0

22

33

44

1

5

1

0

1
2

3

4

5 10

0 1 2 3 4 5
0 ∞ 2 ∞ ∞ ∞ ∞
1 ∞ ∞ 7 ∞ ∞ ∞
2 ∞ ∞ ∞ −4 ∞ 1
3 ∞ ∞ ∞ 10 8 ∞
4 1 ∞ ∞ ∞ ∞ 0
5 2 3 ∞ 4 5 ∞

26

Space comparison

Adjacency list—has a list for each vertex, and the total length of
all the lists is the number of edges: O(V + E)

Adjacency matrix—is |V | by |V | regardless of the number of
edges: O(V2)

When might we want to use one or the other?

27

Space comparison

Adjacency list—has a list for each vertex, and the total length of
all the lists is the number of edges: O(V + E)

Adjacency matrix—is |V | by |V | regardless of the number of
edges: O(V2)

When might we want to use one or the other?

27

Time comparison

adj. list adj. matrix
addEdge/setEdge

O(setInsert(d)) O(1)
getEdge/hasEdge O(setLookup(d)) O(1)

getSuccessors O(|Result|) O(V)
getPredecessors O(V + E) O(V)

28

Time comparison

adj. list adj. matrix
addEdge/setEdge O(setInsert(d)) O(1)

getEdge/hasEdge O(setLookup(d)) O(1)
getSuccessors O(|Result|) O(V)

getPredecessors O(V + E) O(V)

28

Time comparison

adj. list adj. matrix
addEdge/setEdge O(setInsert(d)) O(1)
getEdge/hasEdge

O(setLookup(d)) O(1)
getSuccessors O(|Result|) O(V)

getPredecessors O(V + E) O(V)

28

Time comparison

adj. list adj. matrix
addEdge/setEdge O(setInsert(d)) O(1)
getEdge/hasEdge O(setLookup(d)) O(1)

getSuccessors O(|Result|) O(V)
getPredecessors O(V + E) O(V)

28

Time comparison

adj. list adj. matrix
addEdge/setEdge O(setInsert(d)) O(1)
getEdge/hasEdge O(setLookup(d)) O(1)

getSuccessors

O(|Result|) O(V)
getPredecessors O(V + E) O(V)

28

Time comparison

adj. list adj. matrix
addEdge/setEdge O(setInsert(d)) O(1)
getEdge/hasEdge O(setLookup(d)) O(1)

getSuccessors O(|Result|) O(V)

getPredecessors O(V + E) O(V)

28

Time comparison

adj. list adj. matrix
addEdge/setEdge O(setInsert(d)) O(1)
getEdge/hasEdge O(setLookup(d)) O(1)

getSuccessors O(|Result|) O(V)
getPredecessors

O(V + E) O(V)

28

Time comparison

adj. list adj. matrix
addEdge/setEdge O(setInsert(d)) O(1)
getEdge/hasEdge O(setLookup(d)) O(1)

getSuccessors O(|Result|) O(V)
getPredecessors O(V + E) O(V)

28

Next time: graph search

	Kinds of graphs
	A little graph theory
	Programming with graphs
	Graph representation
	Next time: graph search

