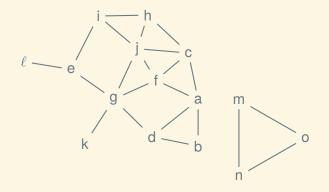
Graphs and their representations

EECS 214, Fall 2017

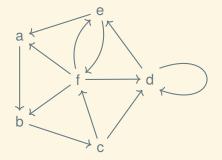
Kinds of graphs

A graph (undirected)



$$\begin{split} & G = (V, E) \\ & V = \{a, b, c, d, e, f, g, h, i, j, k, \ell\} \\ & E = \{\{a, b\}, \{a, c\}, \{a, d\}, \{a, f\}, \{b, d\}, \{c, f\}, \\ & \{c, h\}, \{c, j\}, \{d, g\}, \{e, g\}, \{e, i\}, \{e, m\}, \\ & \{f, g\}, \{f, j\}, \{g, j\}, \{g, k\}, \{h, i\}, \{h, j\}, \{i, j\}\} \end{split}$$

A directed graph

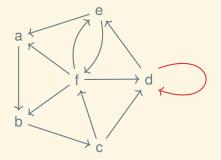


$$G = (V, E)$$

$$V = \{a, b, c, d, e, f\}$$

$$E = \{(a, b), (b, c), (c, d), (c, f), (d, d), (d, e), (e, f), (f, e)\}$$

A directed graph

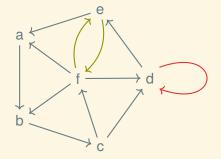


$$G = (V, E)$$

$$V = \{a, b, c, d, e, f\}$$

$$E = \{(a, b), (b, c), (c, d), (c, f), (d, d), (d, e), (e, f), (f, e)\}$$

A directed graph with cycles

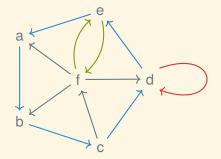


$$G = (V, E)$$

$$V = \{a, b, c, d, e, f\}$$

$$E = \{(a, b), (b, c), (c, d), (c, f), (d, d), (d, e), (e, f), (f, e)\}$$

A directed graph with cycles

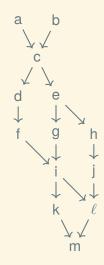


$$G = (V, E)$$

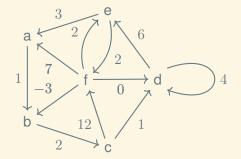
$$V = \{a, b, c, d, e, f\}$$

$$E = \{(a, b), (b, c), (c, d), (c, f), (d, d), (d, e), (e, f), (f, e)\}$$

A DAG (directed acyclic graph)



A weighted, directed graph



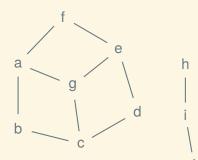
$$G = (V, E, w)$$

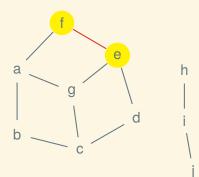
$$V = \{a, b, c, d, e, f\}$$

$$E = \{(a, b), (b, c), (c, d), (c, f), (d, d), (d, e), (e, f), (f, e)\}$$

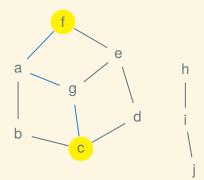
$$w = \{(a, b) \mapsto 1, (b, c) \mapsto 2, (c, d) \mapsto 1, (c, f) \mapsto 12, \ldots\}$$

A little graph theory



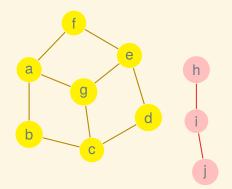


If $\{v, u\} \in E$ then v and u are *adjacent*



If $\{v, u\} \in E$ then v and u are *adjacent* If $\{v_0, v_1\}, \{v_1, v_2\}, \dots, \{v_{k-1}, v_k\} \in E$ then there is a *path* from v_0 to v_k , and we say v_0 and v_k are *connected*

Components



A subgraph of nodes all connected to each other is a *connected component*; here we have two

The degree of a vertex is the number of adjacent vertices:

degree
$$(v, G) = |\{u \in V : \{u, v\} \in E\}|$$
 where $G = (V, E)$

Degree

The degree of a vertex is the number of adjacent vertices:

degree
$$(v, G) = |\{u \in V : \{u, v\} \in E\}|$$
 where $G = (V, E)$

The degree of a graph is the maximum degree of any vertex:

degree(
$$G$$
) = $\max_{v \in V}$ degree(v, G) where $G = (V, E)$

Degree

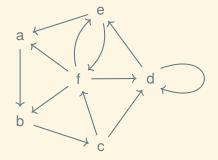
The degree of a vertex is the number of adjacent vertices:

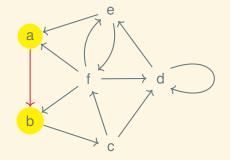
degree
$$(v, G) = |\{u \in V : \{u, v\} \in E\}|$$
 where $G = (V, E)$

The degree of a graph is the maximum degree of any vertex:

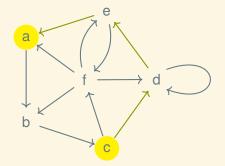
degree(
$$G$$
) = $\max_{v \in V}$ degree(v, G) where $G = (V, E)$

Sometimes we will refer to the degree as *d*, such as when we say that a particular operation is O(d).



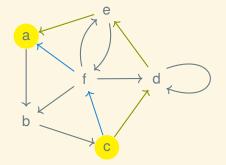


If $(v, u) \in E$, v is the *direct predecessor* of u and u is the *direct successor* of v



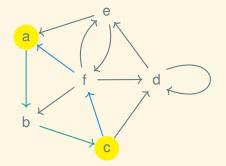
If $(v, u) \in E$, v is the *direct predecessor* of u and u is the *direct successor* of v

If $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k) \in E$ then there is a *path* from v_0 to v_k ; we say that v_k is *reachable* from v_0



If $(v, u) \in E$, v is the *direct predecessor* of u and u is the *direct successor* of v

If $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k) \in E$ then there is a *path* from v_0 to v_k ; we say that v_k is *reachable* from v_0

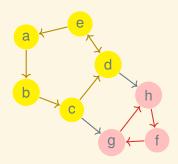


If $(v, u) \in E$, v is the *direct predecessor* of u and u is the *direct successor* of v

If $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k) \in E$ then there is a *path* from v_0 to v_k ; we say that v_k is *reachable* from v_0

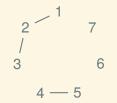
If v_k and v_0 are mutually reachable from each other, they are *strongly connected*

Strongly connected components



In a digraph, a subgraph of vertices all strongly connected to each other is a *strongly connected component*; here we have a connected graph with two SCCs

Dense versus sparse



Programming with graphs

A graph ADT

Looks like (V, E) (as above)

Operations:

- newVertex(Graph): Integer
- addEdge(Graph, Integer, Integer): Void
- hasEdge(Graph, Integer, Integer): Bool
- getVertices(Graph): IntegerSet
- getNeighbors(Graph, Integer): IntegerSet

A graph ADT

Looks like (V, E) (as above)

Operations:

- newVertex(Graph): Integer
- addEdge(Graph, Integer, Integer): Void
- hasEdge(Graph, Integer, Integer): Bool
- getVertices(Graph): IntegerSet
- getNeighbors(Graph, Integer): IntegerSet

Invariants:

•
$$V = \{0, 1, \dots, |V| - 1\}$$

• $\bigcup E \subseteq V$

Graph ADT laws

- 1. $\{g = (V, E)\}$ newVertex $(g) = n \{g = (V \cup \{n\}, E)\}$ where $n = \max(V) + 1$
- 2. $\{g = (V, E) \land n, m \in V\}$ addEdge(g, n, m) $\{g = (V, E \cup \{\{n, m\}\})\}$
- 3. $\{g = (V, E) \land \{n, m\} \in E\}$ has $Edge(g, n, m) = \top$
- 4. $\{g = (V, E) \land \{n, m\} \notin E\}$ has $Edge(g, n, m) = \bot$
- 5. $\{g = (V, E)\}$ getVertices(g) = V
- 6. $\{g = (V, E)\}$ getNeighbors $(g, n) = \{m \in V : \{m, n\} \in E\}$

A digraph ADT

Looks like (V, E) (as above, E contains ordered pairs of vertices)

Operations:

- newVertex(Graph): Integer
- addEdge(Graph, Integer, Integer): Void
- hasEdge(Graph, Integer, Integer): Bool
- getVertices(Graph): IntegerSet
- getSuccessors(Graph, Integer): IntegerSet
- getPredecessors(Graph, Integer): IntegerSet

Invariants:

- $V = \{0, 1, \dots, |V| 1\}$
- $\forall (v, u) \in E. v \in V \land u \in V$

Digraph ADT laws

- 1. $\{g = (V, E)\}$ newVertex $(g) = n \{g = (V \cup \{n\}, E)\}$ where $n = \max(V) + 1$
- 2. $\{g = (V, E) \land n, m \in V\}$ addEdge(g, n, m) $\{g = (V, E \cup \{(n, m)\})\}$
- 3. $\{g = (V, E) \land (n, m) \in E\}$ has $Edge(g, n, m) = \top$
- 4. $\{g = (V, E) \land (n, m) \notin E\}$ has $Edge(g, n, m) = \bot$
- 5. $\{g = (V, E)\}$ getVertices(g) = V
- 6. $\{g = (V, E)\}$ getSuccessors $(g, n) = \{m \in V : (n, m) \in E\}$
- 7. $\{g = (V, E)\}$ getPredecessors $(g, n) = \{m \in V : (m, n) \in E\}$

A weighted digraph ADT

Looks like (V, E, w) (as above)

Operations:

- newVertex(Graph): Integer
- $setEdge(Graph, Integer, Weight_{\infty}, Integer)$: Void
- getEdge(Graph, Integer, Integer): Weight $_{\infty}$
- getVertices(Graph): IntegerSet
- getSuccessors(Graph, Integer): IntegerSet
- getPredecessors(Graph, Integer): IntegerSet

where Weight_∞ is either a numeric weight or infinity

A weighted digraph ADT

Looks like (V, E, w) (as above)

Operations:

- newVertex(Graph): Integer
- $setEdge(Graph, Integer, Weight_{\infty}, Integer)$: Void
- getEdge(Graph, Integer, Integer): Weight $_{\infty}$
- getVertices(Graph): IntegerSet
- getSuccessors(Graph, Integer): IntegerSet
- getPredecessors(Graph, Integer): IntegerSet

where $Weight_{\infty}$ is either a numeric weight or infinity Additional invariant:

- $\forall v, u \in V$:
 - If $(v, u) \in E$ then $w(v, u) < \infty$
 - If $(v, u) \notin E$ then $w(v, u) = \infty$

Weighted digraph ADT laws

- 1. $\{g = (V, E, w)\}$ newVertex $(g) = n \{g = (V \cup \{n\}, E, w)\}$ where $n = \max(V) + 1$
- 2. $\{g = (V, E, w) \land n, m \in V\}$ setEdge(g, n, a, m) $\{g = (V, E \cup \{(n, m)\}, w\{(n, m) \mapsto a\})\}$
- 3. $\{g = (V, E, w) \land (n, m) \in E\}$ getEdge(g, n, m) = w(n, m)
- 4. $\{g = (V, E, w) \land (n, m) \notin E\}$ getEdge $(g, n, m) = \infty$
- 5. $\{g = (V, E, w)\}$ getVertices(g) = V
- 6. $\{g = (V, E, w)\}$ getSuccessors $(g, n) = \{m \in V : (n, m) \in E\}$
- 7. $\{g = (V, E, w)\}$ getPredecessors $(g, n) = \{m \in V : (m, n) \in E\}$

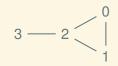
Graph representation

Two graph representations

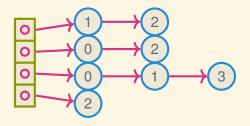
There are two common ways that graphs are represented on a computer:

- adjacency list
- adjacency matrix

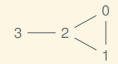
Adjacency list



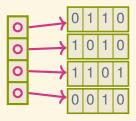
In an array, store a list of neighbors (or successors) for each vertex:



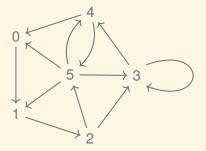
Adjacency matrix



Store a |V|-by-|V| matrix of Booleans indicating where edges are present:

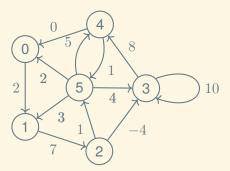


A directed adjacency matrix example



	0	1	2	3	4	5
0	0	1	0	0	0	0
1	0	0	1	0	0	0
2	0	0	0	1	0	1
3	0	0	0	1	1	0
4	1	0	0	0	0	1
5	1	1	0	1	1	0

With weights



	0	1	2	3	4	5
0	∞	2	∞	∞	∞	∞
1	∞	∞	7	∞	∞	∞
2	∞	∞	∞	-4	∞	1
3	∞	∞	∞	10	8	∞
4	1	∞	∞	∞	∞	0
5	2	3	∞	4	5	∞

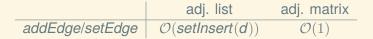
Adjacency list—has a list for each vertex, and the total length of all the lists is the number of edges: O(V + E)

Adjacency matrix—is |V| by |V| regardless of the number of edges: $\mathcal{O}(V^2)$

- Adjacency list—has a list for each vertex, and the total length of all the lists is the number of edges: O(V + E)
- Adjacency matrix—is |V| by |V| regardless of the number of edges: $\mathcal{O}(V^2)$

When might we want to use one or the other?

	adj. list	adj. matrix
addEdge/setEdge		



	adj. list	adj. matrix
addEdge/setEdge	$\mathcal{O}(\textit{setInsert}(\textit{d}))$	$\mathcal{O}(1)$
getEdge/hasEdge		

	adj. list	adj. matrix
addEdge/setEdge	$\mathcal{O}(setInsert(d))$	$\mathcal{O}(1)$
getEdge/hasEdge	$\mathcal{O}(\textit{setLookup}(d))$	$\mathcal{O}(1)$

	adj. list	adj. matrix
addEdge/setEdge	$\mathcal{O}(setInsert(d))$	$\mathcal{O}(1)$
getEdge/hasEdge	$\mathcal{O}(\textit{setLookup}(d))$	$\mathcal{O}(1)$
getSuccessors		

	adj. list	adj. matrix
addEdge/setEdge	$\mathcal{O}(setInsert(d))$	$\mathcal{O}(1)$
getEdge/hasEdge	$\mathcal{O}(\textit{setLookup}(d))$	$\mathcal{O}(1)$
getSuccessors	$\mathcal{O}(\textit{Result})$	$\mathcal{O}(V)$

	adj. list	adj. matrix
addEdge/setEdge	$\mathcal{O}(\textit{setInsert}(\textit{d}))$	$\mathcal{O}(1)$
getEdge/hasEdge	$\mathcal{O}(\textit{setLookup}(d))$	$\mathcal{O}(1)$
getSuccessors	$\mathcal{O}(\textit{Result})$	$\mathcal{O}(V)$
getPredecessors		

	adj. list	adj. matrix
addEdge/setEdge	$\mathcal{O}(setInsert(d))$	$\mathcal{O}(1)$
getEdge/hasEdge	$\mathcal{O}(\textit{setLookup}(d))$	$\mathcal{O}(1)$
getSuccessors	$\mathcal{O}(\textit{Result})$	$\mathcal{O}(V)$
getPredecessors	$\mathcal{O}(V+E)$	$\mathcal{O}(V)$

Next time: graph search