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Implementing a priority queue

A (min-)priority queue provides these operations:

• insert: adds an element
• removeMin: removes the smallest element
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Some implementation complexities

insert removeMin
sorted list O(n) O(1)

unsorted list O(1) O(n)

binary heap O(log n) O(log n)
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Introducing the binary heap

A binary heap is complete binary tree that is heap-ordered
A tree is heap-ordered if every element is less than or equal to
its children

Which of these is a binary heap?:
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Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant
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Binary heap insertion

1. Add the new element at the end
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Binary heap remove-min

1. Replace the root with the last element of the heap
2. Sink down to restore invariant
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Binary heap remove-min

1. Replace the root with the last element of the heap
2. Sink down to restore invariant
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Binary heap remove-min

1. Replace the root with the last element of the heap
2. Sink down to restore invariant

6

7

40

45 60

12

75

14

8 90

6



Binary heap remove-min

1. Replace the root with the last element of the heap
2. Sink down to restore invariant
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The super cool thing about binary heaps
Instead of storing it as an actual tree with pointers:
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Finding parents and children

Because the structure is implicit, we can’t just follow pointers
Suppose i is the index of a node:

• How can we find its parent (if any)?
• How can we find its children (if any)?
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Next time: another graph algorithm and another
data structure to go with it
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