
The Binary Heap

EECS 214, Fall 2017



Implementing a priority queue

A (min-)priority queue provides these operations:

• insert: adds an element
• removeMin: removes the smallest element

2



Some implementation complexities

insert removeMin
sorted list O(n) O(1)

unsorted list O(1) O(n)

binary heap O(log n) O(log n)

3



Some implementation complexities

insert removeMin
sorted list O(n) O(1)

unsorted list O(1) O(n)
binary heap O(log n) O(log n)

3



Introducing the binary heap

A binary heap is complete binary tree that is heap-ordered
A tree is heap-ordered if every element is less than or equal to
its children

Which of these is a binary heap?:

2

5

40 7

97

99

2

5

40 7

97

99

5

2

40 7

97

99

4



Introducing the binary heap

A binary heap is complete binary tree that is heap-ordered
A tree is heap-ordered if every element is less than or equal to
its children
Which of these is a binary heap?:

2

5

40 7

97

99

2

5

40 7

97

99

5

2

40 7

97

99

4



Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant

2

5

40

45 60

7

12 14

6

8

75

90

5



Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant

2

5

40

45 60

7

12 14

6

8

75 4

90

5



Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant

2

5

40

45 60

7

12 14

6

4

75 8

90

5



Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant

2

5

40

45 60

7

12 14

4

6

75 8

90

5



Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant

2

5

40

45 60

7

12 14

4

6

75 8

90

95

5



Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant

2

5

40

45 60

7

12 14

4

6

75 8

90

95 1

5



Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant

2

5

40

45 60

7

12 14

4

6

75 8

1

95 90

5



Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant

2

5

40

45 60

7

12 14

1

6

75 8

4

95 90

5



Binary heap insertion

1. Add the new element at the end
2. Bubble up to restore invariant

1

5

40

45 60

7

12 14

2

6

75 8

4

95 90

5



Binary heap remove-min

1. Replace the root with the last element of the heap
2. Sink down to restore invariant

2

5

40

45 60

7

12 14

6

8

75 4

90

6



Binary heap remove-min

1. Replace the root with the last element of the heap
2. Sink down to restore invariant

4

5

40

45 60

7

12 14

6

8

75

90

6



Binary heap remove-min

1. Replace the root with the last element of the heap
2. Sink down to restore invariant

75

5

40

45 60

7

12 14

6

8 90

6



Binary heap remove-min

1. Replace the root with the last element of the heap
2. Sink down to restore invariant

5

75

40

45 60

7

12 14

6

8 90

6



Binary heap remove-min

1. Replace the root with the last element of the heap
2. Sink down to restore invariant

5

7

40

45 60

75

12 14

6

8 90

6



Binary heap remove-min

1. Replace the root with the last element of the heap
2. Sink down to restore invariant

5

7

40

45 60

12

75 14

6

8 90

6



Binary heap remove-min

1. Replace the root with the last element of the heap
2. Sink down to restore invariant

14

7

40

45 60

12

75

6

8 90

6



Binary heap remove-min

1. Replace the root with the last element of the heap
2. Sink down to restore invariant

6

7

40

45 60

12

75

14

8 90

6



Binary heap remove-min

1. Replace the root with the last element of the heap
2. Sink down to restore invariant

6

7

40

45 60

12

75

8

14 90

6



The super cool thing about binary heaps
Instead of storing it as an actual tree with pointers:

2

5

40

45 60

7

12 14

6

8

75

90

a binary heap is stored in level-order in an array:

2
0

5
1

6
2

40
3

7
4

8
5

90
6

45
7

60
8

12
9

14
10

75
11 12 13 14 15 16 17 18 19 20 21 22 23

7



The super cool thing about binary heaps
Instead of storing it as an actual tree with pointers:

2

5

40

45 60

7

12 14

6

8

75 4

90

a binary heap is stored in level-order in an array:

2
0

5
1

6
2

40
3

7
4

8
5

90
6

45
7

60
8

12
9

14
10

75
11

4
12 13 14 15 16 17 18 19 20 21 22 23

7



The super cool thing about binary heaps
Instead of storing it as an actual tree with pointers:

2

5

40

45 60

7

12 14

6

4

75 8

90

a binary heap is stored in level-order in an array:

2
0

5
1

6
2

40
3

7
4

4
5

90
6

45
7

60
8

12
9

14
10

75
11

8
12 13 14 15 16 17 18 19 20 21 22 23

7



The super cool thing about binary heaps
Instead of storing it as an actual tree with pointers:

2

5

40

45 60

7

12 14

4

6

75 8

90

a binary heap is stored in level-order in an array:

2
0

5
1

4
2

40
3

7
4

6
5

90
6

45
7

60
8

12
9

14
10

75
11

8
12 13 14 15 16 17 18 19 20 21 22 23

7



Finding parents and children

Because the structure is implicit, we can’t just follow pointers
Suppose i is the index of a node:

• How can we find its parent (if any)?
• How can we find its children (if any)?

8



Next time: another graph algorithm and another
data structure to go with it


	Next time: another graph algorithm and another data structure to go with it

