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A self-balancing BST

Random binary search trees are very likely to be balanced
Self-balancing trees are guaranteed to be balanced
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Balanced search tree survey



Red–black trees (tomorrow)

Main idea: Every node has an extra bit marking it “red” or
“black”
Local invariant: No red node has a red parent
Global invariant: Equal number of black nodes from root to
every leaf
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2-3 trees

Main idea: 2-nodes have one element and two children;
3-nodes have two elements and three children
Local invariant: All subtrees of a node have the same height
Global invariant: Every leaf is at the same depth

5



2-4 trees

Main idea: Like 2-3 trees, but also has 4-nodes with three
elements and four children
Local invariant: All subtrees of a node have the same height
Global invariant: Every leaf is at the same depth
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B-trees

Main idea: Generalizaton of 2–4 trees to 2–k trees
Local invariant: Like 2–4 trees, but allow some number of
missing subtrees
Global invariant: Every leaf is at the same depth
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Splay trees

Main idea: Cache recently accessed elements near the root of
the tree
Local invariant: Complicated; required amortized analysis
Global invariant: Paths are very likely to be O(log n)
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AVL trees

Main idea: Maintain a balance factor giving the difference
between each node’s subtrees’ heights
Local invariant: Balance factor between -1 and 1, maintained
via rotations
Global invariant: Tree is approximately height-balanced
(AVL stands for Georgy Adelson-Velsky and Evgenii Landis)
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AVL trees



Example of an AVL tree
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Local invariant maintains global property

• Balance factors are maintained locally
• Never recompute them from scratch
• Yet the whole tree stays reasonably balanced
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AVL insertion

• First do a normal leaf insertion
• Track balance factors on the way back up to the root
• Adjust with rotations as necessary
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AVL insertion example

Let’s insert H:
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Another AVL insertion example

Let’s insert B:

J

F

D

C

G

P

L

N

V

S

Q U

X

+1

-1

0

0

-1

+1

+1

0

-1

0

0 0

0

16



Another AVL insertion example

Let’s insert B:

J

F

D

C

B

G

P

L

N

V

S

Q U

X

+1

-1

0

0

0

-1

+1

+1

0

-1

0

0 0

0

17



Another AVL insertion example

Let’s insert B:

J

F

D

C

B

G

P

L

N

V

S

Q U

X

+1

-1

0

-1

0

-1

+1

+1

0

-1

0

0 0

0

17



Another AVL insertion example

Let’s insert B:

J

F

D

C

B

G

P

L

N

V

S

Q U

X

+1

-1

0

-1

0

-2

+1

+1

0

-1

0

0 0

0

17



Another AVL insertion example

Let’s insert B:

J

F

C

B D

G

P

L

N

V

S

Q U

X

+1

-1

00

0 0

+1

+1

0

-1

0

0 0

0

18



Another AVL insertion example

Let’s insert B:

J

F

C

B D

G

P

L

N

V

S

Q U

X

+1

-1

00

0 0

+1

+1

0

-1

0

0 0

0

18



Maintaining the AVL property

Suppose we have an AVL tree:

B
0

A C
(Convention: triangles represent equal-height subtrees.)

Right now the balance factor is 0. So if we insert into A or C
and that subtree grows in height, it becomes -1 or 1.
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Maintaining the AVL property

B
+1

D
0A

C E

Right now the balance factor at B is +1.
Suppose we insert into A. What happens to B’s balance factor?

• If no change in A’s height then no change in B’s balance
• If A’s height grows then B’s balance factor goes to 0
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• If no height change then B’s balance doesn’t change
• If C grows then B’s balance factor becomes +2—not okay!
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Maintaining the AVL property
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Right now the balance factor at B is +1.
Likewise, suppose we insert into E. What happens to B’s
balance factor?

• If no height change then B’s balance doesn’t change
• If E grows then B’s balance factor becomes +2—not okay!
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The right-right case

If the height of the right-right subtree (formerly E) increases, we
get a situation like this:
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The right-left case

If the height of the right-left subtree (formerly C) increases, we
get a situation like this:
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But this is now the right-right case, which we know how to
handle!
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Maintaining the AVL property

• We’ve seen the right-right and right-left cases
• The left-left and left-right cases are symmetrical
• Deletion is like ordinary BST deletion, with the same

rebalancing cases
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Next time: red–black trees
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