AVL Trees

EECS 214, Fall 2017

A self-balancing BST

Random binary search trees are very likely to be balanced Self-balancing trees are guaranteed to be balanced

Balanced search tree survey

Red-black trees (tomorrow)

Main idea: Every node has an extra bit marking it "red" or "black"

Local invariant: No red node has a red parent
Global invariant: Equal number of black nodes from root to every leaf

2-3 trees

Main idea: 2-nodes have one element and two children; 3 -nodes have two elements and three children

Local invariant: All subtrees of a node have the same height Global invariant: Every leaf is at the same depth

2-4 trees

Main idea: Like 2-3 trees, but also has 4-nodes with three elements and four children

Local invariant: All subtrees of a node have the same height Global invariant: Every leaf is at the same depth

B-trees

Main idea: Generalizaton of 2-4 trees to $2-k$ trees
Local invariant: Like 2-4 trees, but allow some number of missing subtrees

Global invariant: Every leaf is at the same depth

Splay trees

Main idea: Cache recently accessed elements near the root of the tree

Local invariant: Complicated; required amortized analysis
Global invariant: Paths are very likely to be $\mathcal{O}(\log n)$

AVL trees

Main idea: Maintain a balance factor giving the difference between each node's subtrees' heights

Local invariant: Balance factor between -1 and 1, maintained via rotations

Global invariant: Tree is approximately height-balanced (AVL stands for Georgy Adelson-Velsky and Evgenii Landis)

AVL trees

Example of an AVL tree

Local invariant maintains global property

- Balance factors are maintained locally
- Never recompute them from scratch
- Yet the whole tree stays reasonably balanced

AVL insertion

- First do a normal leaf insertion
- Track balance factors on the way back up to the root
- Adjust with rotations as necessary

AVL insertion example
Let's insert H :

Another AVL insertion example
Let's insert B:

Another AVL insertion example

Let's insert B:

Another AVL insertion example

Let's insert B:

Maintaining the AVL property

Suppose we have an AVL tree:

(Convention: triangles represent equal-height subtrees.)

Maintaining the AVL property

Suppose we have an AVL tree:

(Convention: triangles represent equal-height subtrees.)

Right now the balance factor is 0 . So if we insert into A or C and that subtree grows in height, it becomes -1 or 1 .

Maintaining the AVL property

Right now the balance factor at B is +1 .
Suppose we insert into A. What happens to B's balance factor?

Maintaining the AVL property

Right now the balance factor at B is +1 .
Suppose we insert into A. What happens to B's balance factor?

- If no change in A's height then no change in B's balance
- If A's height grows then B's balance factor goes to 0

Maintaining the AVL property

Right now the balance factor at B is +1 .
Suppose we insert into C. What happens to B's balance factor?

Maintaining the AVL property

Right now the balance factor at B is +1 .
Suppose we insert into C. What happens to B's balance factor?

- If no height change then B's balance doesn't change
- If C grows then B's balance factor becomes +2

Maintaining the AVL property

Right now the balance factor at B is +1 .
Suppose we insert into C. What happens to B's balance factor?

- If no height change then B's balance doesn't change
- If C grows then B's balance factor becomes +2-not okay!

Maintaining the AVL property

Right now the balance factor at B is +1 .
Likewise, suppose we insert into E. What happens to B's balance factor?

- If no height change then B's balance doesn't change
- If E grows then B's balance factor becomes +2-not okay!

The right-right case

If the height of the right-right subtree (formerly E) increases, we get a situation like this:

The right-right case

If the height of the right-right subtree (formerly E) increases, we get a situation like this:

The right-left case

If the height of the right-left subtree (formerly C) increases, we get a situation like this:

The right-left case

If the height of the right-left subtree (formerly C) increases, we get a situation like this:

The right-left case

If the height of the right-left subtree (formerly C) increases, we get a situation like this:

But this is now the right-right case, which we know how to handle!

Maintaining the AVL property

- We've seen the right-right and right-left cases
- The left-left and left-right cases are symmetrical
- Deletion is like ordinary BST deletion, with the same rebalancing cases

Next time: red-black trees

