
EECS 214 Fall 2017

HW4: Graph
Due: Thursday, November 8, at 11:59 PM, via GSC

You may work on your own or with one (1) partner.

For this assignment you will implement an API for weighted, undirected
graphs; then you will use this API to implement a simple depth-first search.

In graph.rkt1 I’ve supplied headers for the methods and function that you’ll
need to write, along with a few suggested helpers and some code to help with
testing.

Orientation

The graph for this assignment is a weighted, undirected graph whose vertices
are natural numbers. In particular, a graph of n vertices will have vertices
numbered 0, 1, …, n − 1. This makes it easy to store information about
vertices in a vector of size n.

Before defining our signature for weighted, undirected graphs, we define
contracts for describing several of the arguments and results.

• A vertex is represented as a natural number:

let Vertex? = nat?

• We use singly-linked lists of vertices:

let VertexList? = Cons.ListC[Vertex?]

• A weight is a number, and an optional weight is either a weight or
False:

let Weight? = num?
let OptWeight? = OrC(Weight?, False)

• A weighted edge is represented by a struct containing two vertices and
a weight; we use lists of those as well:

1https://goo.gl/9n42HB

1

https://goo.gl/9n42HB
https://goo.gl/9n42HB


EECS 214 Fall 2017

struct WEdge:
let u: Vertex?
let v: Vertex?
let w: Weight?

let WEdgeList? = Cons.ListC[WEdge?]

Note that WEdge is used in the result of one of the graph methods (below),
but is not intended for use internally in your graph representation.

Now we can give our signature for weighted, undirected graphs as a DSSL2
interface with five operations:

interface WU_GRAPH:
def len(self) -> nat?
def set_edge(self, u: Vertex?,

v: Vertex?, w: OptWeight?) -> VoidC
def get_edge(self, u: Vertex?, v: Vertex?) -> OptWeight?
def get_adjacent(self, v: Vertex?) -> VertexList?
def get_all_edges(self) -> WEdgeList?

The behavior of the operations is as follows:

• The len method returns the number of vertices in the graph, that is, n.

• The set_edge method adds an edge between vertices v and u of weight
w, when w is a number; if the edge already exists, it updates the weight
to w. If w is False then the edge, if it exists, is removed.

Note that because the edges of undirected graphs are symmetric, the
order of u and v cannot matter; this implies that set_edge must
maintain an invariant.

• The get_edge method returns the weight of the edge between vertices
u and v if it exists, or False if it does not.

• The get_adjacent method returns a list of all vertices that are directly
connected to vertex v. The order of the list is unspecified.

• The get_all_edges method returns a list of all edges in the graph,
in unspecified order. For each edge in the graph, it includes only one
direction in the list. For example, if a graph has an edge of weight

2



EECS 214 Fall 2017

10 between vertices 1 and 3, then the resulting list will contain either
WEdge(1, 3, 10) or WEdge(3, 1, 10), but not both.

One easy way to avoid redundant edges is to only add an edge e to the
list when e.u <= e.v.

Your task

Representation

Your job is to implement the WuGraph class, which must satisfy the WU_GRAPH
interface. To do so, you must choose a representation, as either an adjacency
matrix or adjacency lists. Whichever you choose, you will need to add some
field(s) to the WuGraph class and fill in the __init__ method to initialize
them.

1. Define the field(s) for your representation at the top of the WuGraph
class.

2. Complete the definition of the __init__ method. The WuGraph con-
structor takes one natural number argument, which is the number of
vertices desired in the new graph.

Graph operations

Once you’ve defined your graph representation, you will have to implement
the five graph API methods as specified by the WU_GRAPH interface. Their
required time complexities depend on your choice of representation.

Adjacency matrix representation

3. Implement the len method, which must be O(1) time.

4. Implement the set_edge method, which must be O(1) time.

5. Implement the get_edge method, which must be O(1) time.

3



EECS 214 Fall 2017

6. Implement the get_adjacent method, which must be O(V ) time.

7. Implement the get_all_edges method, which must be O(V 2) time.

Adjacency lists representation

The running times of several adjacency list operations depend on d, the degree
of the graph.

3. Implement the len method, which must be O(1) time.

4. Implement the set_edge method, which must be O(d) time.

5. Implement the get_edge method, which must be O(d) time.

6. Implement the get_adjacent method, which must be O(d) time.

7. Implement the get_all_edges method, which must be O(E) time.

Depth-first search

Once you have your graph implementation working, you must implement a
depth-first search function:

dfs : WU_GRAPH Vertex [Vertex -> Void] -> Void

This function takes a graph g, a vertex v, and a visitor function f. It performs
a depth-first search starting at v. As it encounters each vertex u for the first
time, it calls f(u). The visitor function is called on each reachable vertex
exactly once, in a valid depth-first order.

8. Implement the dfs function, which must have the optimal asymptotic
time complexity: O(V + E) if using adjacency lists, or O(V 2) if using
an adjacency matrix.

In order to help you test dfs, we have provided a function dfs_to_list that
uses it to construct a list of vertices in DFS-order. It should be relatively
easy to write assert_eq tests for dfs_to_list once you know in what order
your dfs function visits vertices.

4



EECS 214 Fall 2017

Testing

To facilitate testing, we have provided you two example graphs. Function
EX_GRAPH1 returns the four-vertex graph on the left, function EX_GRAPH2
returns the six-vertex graph on the right:

0 1

23

2

3

4

5

0

1

2 3

4 5

5

1 3

2
74

6

The starter code also includes functions sort_vertices and sort_edges,
which sort lists of vertices and WEdges, respectively. This is useful for testing
because several methods produce lists in an unspecified order.

Deliverables

The provided file graph.rkt, containing

• working definition of the WuGraph class,

• a working definition of the dfs function, and

• sufficient tests to be confident of your code’s correctness.

5

https://goo.gl/9n42HB

