
EECS 214 Fall 2018

HW6: Union-Find and MST
Due: Thursday, November 29, at 11:59 PM, via GSC

You may work on your own or with one (1) partner.

For this assignment you will implement the union-find data structure with
path compression and weighted union (WQUPC) as we saw in class. Unlike
in HW5, the representation itself is not defined for you, so you’ll have to
define it. Then you will use your union-find data structure to implement
Kruskal’s minimum spanning tree (MST) algorithm.

In unionfind.rkt1 I’ve supplied headers for the methods and function that
you’ll need to write, along with some code to help with testing.

This assignment depends on your graph implementation from HW4 and your
binary heap implementation from HW5. You should place these in the same
directory as unionfind.rkt, since it imports them. For grading, you may
upload your own versions of these dependencies, or we will use our solutions
if you do not. If you have changed partners since HWs 4 and 5, you may use
either partner’s solutions.

Background

In this assignment you will use a union-find structure to solve a particular
problem: finding the MST of a graph. In this section we offer background on
what an MST is and one algorithm for computing it.

Definitions

A graph is connected if there is a path from every vertex to every other;
otherwise it comprises two or more connected components, each of which
is a maximal connected subgraph. (A connected component is maximal in
the sense that no additional vertices could be added and still have it be
connected.)

1https://goo.gl/D8dFdB

1

https://goo.gl/D8dFdB
https://goo.gl/D8dFdB
https://goo.gl/D8dFdB


EECS 214 Fall 2018

A spanning tree of a connected graph G is a subgraph that includes all of G’s
vertices, but only enough edges for it to be connected and no more. Cycles
would introduce redundant connectivity, so it’s a tree. Note that the number
of edges in a spanning tree is always one fewer than the number of vertices in
the original graph.

A minimum spanning tree for a connected graph is a spanning tree with
minimum total weight. (There may be a tie.) We can interpret an MST as
follows: If vertices represent sites of some kind, edges potential connections
between them, and weights the costs of those edges, then an MST gives the
lowest cost way to connect all the sites.

A graph that isn’t connected has a minimum spanning tree for each of its
connected components. This collection of MSTs is a minimum spanning
forest.

Kruskal’s algorithm

The result of Kruskal’s algorithm is a graph with the same vertices as the
input graph, but whose edges form a minimum spanning tree (or forest). The
result graph starts with all of the vertices from the input graph and no edges.
In other words, initially each vertex forms its own (degenerate) connected
component.

The algorithm works by maintaining the set of connected components in the
result (using a union-find data structure); it repeatedly adds an edge that
connects two components, thus unifying them into one. In particular, to
achieve minimality, it considers the edges in order from lightest weight to
heaviest. For each edge, if its two vertices are already in the same connected
component of the result graph, the edge is ignored; but if the edge would
connect vertices that are in two different connected components then the edge
is added to the resulting graph, thus joining the two components into one.
When all edges have been considered then the result is a minimum spanning
tree (or forest, as appropriate).

2



EECS 214 Fall 2018

The union-find data structure

A union-find tracks a partition of some fixed number of objects, which are
called its universe. A union-find is typically represented as either two vectors
or a vector of pairs. In either case, it maps each object in the universe to two
values: its id and its weight.

The ids of all the objects form a parent-oriented tree for each disjoint set, in
the sense that every object’s id is its parent object in some tree, except for
the root of each tree, which is its own id. The weight of a root object gives
the number of objects in that tree; the weights of non-root objects do not
carry any useful information.

To start out, a union-find is initialized so that every object is its own id (and
thus a root of a singleton tree) and every object has a weight of 1. Then the
main operations are as follows:

• The find operation returns the representative of the given object’s set,
which is the root of its tree. We can find the root by repeatedly following
each object to its id until we reach the root, which is its own id. Along
the way back, find must perform path compression, in the sense that
the id of every object it traverses must be updated to point directly to
the root. (Alternatively, you can set the id of every object along the
path to its grandparent object.)

• The union operation first finds the roots of the two given objects. (It
must use your find operation to do this, to ensure path compression.)
Then, it unions the two sets by making one root the id of the other. To
maintain balance, it chooses the new root based on the weights of the
two roots to be joined. If they are the same, then it doesn’t matter, but
if they are different, then the heavier root stays a root, and the lighter
root has its id updated to point to the heavier one. Furthermore, the
weight of the remaining root must be updated to include the weight of
the lighter root that is now attached below it.

3



EECS 214 Fall 2018

Your task

Part I: Union-Find

Your job is to complete the implementation of the UnionFind class. In
particular:

1. Define the necessary field(s) in the UnionFind class.

2. Define the constructor (__init__) to initialize your fields.

3. Define the len method to return the number of objects.

4. Define the find method to return the representative of the given object’s
set.

5. Define the union method to union the two given objects’ sets.

Calling UnionFind(n) returns a new UnionFind universe initialized to have
n objects in disjoint singleton sets numbered 0 to n − 1. Given a universe
uf, uf.len() returns the number of objects (not sets!) in the universe—that
is, len will always return the number that was passed to the UnionFind
constructor when that universe was created.

Methods find and union implement the standard union-find operations:
The method call uf.union(n, m) unions the set containing n with the set
containing m, if they are not already one and the same. uf.find(n) returns
the representative (root) object name for the set containing n. The find
method must perform path compression, and because the union method calls
find, it (indirectly) performs path compression as well. The union method
must set the parent of the root of the smaller set to be the root of the larger
set, and must update the weight of the larger set.

For convenience, uf.same_set?(n, m) returns whether objects n and m are
in the same set according to union-find universe uf.

Part II: Kruskal’s MST algorithm

Once you have a working union-find, you must implement Kruskal’s algorithm
as a function kruskal_mst : WuGraph -> WuGraph. Given any weighted,
undirected graph g, kruskal_mst(g) returns a graph with the same vertices

4



EECS 214 Fall 2018

as g and edges forming a minimum spanning forest, using the algorithm as
described above.

In order to consider the edges in order by increasing weight, Kruskal’s algo-
rithm requires sorting the edges by weight. I’ve provided a helper function
get_all_edges_increasing, which takes a WuGraph and returns a vector of
its edges in order of increasing weight. Your kruskal_mst function should
use this function to get the vector of edges to iterate over.

Deliverables

The provided file unionfind.rkt, containing

• a complete definition of the UnionFind class with its fields, constructor,
and methods,

• a working implementation of Kruskal’s algorithm, and

• sufficient tests to cover all cases and be confident of your code’s correct-
ness.

5

https://goo.gl/D8dFdB

