
Structs, Vectors, and Classes in DSSL2

EECS 214, Fall 2018

Welcome to DSSL2

• A Racket-based language, like BSL and ISL from EECS
111

• But made especially for you

2

DSSL2 expressions

3 + 5

6 * (3 + 5)

1 + 'hello'.len()

3

DSSL2 expressions

3 + 5

6 * (3 + 5)

1 + 'hello'.len()

3

DSSL2 statements

let x = 5

8 * x

if condition:

do_some_stuff()

else:

do_other_stuff(x, y, z)

4

DSSL2 statements

let x = 5

8 * x

if condition:

do_some_stuff()

else:

do_other_stuff(x, y, z)

4

DSSL2 functions

hypotenuse: Number Number -> Number

Finds the length of the hypotenuse.

def hypotenuse(a, b):

(a * a + b * b).sqrt()

fact: Natural -> Natural

Computes the factorial of `n`.

def fact(n):

if n == 0: 1

else: n * fact(n - 1)

assert_eq fact(5), 120

5

DSSL2 functions

hypotenuse: Number Number -> Number

Finds the length of the hypotenuse.

def hypotenuse(a, b):

(a * a + b * b).sqrt()

fact: Natural -> Natural

Computes the factorial of `n`.

def fact(n):

if n == 0: 1

else: n * fact(n - 1)

assert_eq fact(5), 120

5

Vectors

0
0

1
1

1
2

2
3

4
4

7
5

13
6

24
7

44
8

81
9

[0, 1, 1, 2, 4, 7, 13, 24, 44, 82]

6

Vector operations

let v = [0, 1, 1, 2, 4, 7, 13, 24, 44, 82]

test 'vector basics':

assert_eq v[3], 2

assert_eq v[6], 13

test 'vector set':

v[6] = 23

assert_eq v[6], 23

7

Vector operations

let v = [0, 1, 1, 2, 4, 7, 13, 24, 44, 82]

test 'vector basics':

assert_eq v[3], 2

assert_eq v[6], 13

test 'vector set':

v[6] = 23

assert_eq v[6], 23

7

Vector operations

let v = [0, 1, 1, 2, 4, 7, 13, 24, 44, 82]

test 'vector basics':

assert_eq v[3], 2

assert_eq v[6], 13

test 'vector set':

v[6] = 23

assert_eq v[6], 23

7

What if I want a really big vector?

[0; 1000000]

8

Example: average

average: Vector<Number> -> Number

Averages the elements of a non-empty vector.

def average(vec):

sum(vec) / vec.len()

sum: Vector<Number> -> Number

Sums the elements of a non-empty vector.

def sum(vec):

let result = 0

for v in vec:

result = result + v

return result

9

Example: average

average: Vector<Number> -> Number

Averages the elements of a non-empty vector.

def average(vec):

sum(vec) / vec.len()

sum: Vector<Number> -> Number

Sums the elements of a non-empty vector.

def sum(vec):

let result = 0

for v in vec:

result = result + v

return result

9

Structs

x 12
y -5

x 3
y 4

x 0
y 0

struct posn:

let x

let y

posn { x: 12, y: -5 }

posn { x: 0, y: 0 }

posn(3, 4)

10

Structs

x 12
y -5

x 3
y 4

x 0
y 0

struct posn:

let x

let y

posn { x: 12, y: -5 }

posn { x: 0, y: 0 }

posn(3, 4)

10

Working with structs

struct posn:

let x

let y

let p = posn(3, 4)

assert posn?(p)

assert_eq p.x, 3

assert_eq p.y, 4

p.x = 6

assert_eq p.x, 6

assert_eq p.y, 4

11

Structs and vectors

struct employee:

let id; let name; let position

let employees = [employee(928, "Alice", 4),

employee(1089, "Bob", 6),

employee(14, "Carol", 6),

employee(546, "Dave", 6)]

A l i c e B o b C a r o l D a v e

id 928
name

position 4

id 1089
name

position 6

id 14
name

position 6

id 546
name

position 6

0 1 2 3

12

Working with structs and vectors

struct employee:

let id; let name; let position

let employees = [

employee(928, "Alice", 4),

employee(1089, "Bob", 6),

employee(14, "Carol", 6),

employee(546, "Dave", 6),

]

Suppose we want to find out Carol’s position:

employees[2].position

How can we give her a promotion (from 6 to 5)?

employees[2].position = 5

13

Working with structs and vectors

struct employee:

let id; let name; let position

let employees = [

employee(928, "Alice", 4),

employee(1089, "Bob", 6),

employee(14, "Carol", 6),

employee(546, "Dave", 6),

]

Suppose we want to find out Carol’s position:

employees[2].position

How can we give her a promotion (from 6 to 5)?

employees[2].position = 5

13

Working with structs and vectors

struct employee:

let id; let name; let position

let employees = [

employee(928, "Alice", 4),

employee(1089, "Bob", 6),

employee(14, "Carol", 6),

employee(546, "Dave", 6),

]

Suppose we want to find out Carol’s position:

employees[2].position

How can we give her a promotion (from 6 to 5)?

employees[2].position = 5

13

Generalizing

promote-employee : Vector<Employee> Natural ->

Decrements the position of the `index`th employee.

def promote_employee(employees, index):

let emp = employees[index]

emp.position = emp.position - 1

14

Classes

A class is like a struct with methods
It’s way to package data with the operations that know how to
operate on it

15

A first class example

class Posn:

let x

let y

def __init__(self, x, y):

self.x = x

self.y = y

def get_x(self): self.x

def get_y(self): self.y

def distance(self, other):

let dx = self.x - other.get_x()

let dy = self.y - other.get_y()

(dx * dx + dy * dy).sqrt()

16

Using the Posn class

let p = Posn(3, 4)

assert_eq p.get_x(), 3

assert_eq p.get_y(), 4

assert_error p.x # fields are private

let q = Posn(0, 0);

assert_eq p.distance(q), 5

17

For more DSSL2 information

See the DSSL2 reference (or help desk)

18

Next time: The lowly linked list

	Next time: The lowly linked list

