Graphs and their representations

EECS 214, Fall 2018

A graph (undirected)

$$G = (V, E)$$

$$V = \{a, b, c, d, e, f, g, h, i, j, k, \ell\}$$

$$E = \{\{a, b\}, \{a, c\}, \{a, d\}, \{a, f\}, \{b, d\}, \{c, f\}, \{c, h\}, \{c, j\}, \{d, g\}, \{e, g\}, \{e, i\}, \{e, m\}, \{f, g\}, \{f, j\}, \{g, j\}, \{g, k\}, \{h, i\}, \{h, j\}, \{i, j\}\}$$

A directed graph

$$G = (V, E)$$

$$V = \{a, b, c, d, e, f\}$$

$$E = \{(a, b), (b, c), (c, d), (c, f), (d, d), (d, e), (e, f), (f, e)\}$$

A directed graph

$$G = (V, E)$$

$$V = \{a, b, c, d, e, f\}$$

$$E = \{(a, b), (b, c), (c, d), (c, f), (d, d), (d, e), (e, f), (f, e)\}$$

A directed graph with cycles

$$G = (V, E)$$

 $V = \{a, b, c, d, e, f\}$
 $E = \{(a, b), (b, c), (c, d), (c, f), (d, d), (d, e), (e, f), (f, e)\}$

A directed graph with cycles

$$G = (V, E)$$

 $V = \{a, b, c, d, e, f\}$
 $E = \{(a, b), (b, c), (c, d), (c, f), (d, d), (d, e), (e, f), (f, e)\}$

A DAG (directed acyclic graph)

A weighted, directed graph

$$G = (V, E, w)$$

$$V = \{a, b, c, d, e, f\}$$

$$E = \{(a, b), (b, c), (c, d), (c, f), (d, d), (d, e), (e, f), (f, e)\}$$

$$w = \{(a, b) \mapsto 1, (b, c) \mapsto 2, (c, d) \mapsto 1, (c, f) \mapsto 12, \ldots\}$$

A little graph theory

If $\{v, u\} \in E$ then v and u are adjacent

If $\{v, u\} \in E$ then v and u are adjacent

If $\{v_0, v_1\}, \{v_1, v_2\}, \dots, \{v_{k-1}, v_k\} \in E$ then there is a *path* from v_0 to v_k , and we say v_0 and v_k are *connected*

Components

A subgraph of nodes all connected to each other is a *connected component*; here we have two

Degree

The degree of a vertex is the number of adjacent vertices:

$$degree(v, G) = |\{u \in V : \{u, v\} \in E\}| \text{ where } G = (V, E)$$

Degree

The degree of a vertex is the number of adjacent vertices:

$$degree(v, G) = |\{u \in V : \{u, v\} \in E\}| \text{ where } G = (V, E)$$

The degree of a graph is the maximum degree of any vertex:

$$\operatorname{degree}(G) = \max_{v \in V} \operatorname{degree}(v, G) \text{ where } G = (V, E)$$

Degree

The degree of a vertex is the number of adjacent vertices:

$$degree(v, G) = |\{u \in V : \{u, v\} \in E\}| \text{ where } G = (V, E)$$

The degree of a graph is the maximum degree of any vertex:

$$\operatorname{degree}(G) = \max_{v \in V} \operatorname{degree}(v, G)$$
 where $G = (V, E)$

Sometimes we will refer to the degree as d, such as when we say that a particular operation is $\mathcal{O}(d)$.

If $(v, u) \in E$, v is the *direct predecessor* of u and u is the *direct successor* of v

If $(v, u) \in E$, v is the *direct predecessor* of u and u is the *direct successor* of v

If $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k) \in E$ then there is a *path* from v_0 to v_k ; we say that v_k is *reachable* from v_0

If $(v, u) \in E$, v is the *direct predecessor* of u and u is the *direct successor* of v

If $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k) \in E$ then there is a *path* from v_0 to v_k ; we say that v_k is *reachable* from v_0

If $(v, u) \in E$, v is the *direct predecessor* of u and u is the *direct successor* of v

If $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k) \in E$ then there is a *path* from v_0 to v_k ; we say that v_k is *reachable* from v_0

If v_k and v_0 are mutually reachable from each other, they are strongly connected

1

Strongly connected components

In a digraph, a subgraph of vertices all strongly connected to each other is a *strongly connected component*; here we have a connected graph with two SCCs

Dense versus sparse

Programming with graphs

A graph ADT

```
Looks like (V, E) (as above)

Operations:

interface GRAPH:
    def new_vertex(self) -> nat?
    def add_edge(self, u: nat?, v: nat?) -> VoidC
    def has_edge?(self, u: nat?, v: nat?) -> bool?
    def get_vertices(self) -> VertexSet
    def get_neighbors(self, v: nat?) -> VertexSet
```

A graph ADT

```
Looks like (V, E) (as above)

Operations:

interface GRAPH:
    def new_vertex(self) -> nat?
    def add_edge(self, u: nat?, v: nat?) -> VoidC
    def has edge?(self, u: nat?, v: nat?) -> bool?
```

def get neighbors(self, v: nat?) -> VertexSet

def get vertices(self) -> VertexSet

Invariants:

- $V = \{0, 1, \dots, |V| 1\}$
- ∪ E ⊆ V

Graph ADT laws

- 1. $\{g = (V, E)\}\ g.new_vertex() = n \ \{g = (V \cup \{n\}, E)\}\$ where $n = \max(V) + 1$
- 2. $\{g = (V, E) \land n, m \in V\}$ g.add_edge(n, m) $\{g = (V, E \cup \{\{n, m\}\})\}$
- 3. $\{g = (V, E) \land \{n, m\} \in E\}$ *g.has_edge*? $(n, m) = \top$
- 4. $\{g = (V, E) \land \{n, m\} \notin E\}$ *g.has_edge*? $(n, m) = \bot$
- 5. $\{g = (V, E)\}\ g.get_vertices() = V$
- 6. $\{g = (V, E)\}\ g.get_neighbors(n) = \{m \in V : \{m, n\} \in E\}$

A digraph ADT

Looks like (V, E) (as above, E contains ordered pairs of vertices)

Operations:

```
interface DIGRAPH:
    def new_vertex(self) -> nat?
    def add_edge(self, src: nat?, dst: nat?) -> VoidC
    def has_edge?(self, src: nat?, dst: nat?) -> bool?
    def get_vertices(self) -> VertexSet
    def get_succs(self, v: nat?) -> VertexSet
    def get_preds(self, v: nat?) -> VertexSet
```

Invariants:

- $V = \{0, 1, \dots, |V| 1\}$
- $\forall (v, u) \in E. \ v \in V \land u \in V$

Digraph ADT laws

- 1. $\{g = (V, E)\}\ g.new_vertex() = n\ \{g = (V \cup \{n\}, E)\}\$ where $n = \max(V) + 1$
- 2. $\{g = (V, E) \land n, m \in V\}$ $g.add_edge(n, m)$ $\{g = (V, E \cup \{(n, m)\})\}$
- 3. $\{g = (V, E) \land (n, m) \in E\}$ g.has_edge $(n, m) = \top$
- 4. $\{g = (V, E) \land (n, m) \notin E\}$ g.has_edge $(n, m) = \bot$
- 5. $\{g = (V, E)\}\ g.get_vertices() = V$
- 6. $\{g = (V, E)\}\ g.get_succs(n) = \{m \in V : (n, m) \in E\}$
- 7. $\{g = (V, E)\}\ g.get_preds(n) = \{m \in V : (m, n) \in E\}$

A weighted digraph ADT

```
Looks like (V, E, w) (as above)
Operations:
let weight? = OrC(num?, inf)
interface WDTGRAPH:
    def new vertex(self) -> nat?
    def set edge(self, src: nat?, w: weight?,
                       dst: nat?) -> VoidC
    def get edge(self, src: nat?, dst: nat?) -> weight?
    def get vertices(self) -> VertexSet
    def get succs(self, v: nat?) -> VertexSet
    def get preds(self, v: nat?) -> VertexSet
```

Weighted digraph ADT laws

- 1. $\{g = (V, E, w)\}\ g.new_vertex() = n\ \{g = (V \cup \{n\}, E, w)\}\$ where $n = \max(V) + 1$
- 2. $\{g = (V, E, w) \land n, m \in V\}$ g.set_edge(n, a, m) $\{g = (V, E \cup \{(n, m)\}, w\{(n, m) \mapsto a\})\}$ where $a < \infty$
- 3. $\{g = (V, E, w) \land n, m \in V\}$ $g.set_edge(n, \infty, m)$ $\{g = (V, E \setminus \{(n, m)\}, w \setminus \{(n, m)\})\}$
- 4. $\{g = (V, E, w) \land (n, m) \in E\}$ *g.get_edge*(n, m) = w(n, m)
- 5. $\{g = (V, E, w) \land (n, m) \notin E\}$ $g.get_edge(n, m) = \infty$
- 6. $\{g = (V, E, w)\}\ g.get_vertices(g) = V$
- 7. $\{g = (V, E, w)\}\ g.get_succs(n) = \{m \in V : (n, m) \in E\}$
- 8. $\{g = (V, E, w)\}\ g.get_preds(n) = \{m \in V : (m, n) \in E\}$

Graph representation

Two graph representations

There are two common ways that graphs are represented on a computer:

- adjacency list
- adjacency matrix

Adjacency list

In an array, store a list of neighbors (or successors) for each vertex:

Adjacency matrix

Store a |V|-by-|V| matrix of Booleans indicating where edges are present:

A directed adjacency matrix example

	0	1	2	3	4	5
0	0	1	0	0	0	0
1	0	0	1	0	0	0
2	0	0	0	1	0	1
3	0	0	0	1	1	0
4	1	0	0	0	0	1
5	1	1	0	1	1	0

With weights

	0	1	2	3	4	5
0	∞	2	∞	∞	∞	∞
1	∞	∞	7	∞	∞	∞
2	∞	∞	∞	-4	∞	1
3	∞	∞	∞	10	8	∞
4	1	∞	∞	∞	∞	0
5	2	3	∞	4	5	∞

Space comparison

Adjacency list—has a list for each vertex, and the total length of all the lists is the number of edges: $\mathcal{O}(V+E)$

Adjacency matrix—is |V| by |V| regardless of the number of edges: $\mathcal{O}(V^2)$

Space comparison

Adjacency list—has a list for each vertex, and the total length of all the lists is the number of edges: $\mathcal{O}(V+E)$

Adjacency matrix—is |V| by |V| regardless of the number of edges: $\mathcal{O}(V^2)$

When might we want to use one or the other?

	adj. list	adj. matrix
add_edge/set_edge		

	adj. list	adj. matrix
add_edge/set_edge	$\mathcal{O}(setInsert(d))$	$\mathcal{O}(1)$

	adj. list	adj. matrix
add_edge/set_edge	$\mathcal{O}(setInsert(d))$	$\mathcal{O}(1)$
get_edge/has_edge?		

	adj. list	adj. matrix
add_edge/set_edge	$\mathcal{O}(setInsert(d))$	$\mathcal{O}(1)$
get_edge/has_edge?	$\mathcal{O}(setLookup(d))$	$\mathcal{O}(1)$

	adj. list	adj. matrix
add_edge/set_edge	$\mathcal{O}(setInsert(d))$	$\mathcal{O}(1)$
get_edge/has_edge?	$\mathcal{O}(setLookup(d))$	$\mathcal{O}(1)$
get_succs		

	adj. list	adj. matrix
add_edge/set_edge	$\mathcal{O}(setInsert(d))$	$\mathcal{O}(1)$
get_edge/has_edge?	$\mathcal{O}(setLookup(d))$	$\mathcal{O}(1)$
get_succs	$\mathcal{O}(\textit{Result})$	$\mathcal{O}(V)$

	adj. list	adj. matrix
add_edge/set_edge	$\mathcal{O}(setInsert(d))$	$\mathcal{O}(1)$
get_edge/has_edge?	$\mathcal{O}(setLookup(d))$	$\mathcal{O}(1)$
get_succs	$\mathcal{O}(\textit{Result})$	$\mathcal{O}(V)$
get_preds		

	adj. list	adj. matrix
add_edge/set_edge	$\mathcal{O}(setInsert(d))$	$\mathcal{O}(1)$
get_edge/has_edge?	$\mathcal{O}(setLookup(d))$	$\mathcal{O}(1)$
get_succs	$\mathcal{O}(\textit{Result})$	$\mathcal{O}(V)$
get_preds	$\mathcal{O}(V + E)$	$\mathcal{O}(V)$

Next time: exam review