Graphs and their representations

EECS 214, Fall 2018

Kinds of graphs

A graph (undirected)

$$
\begin{aligned}
G= & (V, E) \\
V= & \{a, b, c, d, e, f, g, h, i, j, k, \ell\} \\
E= & \{\{a, b\},\{a, c\},\{a, d\},\{a, f\},\{b, d\},\{c, f\}, \\
& \{c, h\},\{c, j\},\{d, g\},\{e, g\},\{e, i\},\{e, m\}, \\
& \{f, g\},\{f, j\},\{g, j\},\{g, k\},\{h, i\},\{h, j\},\{i, j\}\}
\end{aligned}
$$

A directed graph

$$
\begin{aligned}
& G=(V, E) \\
& V=\{a, b, c, d, e, f\} \\
& E=\{(a, b),(b, c),(c, d),(c, f),(d, d),(d, e),(e, f),(f, e)\}
\end{aligned}
$$

A directed graph

$$
\begin{aligned}
& G=(V, E) \\
& V=\{a, b, c, d, e, f\} \\
& E=\{(a, b),(b, c),(c, d),(c, f),(d, d),(d, e),(e, f),(f, e)\}
\end{aligned}
$$

A directed graph with cycles

$$
\begin{aligned}
& G=(V, E) \\
& V=\{a, b, c, d, e, f\} \\
& E=\{(a, b),(b, c),(c, d),(c, f),(d, d),(d, e),(e, f),(f, e)\}
\end{aligned}
$$

A directed graph with cycles

$$
\begin{aligned}
& G=(V, E) \\
& V=\{a, b, c, d, e, f\} \\
& E=\{(a, b),(b, c),(c, d),(c, f),(d, d),(d, e),(e, f),(f, e)\}
\end{aligned}
$$

A DAG (directed acyclic graph)

A weighted, directed graph

$$
\begin{aligned}
& G=(V, E, w) \\
& V=\{a, b, c, d, e, f\} \\
& E=\{(a, b),(b, c),(c, d),(c, f),(d, d),(d, e),(e, f),(f, e)\} \\
& w=\{(a, b) \mapsto 1,(b, c) \mapsto 2,(c, d) \mapsto 1,(c, f) \mapsto 12, \ldots\}
\end{aligned}
$$

A little graph theory

Some graph definitions

Some graph definitions

If $\{v, u\} \in E$ then v and u are adjacent

Some graph definitions

If $\{v, u\} \in E$ then v and u are adjacent
If $\left\{\boldsymbol{v}_{0}, \boldsymbol{v}_{1}\right\},\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}, \ldots,\left\{\boldsymbol{v}_{k-1}, \boldsymbol{v}_{k}\right\} \in E$ then there is a path from v_{0} to v_{k}, and we say v_{0} and v_{k} are connected

Components

A subgraph of nodes all connected to each other is a connected component; here we have two

Degree

The degree of a vertex is the number of adjacent vertices:

$$
\operatorname{degree}(v, G)=|\{u \in V:\{u, v\} \in E\}| \text { where } G=(V, E)
$$

Degree

The degree of a vertex is the number of adjacent vertices:

$$
\operatorname{degree}(v, G)=|\{u \in V:\{u, v\} \in E\}| \text { where } G=(V, E)
$$

The degree of a graph is the maximum degree of any vertex:

$$
\operatorname{degree}(G)=\max _{V \in V} \operatorname{degree}(V, G) \text { where } G=(V, E)
$$

Degree

The degree of a vertex is the number of adjacent vertices:

$$
\operatorname{degree}(v, G)=|\{u \in V:\{u, v\} \in E\}| \text { where } G=(V, E)
$$

The degree of a graph is the maximum degree of any vertex:

$$
\operatorname{degree}(G)=\max _{V \in V} \operatorname{degree}(V, G) \text { where } G=(V, E)
$$

Sometimes we will refer to the degree as d, such as when we say that a particular operation is $\mathcal{O}(d)$.

Some digraph definitions

Some digraph definitions

If $(v, u) \in E, v$ is the direct predecessor of u and u is the direct successor of v

Some digraph definitions

If $(v, u) \in E, v$ is the direct predecessor of u and u is the direct successor of v

If $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right) \in E$ then there is a path from v_{0} to v_{k}; we say that v_{k} is reachable from v_{0}

Some digraph definitions

If $(v, u) \in E, v$ is the direct predecessor of u and u is the direct successor of v

If $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right) \in E$ then there is a path from v_{0} to v_{k}; we say that v_{k} is reachable from v_{0}

Some digraph definitions

If $(v, u) \in E, v$ is the direct predecessor of u and u is the direct successor of v

If $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right) \in E$ then there is a path from v_{0} to v_{k}; we say that v_{k} is reachable from v_{0}

If v_{k} and v_{0} are mutually reachable from each other, they are strongly connected

Strongly connected components

In a digraph, a subgraph of vertices all strongly connected to each other is a strongly connected component; here we have a connected graph with two SCCs

Dense versus sparse

Programming with graphs

A graph ADT

Looks like (V, E) (as above)
Operations:
interface GRAPH:
def new_vertex(self) -> nat? def add_edge(self, u: nat?, v: nat?) -> VoidC def has_edge?(self, u: nat?, v: nat?) -> bool? def get_vertices(self) -> VertexSet def get_neighbors(self, v: nat?) -> VertexSet

A graph ADT

Looks like (V, E) (as above)
Operations:
interface GRAPH:
def new_vertex(self) -> nat? def add_edge(self, u: nat?, v: nat?) -> VoidC def has_edge?(self, u: nat?, v: nat?) -> bool? def get_vertices(self) -> VertexSet def get_neighbors(self, v: nat?) -> VertexSet

Invariants:

- $V=\{0,1, \ldots,|V|-1\}$
- $\bigcup E \subseteq V$

Graph ADT laws

1. $\{g=(V, E)\}$ g.new_vertex ()$=n\{g=(V \cup\{n\}, E)\}$ where $n=\max (V)+1$
2. $\{g=(V, E) \wedge n, m \in V\}$ g.add_edge $(n, m)\{g=$ $(V, E \cup\{\{n, m\}\})\}$
3. $\{g=(V, E) \wedge\{n, m\} \in E\}$ g.has_edge? $(n, m)=T$
4. $\{g=(V, E) \wedge\{n, m\} \notin E\}$ g.has_edge? $(n, m)=\perp$
5. $\{g=(V, E)\}$ g.get_vertices ()$=V$
6. $\{g=(V, E)\}$ g.get_neighbors $(n)=\{m \in V:\{m, n\} \in E\}$

A digraph ADT

Looks like (V, E) (as above, E contains ordered pairs of vertices)

Operations:

interface DIGRAPH: def new_vertex(self) -> nat? def add_edge(self, src: nat?, dst: nat?) -> VoidC def has_edge?(self, src: nat?, dst: nat?) -> bool? def get_vertices(self) -> VertexSet def get_succs(self, v: nat?) -> VertexSet def get_preds(self, v: nat?) -> VertexSet

Invariants:

- $V=\{0,1, \ldots,|V|-1\}$
- $\forall(v, u) \in E . v \in V \wedge u \in V$

Digraph ADT laws

1. $\{g=(V, E)\}$ g.new_vertex ()$=n\{g=(V \cup\{n\}, E)\}$ where $n=\max (V)+1$
2. $\{g=(V, E) \wedge n, m \in V\}$ g.add_edge $(n, m)\{g=$ $(V, E \cup\{(n, m)\})\}$
3. $\{g=(V, E) \wedge(n, m) \in E\}$ g.has_edge $(n, m)=T$
4. $\{g=(V, E) \wedge(n, m) \notin E\}$ g.has_edge $(n, m)=\perp$
5. $\{g=(V, E)\}$ g.get_vertices ()$=V$
6. $\{g=(V, E)\}$ g.get_succs $(n)=\{m \in V:(n, m) \in E\}$
7. $\{g=(V, E)\}$ g.get_preds $(n)=\{m \in V:(m, n) \in E\}$

A weighted digraph ADT

Looks like (V, E, w) (as above)
Operations:
let weight? = OrC(num?, inf)
interface WDIGRAPH:
def new_vertex(self) -> nat?
def set_edge(self, src: nat?, w: weight?, dst: nat?) -> VoidC
def get_edge(self, src: nat?, dst: nat?) -> weight?
def get_vertices(self) -> VertexSet
def get_succs(self, v: nat?) -> VertexSet def get_preds(self, v: nat?) -> VertexSet

Weighted digraph ADT laws

1. $\{g=(V, E, w)\}$ g.new_vertex ()$=n\{g=(V \cup\{n\}, E, w)\}$ where $n=\max (V)+1$
2. $\{g=(V, E, w) \wedge n, m \in V\}$ g.set_edge($n, a, m)\{g=$ $(V, E \cup\{(n, m)\}, w\{(n, m) \mapsto a\})\}$ where $a<\infty$
3. $\{g=(V, E, w) \wedge n, m \in V\}$ g.set_edge $(n, \infty, m)\{g=$ $(V, E \backslash\{(n, m)\}, w \backslash\{(n, m)\})\}$
4. $\{g=(V, E, w) \wedge(n, m) \in E\}$ g.get_edge $(n, m)=w(n, m)$
5. $\{g=(V, E, w) \wedge(n, m) \notin E\}$ g.get_edge $(n, m)=\infty$
6. $\{g=(V, E, w)\}$ g.get_vertices $(g)=V$
7. $\{g=(V, E, w)\}$ g.get_succs $(n)=\{m \in V:(n, m) \in E\}$
8. $\{g=(V, E, w)\}$ g.get_preds $(n)=\{m \in V:(m, n) \in E\}$

Graph representation

Two graph representations

There are two common ways that graphs are represented on a computer:

- adjacency list
- adjacency matrix

Adjacency list

In an array, store a list of neighbors (or successors) for each vertex:

Adjacency matrix

Store a $|V|$-by- $|V|$ matrix of Booleans indicating where edges are present:

A directed adjacency matrix example

	0	1	2	3	4	5
0	0	1	0	0	0	0
1	0	0	1	0	0	0
2	0	0	0	1	0	1
3	0	0	0	1	1	0
4	1	0	0	0	0	1
5	1	1	0	1	1	0

With weights

	0	1	2	3	4	5
0	∞	2	∞	∞	∞	∞
1	∞	∞	7	∞	∞	∞
2	∞	∞	∞	-4	∞	1
3	∞	∞	∞	10	8	∞
4	1	∞	∞	∞	∞	0
5	2	3	∞	4	5	∞

Space comparison

Adjacency list-has a list for each vertex, and the total length of all the lists is the number of edges:
$\mathcal{O}(V+E)$
Adjacency matrix—is $|V|$ by $|V|$ regardless of the number of edges:
$\mathcal{O}\left(V^{2}\right)$

Space comparison

Adjacency list-has a list for each vertex, and the total length of all the lists is the number of edges:
$\mathcal{O}(V+E)$
Adjacency matrix—is $|V|$ by $|V|$ regardless of the number of edges:
$\mathcal{O}\left(V^{2}\right)$
When might we want to use one or the other?

Time comparison

Time comparison

	adj. list	adj. matrix
add_edge/set_edge	$\mathcal{O}($ setlnsert $(d))$	$\mathcal{O}(1)$

Time comparison

Time comparison

	adj. list	adj. matrix
add_edge/set_edge	$\mathcal{O}($ setlnsert(d))	$\mathcal{O}(1)$
get_edge/has_edge?	$\mathcal{O}($ setLookup(d) $)$	$\mathcal{O}(1)$

Time comparison

	adj. list	adj. matrix
add_edge/set_edge	$\mathcal{O}($ setInsert $(d))$	$\mathcal{O}(1)$
get_edge/has_edge?	$\mathcal{O}($ setLookup $(d))$	$\mathcal{O}(1)$
get_succs		

Time comparison

	adj. list	adj. matrix
add_edge/set_edge	$\mathcal{O}($ setInsert $(d))$	$\mathcal{O}(1)$
get_edge/has_edge?	$\mathcal{O}($ setLookup $(d))$	$\mathcal{O}(1)$
get_succs	$\mathcal{O}(\mid$ Result $\mid)$	$\mathcal{O}(V)$

Time comparison

Time comparison

	adj. list	adj. matrix
add_edge/set_edge	$\mathcal{O}($ setlnsert $(d))$	$\mathcal{O}(1)$
get_edge/has_edge?	$\mathcal{O}($ setLookup(d) $)$	$\mathcal{O}(1)$
get_succs	$\mathcal{O}(\mid$ Result $\mid)$	$\mathcal{O}(V)$
get_preds	$\mathcal{O}(V+E)$	$\mathcal{O}(V)$

Next time: exam review

