Single-Source Shortest Paths

EECS 214, Fall 2018

The problem

Find the shortest path from A to D:

The problem

Find the shortest path from A to D:

Typically generalized as single-source shortest paths (SSSP): find the shortest path to everywhere from A.

Keep a table with two values for each node:

- the best known distance to it from the start, and
- the predecessor node along that best path

Keep a table with two values for each node:

- the best known distance to it from the start, and
- the predecessor node along that best path

To "relax" an edge, we consider whether our knowledge thus far, combined that that edge, can improve our knowledge by finding a shorter path

Keep a table with two values for each node:

- the best known distance to it from the start, and
- the predecessor node along that best path

To "relax" an edge, we consider whether our knowledge thus far, combined that that edge, can improve our knowledge by finding a shorter path

For example, suppose that

- the best known distance to node C is 15,
- the best known distance to node D is 4, and
- there's an edge of weight 5 from D to C.

Keep a table with two values for each node:

- the best known distance to it from the start, and
- the predecessor node along that best path

To "relax" an edge, we consider whether our knowledge thus far, combined that that edge, can improve our knowledge by finding a shorter path

For example, suppose that

- the best known distance to node C is 15,
- the best known distance to node D is 4, and
- there's an edge of weight 5 from D to C.

Then we update the best known distance to C to be 9, via D.

Bellman–Ford algorithm summary

Solves:SSSP for graphs with no negative cyclesMain idea:Relax every edge |V| - 1 timesTime complexity: $\mathcal{O}(VE)$

The Bellman–Ford algorithm

Input: A graph *graph* and a starting vertex *start* Output: Tables of vertex distances *dist* and predecessors *pred*

```
for every vertex v in graph do
    dist[v] \leftarrow \infty;
    pred[v] \leftarrow -1
end
dist[start] \leftarrow 0;
for |Vertices(graph)| - 1 iterations do
    for every edge (v, u) with weight w in graph do
         if dist[v] + w < dist[u] then
              dist[u] \leftarrow dist[v] + w;
             pred[u] \leftarrow v
         end
    end
end
```

continued ...

At this point we have the answer provided there are no negative-weight cycles. We do one more pass to ensure this is the case:

Dijkstra's algorithm summary

Solves:SSSP for graphs with no negative edgesMain idea:Relax the edges in a clever orderTime complexity:depends

Dijkstra's algorithm summary

Solves:SSSP for graphs with no negative edgesMain idea:Relax the edges in a clever orderTime complexity:depends

What's the clever order? Relax the edges coming out of the nearest vertex, then repeat

			$\begin{array}{c c} & 14 \\ & A \\ & 9 \\ & 2 \\ & 7 \\ & F \\ & D \\$
V	dist[v]	pred[v]	
Α	0		B 6
В	∞		15 C
С	∞		
D	∞		
Е	∞		
F	\sim		

			14 E 9 2 7 F D
V	dist[v]	pred[v]	
Α	0		B 6
В	∞		15 C
С	∞		10
D	∞		
Е	∞		
F	\sim		

			14 E 9 2 7 F D
V	dist[v]	pred[v]	
А	0		B ~ 6
В	7	А	15 C
С	∞		15
D	∞		
Е	14	А	
F	Q	Δ	

			A 9 2 9 7 F D
V	dist[v]	pred[v]	
Α	0		
В	7	Α	15 C
С	∞		10
D	∞		
Е	14	Α	
F	9	А	

Dijkstra's algorithm (original)

Input: A graph *graph* and a starting vertex *start* Output: Tables of vertex distances *dist* and predecessors *pred*

```
for every vertex v in graph do
    dist[v] \leftarrow \infty; pred[v] \leftarrow -1;
end
dist[start] \leftarrow 0;
todo \leftarrow the set of vertices in graph;
while todo is not empty do
    v \leftarrow remove the element of todo with minimal dist[v];
    for every outgoing edge (v, u) with weight w do
         if dist[v] + w < dist[u] then
              dist[u] \leftarrow dist[v] + w;
             pred[u] \leftarrow v
         end
    end
end
```

Priority Queue ADT

Looks like: (2:g 5:i 5:b 17:c 89:g (

(note sorting)

```
struct key value:
    let key
```

let value

```
interface PRIORITY QUEUE:
   def is empty(self) -> bool?
   def insert(self, key: num?, value: AnyC) -> VoidC
   def peek_min(self) -> key_value?
    def remove min(self) -> key value?
```

Behavior:

- Keeps key-value pairs sorted by key, so that
- remove min can find and remove the pair with the smallest key

Dijkstra's algorithm with priority queue (1/2)

Input: A graph *graph* and a starting vertex *start* Output: Tables of vertex distances *dist* and predecessors *pred*

for every vertex *v* in graph do | dist $[v] \leftarrow \infty$; pred $[v] \leftarrow -1$; end dist $[start] \leftarrow 0$; done \leftarrow empty vertex set; todo \leftarrow empty priority queue; Insert(todo, 0, start);

Dijkstra's algorithm with priority queue (2/2)

Complexity of Dijkstra's algorithm

- Relax every edge once, for $\mathcal{O}(E)$
- For every edge, we (might) do an insert, which takes how long?

Complexity of Dijkstra's algorithm

- Relax every edge once, for $\mathcal{O}(E)$
- For every edge, we (might) do an insert, which takes how long? Call it *T*_{in}.
- For every edge, we (might) do an remove_min, which takes how long? Call it *T*_{rm}.

Complexity of Dijkstra's algorithm

- Relax every edge once, for $\mathcal{O}(E)$
- For every edge, we (might) do an insert, which takes how long? Call it *T*_{in}.
- For every edge, we (might) do an remove_min, which takes how long? Call it *T*_{rm}.
- Then Dijkstra's algorithm is $\mathcal{O}(E(T_{in} + T_{rm}))$.

Next: making remove_min and insert fast