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The necessity of balance
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The necessity of balance
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DSSL2 data definition

# An rndbst? (randomized BST of numbers) is either:

# - False

# - node(key?, nat?, rndbst?, rndbst?)

let rndbst? = OrC(node?, False)

struct node:

let key: key?

let size: nat?

let left: rndbst?

let right: rndbst?
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Size maintenance

def empty?(t: rndbst?) -> bool?:

t is False

def size(t: rndbst?) -> nat?:

t.size if node?(t) else 0

def _fix_size(n: node?) -> VoidC:

n.size = 1 + size(n.left) + size(n.right)

def _new_node(k: key?) -> rndbst?:

node(k, 1, False, False)
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Leaf insertion in DSSL2

The easy way to add elements to a tree—at the leaves:

def leaf_insert(t: rndbst?, k: key?) -> rndbst?:

if empty?(t): _new_node(k)

elif k < t.key:

t.left = leaf_insert(t.left, k)

_fix_size(t)

t

elif k > t.key:

t.right = leaf_insert(t.right, k)

_fix_size(t)

t

else: t
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Leaf insertion
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Leaf insertion
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The permutation distribution

Can we characterize how sequences of insertions produce
(un)balanced trees?

• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 — severely
unbalanced (degenerate)

• 7, 3, 1, 0, 2, 5, 4, 6, 11, 9, 8, 10, 13, 12, 14 — balanced
• 7, 11, 3, 13, 9, 5, 1, 14, 12, 10, 8, 6, 4, 2, 0 — balanced

In fact, the only sequence to produce the right-branching
degenerate tree is 0, …, 14
There are 21,964,800 sequences that produce the same
perfectly balanced tree
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A random BST tends to be balanced

If you generate a tree by leaf-inserting a random permutation of
its elements, it will probably be balanced
In particular, the expected length of a search path is

2 ln n +O(1)

Unfortunately, we usually can’t do that, but we can simulate it
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A tool: tree rotations
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In DSSL2
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def _rotate_right(d): def _rotate_left(b):

let b = d.left let d = b.right

d.left = b.right b.right = d.left

b.right = d d.left = b

_fix_size(d) _fix_size(b)

_fix_size(b) _fix_size(d)

b d
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Root insertion

Using rotations, we can insert at the root:

• To insert into an empty tree, create a new node
• To insert into a non-empty tree, if the new key is greater

than the root, then root-insert (recursively) into the right
subtree, then rotate left

• By symmetry, if the key belongs to the left of the old root,
root insert into the left subtree and then rotate right
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Root insertion in DSSL2

def _root_insert(t: rndbst?, k: key?) -> rndbst?:

if empty?(t): _new_node(k)

elif k < t.key:

t.left = _root_insert(t.left, k)

_rotate_right(t)

elif k > t.key:

t.right = _root_insert(t.right, k)

_rotate_left(t)

else: t
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Randomized insertion

We can now build a randomized insertion function that
maintains the random shape of the tree:

• Suppose we insert into a subtree of size k, so the result will
have size k + 1

• If the tree were random, the new element would be the root
with probability 1

k+1

• So we root insert with that probability, and otherwise
recursively insert into a subsubtree
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Randomized insertion in DSSL2

def insert(t: rndbst?, k: key?) -> rndbst?:

if empty?(t): _new_node(k)

elif random(size(t) + 1) == 0:

_root_insert(t, k)

elif k < t.key:

t.left = insert(t.left, k)

_fix_size(t)

t

elif k > t.key:

t.right = insert(t.right, k)

_fix_size(t)

t

else: t
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Deletion idea

To delete a node, we join its subtrees recursively, randomly
selecting which contributes the root (based on size):
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Join in DSSL2

def _join(t1: rndbst?, t2: rndbst?) -> rndbst?:

if empty?(t1): t2

elif empty?(t2): t1

elif random(size(t1) + size(t2)) < size(t1):

t1.right = _join(t1.right, t2)

_fix_size(t1)

t1

else:

t2.left = _join(t1, t2.left)

_fix_size(t2)

t2
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Delete in DSSL2

def delete(t: rndbst?, k: key?) -> rndbst?:

if empty?(t): t

elif k < t.key:

t.left = delete(t.left, k)

_fix_size(t)

t

elif k > t.key:

t.right = delete(t.right, k)

_fix_size(t)

t

else:

_join(t.left, t.right)
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Next time: guaranteed balance
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