Random Binary Search Trees

EECS 214, Fall 2018

The necessity of balance

The necessity of balance

n	$\lceil\lg n\rceil$
10	4
100	7
1,000	10
10,000	14
100,000	17
$1,000,000$	20
$10,000,000$	24
$100,000,000$	27
$1,000,000,000$	30

DSSL2 data definition

\# An rndbst? (randomized BST of numbers) is either:
\# - False
\# - node(key?, nat?, rndbst?, rndbst?)
let rndbst? = OrC(node?, False)
struct node:
let key: key?
let size: nat?
let left: rndbst?
let right: rndbst?

Size maintenance

def empty?(t: rndbst?) -> bool?: t is False
def size(t: rndbst?) -> nat?:
t.size if node?(t) else 0
def _fix_size(n: node?) -> VoidC:
n.size $=1+\operatorname{size}(n . l e f t)+\operatorname{size}(n . r i g h t)$
def _new_node(k: key?) -> rndbst?: node(k, 1, False, False)

Leaf insertion in DSSL2

The easy way to add elements to a tree-at the leaves:

```
def leaf_insert(t: rndbst?, k: key?) -> rndbst?:
    if empty?(t): _new_node(k)
    elif k < t.key:
        t.left = leaf_insert(t.left, k)
        _fix_size(t)
    elif k > t.key:
        t.right = leaf_insert(t.right, k)
        _fix_size(t)
    else: t
```

Leaf insertion
©

Leaf insertion

The permutation distribution

Can we characterize how sequences of insertions produce (un)balanced trees?

The permutation distribution

Can we characterize how sequences of insertions produce (un)balanced trees?

- $0,1,2,3,4,5,6,7,8,9,10,11,12,13,14$ - severely unbalanced (degenerate)

The permutation distribution

Can we characterize how sequences of insertions produce (un)balanced trees?

- $0,1,2,3,4,5,6,7,8,9,10,11,12,13,14$ - severely unbalanced (degenerate)
- $7,3,1,0,2,5,4,6,11,9,8,10,13,12,14$ - balanced

The permutation distribution

Can we characterize how sequences of insertions produce (un)balanced trees?

- $0,1,2,3,4,5,6,7,8,9,10,11,12,13,14$ - severely unbalanced (degenerate)
- $7,3,1,0,2,5,4,6,11,9,8,10,13,12,14$ - balanced
- 7, 11, 3, 13, 9, 5, 1, 14, 12, 10, 8, 6, 4, 2, 0 - balanced

The permutation distribution

Can we characterize how sequences of insertions produce (un)balanced trees?

- $0,1,2,3,4,5,6,7,8,9,10,11,12,13,14$ - severely unbalanced (degenerate)
- $7,3,1,0,2,5,4,6,11,9,8,10,13,12,14$ - balanced
- 7, 11, 3, 13, 9, 5, 1, 14, 12, 10, 8, 6, 4, 2, 0 - balanced

In fact, the only sequence to produce the right-branching degenerate tree is $0, \ldots, 14$

There are $21,964,800$ sequences that produce the same perfectly balanced tree

A random BST tends to be balanced

If you generate a tree by leaf-inserting a random permutation of its elements, it will probably be balanced

In particular, the expected length of a search path is

$$
2 \ln n+\mathcal{O}(1)
$$

A random BST tends to be balanced

If you generate a tree by leaf-inserting a random permutation of its elements, it will probably be balanced

In particular, the expected length of a search path is

$$
2 \ln n+\mathcal{O}(1)
$$

Unfortunately, we usually can't do that, but we can simulate it

A tool: tree rotations

Note that order is preserved

In DSSL2

Root insertion

Using rotations, we can insert at the root:

- To insert into an empty tree, create a new node
- To insert into a non-empty tree, if the new key is greater than the root, then root-insert (recursively) into the right subtree, then rotate left
- By symmetry, if the key belongs to the left of the old root, root insert into the left subtree and then rotate right

Root insertion in DSSL2

```
def _root_insert(t: rndbst?, k: key?) -> rndbst?:
    if empty?(t): _new_node(k)
    elif k < t.key:
            t.left = _root_insert(t.left, k)
            _rotate_right(t)
    elif k > t.key:
            t.right = _root_insert(t.right, k)
            _rotate_left(t)
    else: t
```


Randomized insertion

We can now build a randomized insertion function that maintains the random shape of the tree:

- Suppose we insert into a subtree of size k, so the result will have size $k+1$
- If the tree were random, the new element would be the root with probability $\frac{1}{k+1}$
- So we root insert with that probability, and otherwise recursively insert into a subsubtree

Randomized insertion in DSSL2

```
def insert(t: rndbst?, k: key?) -> rndbst?:
    if empty?(t): _new_node(k)
    elif random(size(t) + 1) == 0:
    _root_insert(t, k)
    elif k < t.key:
        t.left = insert(t.left, k)
        _fix_size(t)
    elif k > t.key:
        t.right = insert(t.right, k)
        _fix_size(t)
    else: t
```


Deletion idea

To delete a node, we join its subtrees recursively, randomly selecting which contributes the root (based on size):

Join in DSSL2

```
def _join(t1: rndbst?, t2: rndbst?) -> rndbst?:
    if empty?(t1): t2
    elif empty?(t2): t1
    elif random(size(t1) + size(t2)) < size(t1):
        t1.right = _join(t1.right, t2)
        _fix_size(t1)
        t1
    else:
        t2.left = _join(t1, t2.left)
        _fix_size(t2)
        t2
```


Delete in DSSL2

def delete(t: rndbst?, k: key?) -> rndbst?:
if empty?(t): t
elif k < t.key:
t.left = delete(t.left, k)
_fix_size(t)
elif k > t.key:
t.right = delete(t.right, k)
_fix_size(t)
else:
_join(t.left, t.right)

Next time: guaranteed balance

