Random Binary Search Trees

EECS 214, Fall 2018

The necessity of balance

The necessity of balance

n	[lg <i>n</i>]
10	4
100	7
1,000	10
10,000	14
100,000	17
1,000,000	20
10,000,000	24
100,000,000	27
1,000,000,000	30

DSSL2 data definition

let size: nat?
let left: rndbst?
let right: rndbst?

```
# An rndbst? (randomized BST of numbers) is either:
# - False
# - node(key?, nat?, rndbst?, rndbst?)
let rndbst? = OrC(node?, False)
struct node:
    let key: key?
```

Size maintenance

```
def empty?(t: rndbst?) -> bool?:
    t is False
```

def size(t: rndbst?) -> nat?:
 t.size if node?(t) else 0

def _fix_size(n: node?) -> VoidC: n.size = 1 + size(n.left) + size(n.right)

def _new_node(k: key?) -> rndbst?: node(k, 1, False, False)

Leaf insertion in DSSL2

The easy way to add elements to a tree—at the leaves:

```
def leaf_insert(t: rndbst?, k: key?) -> rndbst?:
    if empty?(t): _new_node(k)
    elif k < t.key:
        t.left = leaf_insert(t.left, k)
        _fix_size(t)
        t
    elif k > t.key:
        t.right = leaf_insert(t.right, k)
        _fix_size(t)
        t
    else: t
```


Can we characterize how sequences of insertions produce (un)balanced trees?

Can we characterize how sequences of insertions produce (un)balanced trees?

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 — severely unbalanced (degenerate)

Can we characterize how sequences of insertions produce (un)balanced trees?

- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 severely unbalanced (degenerate)
- 7, 3, 1, 0, 2, 5, 4, 6, 11, 9, 8, 10, 13, 12, 14 balanced

Can we characterize how sequences of insertions produce (un)balanced trees?

- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 severely unbalanced (degenerate)
- 7, 3, 1, 0, 2, 5, 4, 6, 11, 9, 8, 10, 13, 12, 14 balanced
- 7, 11, 3, 13, 9, 5, 1, 14, 12, 10, 8, 6, 4, 2, 0 balanced

Can we characterize how sequences of insertions produce (un)balanced trees?

- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 severely unbalanced (degenerate)
- 7, 3, 1, 0, 2, 5, 4, 6, 11, 9, 8, 10, 13, 12, 14 balanced
- 7, 11, 3, 13, 9, 5, 1, 14, 12, 10, 8, 6, 4, 2, 0 balanced

In fact, the only sequence to produce the right-branching degenerate tree is 0, ..., 14

There are 21,964,800 sequences that produce the same perfectly balanced tree

A random BST tends to be balanced

If you generate a tree by leaf-inserting a random permutation of its elements, it will probably be balanced

In particular, the expected length of a search path is

 $2\ln n + \mathcal{O}(1)$

A random BST tends to be balanced

If you generate a tree by leaf-inserting a random permutation of its elements, it will probably be balanced

In particular, the expected length of a search path is

 $2\ln n + \mathcal{O}(1)$

Unfortunately, we usually can't do that, but we can simulate it

A tool: tree rotations

Note that order is preserved

In DSSL2


```
def _rotate_right(d):
    let b = d.left
    d.left = b.right
    b.right = d
    _fix_size(d)
    _fix_size(b)
    b
```



```
def _rotate_left(b):
    let d = b.right
    b.right = d.left
    d.left = b
    _fix_size(b)
    _fix_size(d)
    d
```

Root insertion

Using rotations, we can insert at the root:

- To insert into an empty tree, create a new node
- To insert into a non-empty tree, if the new key is greater than the root, then root-insert (recursively) into the right subtree, then rotate left
- By symmetry, if the key belongs to the left of the old root, root insert into the left subtree and then rotate right

Root insertion in DSSL2

```
def _root_insert(t: rndbst?, k: key?) -> rndbst?:
    if empty?(t): _new_node(k)
    elif k < t.key:
        t.left = _root_insert(t.left, k)
        _rotate_right(t)
    elif k > t.key:
        t.right = _root_insert(t.right, k)
        _rotate_left(t)
    else: t
```

Randomized insertion

We can now build a randomized insertion function that maintains the random shape of the tree:

- Suppose we insert into a subtree of size *k*, so the result will have size *k* + 1
- If the tree were random, the new element would be the root with probability $\frac{1}{k+1}$
- So we root insert with that probability, and otherwise recursively insert into a subsubtree

Randomized insertion in DSSL2

```
def insert(t: rndbst?, k: key?) -> rndbst?:
    if empty?(t): new node(k)
    elif random(size(t) + 1) == 0:
        _root_insert(t, k)
    elif k < t.key:</pre>
        t.left = insert(t.left, k)
        fix size(t)
        t
    elif k > t.key:
        t.right = insert(t.right, k)
        _fix_size(t)
    else: t
```

Deletion idea

To delete a node, we join its subtrees recursively, randomly selecting which contributes the root (based on size):

Join in DSSL2

```
def _join(t1: rndbst?, t2: rndbst?) -> rndbst?:
    if empty?(t1): t2
    elif empty?(t2): t1
    elif random(size(t1) + size(t2)) < size(t1):
        t1.right = _join(t1.right, t2)
        _fix_size(t1)
        t1
    else:
        t2.left = _join(t1, t2.left)
        _fix_size(t2)
        t2</pre>
```

Delete in DSSL2

```
def delete(t: rndbst?, k: key?) -> rndbst?:
    if empty?(t): t
    elif k < t.key:
        t.left = delete(t.left, k)
        _fix_size(t)
        t
    elif k > t.key:
        t.right = delete(t.right, k)
        _fix_size(t)
        t
    else:
        join(t.left, t.right)
```

Next time: guaranteed balance