
A Design Recipe
EECS 230

Winter 2017



Good software design

• Correct
• Efficient
• Simple

2



Code isn’t just for computers

In practice, other people need to read it:

• Your boss
• Your colleagues
• Your successors
• You in the future

3



Code isn’t just for computers

In practice, other people need to read it:

• Your boss

• Your colleagues
• Your successors
• You in the future

3



Code isn’t just for computers

In practice, other people need to read it:

• Your boss
• Your colleagues

• Your successors
• You in the future

3



Code isn’t just for computers

In practice, other people need to read it:

• Your boss
• Your colleagues
• Your successors

• You in the future

3



Code isn’t just for computers

In practice, other people need to read it:

• Your boss
• Your colleagues
• Your successors
• You in the future

3



A recipe

1. Problem analysis
2. Header (purpose and signature)
3. Examples
4. Strategy
5. Coding
6. (Testing)

4



Example

Goal: Write a function that sums a vector of doubles.

5



Step 1: Problem analysis

We need a function that takes a vector<double> and returns a
double.

6



Step 1: Problem analysis

We need a function that takes a vector<double> and returns a
double.

6



Step 2: Header: purpose and signature

// Sums a vector of doubles
double sum(vector<double> doubles)

7



Step 3: Examples

// Sums a vector of doubles

// Examples:
// - sum({}) == 0
// - sum({1, 2, 3, 4}) = 10

double sum(vector<double> doubles)

8



Step 4: Strategy

// Sums a vector of doubles

// Examples:
// - sum({}) == 0
// - sum({1, 2, 3, 4}) = 10

// Strategy: structural iteration
double sum(vector<double> doubles)
{

...

for (double d : doubles)
... d ...

...
}

9



Step 5: Coding

// Sums a vector of doubles

// Examples:
// - sum({}) == 0
// - sum({1, 2, 3, 4}) = 10

// Strategy: structural iteration
double sum(vector<double> doubles)
{

double result = 0;

for (double d : doubles)
result += d;

return result;
}

10



Strategies

structural iteration iterate over an existing vector

generative iteration iterate producing results while some
condition holds

domain knowledge translate non-programming knowledge into
code

function composition combine other functions to get the desired
result

11



Strategies

structural iteration iterate over an existing vector
generative iteration iterate producing results while some

condition holds

domain knowledge translate non-programming knowledge into
code

function composition combine other functions to get the desired
result

11



Strategies

structural iteration iterate over an existing vector
generative iteration iterate producing results while some

condition holds
domain knowledge translate non-programming knowledge into

code

function composition combine other functions to get the desired
result

11



Strategies

structural iteration iterate over an existing vector
generative iteration iterate producing results while some

condition holds
domain knowledge translate non-programming knowledge into

code
function composition combine other functions to get the desired

result

11



Strategy: structural iteration

result fun(vector<T> v, ...)
{

...

for (T a : v)
...

...
}

12



Strategy: generative iteration

vector<T> fun(...)
{

vector<T> result;

while (...)
... result.push_back(...) ...

return result;
}

13



Separation of concerns

Input Computation Output

14



Separation of concerns

Input Computation Outputdata data

15



Data must be structured

Bits without structure are meaningless
Two most basic data structures:

• struct
• vector

16



What they are

• a struct creates a new type of compound of box made of
smaller boxes

• a vector is a sequence of any number of boxes of the same
type

17



Struct basics: declaration

To declare a new struct type:

struct Posn
{

double x;
double y;

};

struct Account
{

long id;
std::string owner;
long balance;

};

18



Struct basics: declaration

To declare a new struct type:

struct Posn
{

double x;
double y;

};

struct Account
{

long id;
std::string owner;
long balance;

};

18



Struct basics: construction

To declare and initialize a struct variable, list the values of the
member variables:

Posn p{3, 4};

You can also create a struct without declaring a variable:

Posn get_posn()
{

double x = get_x_coordinate();
double y = get_y_coordinate();
return Posn{x, y};

}

19



Struct basics: construction

To declare and initialize a struct variable, list the values of the
member variables:

Posn p{3, 4};

You can also create a struct without declaring a variable:

Posn get_posn()
{

double x = get_x_coordinate();
double y = get_y_coordinate();
return Posn{x, y};

}

19



Struct basics: using
A member variable of a struct is accessed by following the struct
with a period and the name of the member variable:

Posn p = get_posn();
std::cout << '(' << p.x << ", " << p.y << ')';

If you don’t initialize a struct, its fields are uninitialized:

Posn p;
z = p.x + p.y; // Error!

However, you can assign them:

p.x = 3;
p.y = 4;

20



Struct basics: using
A member variable of a struct is accessed by following the struct
with a period and the name of the member variable:

Posn p = get_posn();
std::cout << '(' << p.x << ", " << p.y << ')';

If you don’t initialize a struct, its fields are uninitialized:

Posn p;
z = p.x + p.y; // Error!

However, you can assign them:

p.x = 3;
p.y = 4;

20



Struct basics: using
A member variable of a struct is accessed by following the struct
with a period and the name of the member variable:

Posn p = get_posn();
std::cout << '(' << p.x << ", " << p.y << ')';

If you don’t initialize a struct, its fields are uninitialized:

Posn p;
z = p.x + p.y; // Error!

However, you can assign them:

p.x = 3;
p.y = 4;

20



Vector basics: creating

You can declare a vector with elements similar to how you
declare a struct:

#include <vector>

std::vector<int> v{2, 3, 4, 5};

However, it’s more common to build using push_back:

std::vector<int> v;
v.push_back(2);
v.push_back(1);
v.push_back(3);

v now contains 2, 1, 3.

21



Vector basics: creating

You can declare a vector with elements similar to how you
declare a struct:

#include <vector>

std::vector<int> v{2, 3, 4, 5};

However, it’s more common to build using push_back:

std::vector<int> v;
v.push_back(2);
v.push_back(1);
v.push_back(3);

v now contains 2, 1, 3.

21



Vector basics: size

The size member function returns the number of elements:

for (size_t i = 0; i < v.size(); ++i)
std::cout << v[i] << '\n';

Note! The number of elements is one more than the last index.

22



Vector basics: size

The size member function returns the number of elements:

for (size_t i = 0; i < v.size(); ++i)
std::cout << v[i] << '\n';

Note! The number of elements is one more than the last index.

22



Vector basics: empty

The empty member function returns whether a vector is empty:

if (grades.empty())
std::cout << "No grades were entered.";

23



Vector basics: access

Reverse a vector:

for (size_t i = 0; i < v.size() / 2; ++i) {
size_t j = v.size() − i − 1;
int temp = v[i];
v[i] = v[j];
v[j] = temp;

}

24



Vector basics: iteration

Can you spot the bug?

double sum = 0.0;

for (size_t i = 0; i <= v.size(); ++i)
sum += v[i];

25



Vector basics: iteration

Can’t overrun the bounds when using for-each syntax:

double sum = 0.0;

for (double vi : v)
sum += vi;

26



To CLion!

27


