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Abstract

We propose a camera that measures static gradients in-
stead of static intensities. Quantizing sensed intensity dif-
ferences between adjacent pixel values permits an ordinary
A/D converter to measure detailed high contrast (HDR)
scenes. We measure alternating ‘cliques’ of sensors (small
groups) that locally determine their own best exposure, and
reconstruct the image using a Poisson solver. This intrin-
sically differential design suppresses common-mode noise,
hides and smoothes quantization, and can correct for its
own saturated sensors. Simulations demonstrate these ca-
pabilities in side-by-side comparisons.

1 Introduction

Conventional digital cameras imitate the film cameras
they intend to replace, and imitate their limitations as well.
Can you think of any scene in which the picture from a
digital camera is qualitatively better than film? Both share
grainy-looking noise, but film noise has no grid-like struc-
ture. Both can suffer over- and under-exposure, but film’s
asymptotic response compresses shadows and highlights
gracefully, while an A/D converter imposes abrupt inten-
sity limits. Noise obscures subtle intensity changes in both
cameras, but film does not discard these changes in a quan-
tized, piecewise-constant approximation. What can we do
to make digital images better than film instead of worse?

We advocate a digital still camera that measures static
gradients of log-intensity to better capture the visual appear-
ance of stationary scenes. Instead of direct pixel intensity
measurements as output, we propose a camera that selec-
tively measures only the differences between adjacent pixel
pairs. The sensor’s output is not directly displayable, but
must be reconstructed using a Poisson solver as shown in
Figure 5. However, the solver offers further advantages in
noise hiding and error correction. This approach bypasses
several limitations that digital cameras share with photo-
graphic film, and can provide new capabilities such as:

Fast, Sensitive, Wide-ranging Response: high contrast

Figure 1. A log-gradient camera captures both large and small
scene contrasts well: (a) an 8-bit intensity camera loses large
contrasts (> 10+5 : 1) at A/D limits, but small contrasts (inset:
1.33 : 1 ramp, simulated) are finely quantized (11 levels); (b) an
8-bit log-intensity camera captures large contrasts well, but small
contrasts are coarsely quantized (5 levels); (c) an 8 bit log-gradient
camera preserves both, hiding errors smoothly everywhere.

or ‘high dynamic range’ (HDR) scenes photographed with-
out saturation or a long sequence of exposures, yet without
loss of visible details. By measuring only the difference
between adjacent pixels, we can reduce the A/D dynamic
range for finer quantization, yet recover images whose ag-
gregate dynamic range is many times larger.

Hidden Quantization, Smoother Noise: Quantization
errors in gradients are subtle; as few as 3-4 bits appear
equivalent to 8 bits of intensity quantization, whose errors
cause spurious step-like edges. Poisson solvers reconstruct
gradient noise as a low-resolution ‘cloudy’ error that may
be less likely to mask visually important edges.

Correctable Saturation: sensor saturation is not cor-
rectable in conventional cameras, but errors from saturated
gradient sensors are removable by correcting for the curl of
the sensed gradient field.

In addition, several gradient-based image manipulation
techniques can be provided as in-camera effects, such as
eye-blink removal and composited focus [1].

1.1 Previous Work

Many researchers have sought replacements to con-
ventional intensity-sensing cameras, particularly for com-



puter vision applications. For 15 years, ‘smart sensors’
have augmented photo-sensors with local processing for
tasks such as edge detection, motion sensing and tracking.
Mead’s silicon retina and adaptive retina [15] chips were
among the first to mimic vertebrate retina computations,
and inspired many later efforts [16]. For example, in Mit-
subishi’s artificial retina [9] each photodetector’s sensitivity
was controllably modulated by others nearby to avoid satu-
ration and aid in fast edge detection. Brajovic et al. [2] de-
veloped a camera that creates reflectance images by remov-
ing estimated illumination to reduce dynamic range. This
and other ‘smart sensors’ are intended for low-level vision
tasks. However, these cameras usually did not create con-
ventional images.

More recently, high-speed CMOS sensors enabled mul-
tiple capture single image (MCSI) methods [26]. These
cameras locally merge a rapid sequence of image measure-
ments into one output image. For example, Ranger cameras
from Integrated Vision Products [10] coupled pixels directly
to a SIMD processor array, and user microcode operated on
all pixels simultaneously [11]. The Sony ID-Cam sensed
high-frequency optical codes from strobing LEDs, and used
MCSI to reject ambient light [14]. The clique-adaptive gra-
dient camera we propose fits the MCSI classification, but
the sensor interactions are simple, we use very few capture
steps (e.g. 2 or 4), and we require only modest on-chip pro-
cessing power.

Reconstructing an image from its gradients by Poisson
solvers has already proven useful for tone mapping [6],
shadow removal [7] and novel forms of image editing [5,
21]. Noting that humans underestimate large gradients, Fat-
tal et al. [6] devised a tone mapping scheme that compressed
them. Earlier, Elder [5] explored image editing and encod-
ing by oriented variable-sharpness edges. Tappen [24] saw
that image gradient histograms peaked strongly at zero, and
devised a Poisson solver-based method for super-resolution
(’de-mosaicing’) for interleaved color sensors.

Many ingenious high dynamic range (HDR) photogra-
phy methods merge multiple mutually-aligned images with
different exposure settings [13, 12, 4], or have varied or
self-adjusting gain. For example, the Smal [23] camera’s
AutoBrite self-adapting method reduced out-of-range con-
trasts before measurement, while Dalstar [3] and others ex-
tended A/D measurement abilities and reduced noise. A
novel asynchronous binary camera measured wide-ranging
intensity by variable pulse rate [27]. Nayar et al. [17]
has proposed a suite of HDR techniques that included
spatially-varying exposures and adaptive pixel attenuation,
and micro-mirror arrays to re-aim and modulate incident
light on each pixel sensor Nayar [18]. Logarithmic in-
tensity cameras also avoid saturation well [8], but their
increased quantization error and noise can hide small con-
trasts.

Unlike these specialized cameras, we propose a general
purpose camera suitable for applications from family pho-
tographs to robotic vision to tracking and surveillance. It
offers reduced quantization error, differential on-chip sig-
nalling and increased sensitivity to small contrasts in ordi-
nary photos, but retains these abilities for HDR photography
and includes HDR error correction.

2 Measurement Methods

Intensity Cameras: Film emulsions and most existing
digital cameras measure static intensities best. They capture
the approximate time-average of scene intensities by:

Id(m,n) = (kIs(m,n))γ , (1)

where 0.0 ≤ Id ≤ 1.0 is the normalized display value at
pixel (m,n); Is is the sensed light energy at the pixel; k is
‘exposure’ (e.g. gain, light sensitivity or ‘film speed’) and
γ is the contrast sensitivity. Typically γ ∼= 1 for CCDs, and
γ < 1 will compress contrasts just as γ > 1 exaggerates
them. Writing (1) in logarithmic units where differences
directly correspond to contrast ratio

Ild = log(Id) = γ(log(Is) + log(k)) (2)

reveals that γ is a scale factor for contrast, and exposure k
is a simple offset in log units. Conventional cameras keep k
and γ uniform, because pixel-to-pixel variations in k and γ
have strong effects on the appearance of the captured image.
A/D conversion of Id makes integer pixel values for display
and printing.

Most digital cameras are quasi-linear. The digitized Id

values are intended to be directly proportional to scene in-
tensity Is, but most include some contrast compression (e.g.
γ = 0.45) to compensate for the contrast exaggeration of
most computer displays (e.g. γ = 2.2). Specifying k by
the Is that causes Id = 1.0 (e.g. ‘display white’) avoids
complications from limited display device contrast.

The γ and A/D resolution set an upper bound on the
contrast-capturing abilities of a quasi-linear camera. With
2b uniform quantization levels for Id, fixed k and fixed γ,
the largest ratios of scene intensities the camera can capture
is Cmax = Imax

s /Imin
s = 2−b/γ , i.e. (log(1) − log(2b) =

γ(log(Ismax)−log(Ismin)). Just as with film, many photo-
graphically interesting scenes contain contrasts that are far
too large for most A/D converters. Users must choose to
lose visible scene features either to glaring white or to fea-
tureless black.

Log responding cameras measure the logarithm of in-
tensity (e.g. Ild = log(Id) = γ(log(Is) + log(k))). They
use quantization steps of equal contrast instead of equal in-
tensity and record higher-contrast scenes, but only by en-
larging their quantization steps. If quantization step size



Figure 2. Log-gradient camera overview: intensity sensors orga-
nized into 4-pixel cliques share the same self-adjusting gain setting
k, and send log(Id) signals to A/D converter. Subtraction removes
common-mode noise, and a linear ‘curl fix’ solver corrects satu-
rated gradient values or ‘dead’ pixels, and a Poisson solver finds
output values from gradients.

is less than about 1-2%, then Fechner’s Law [19] ensures
that the camera will capture any visually detectable inten-
sity differences, but coarser steps may lose visible scene
details. Unfortunately, an 8-bit log-intensity camera with
1% quantization steps can’t even measure a 13:1 contrast
range (1.01255 = 12.6). The 10+5 : 1 contrast of Figure 1
requires quantization steps 4.6% or worse, and the 8-bit log
intensity camera will lose many subtle but visible details
to quantization. The log-gradient camera we propose (Fig-
ure 2) avoids this tradeoff; we get fine quantization and high
contrasts.

2.1 Logarithmic Gradient Measurement

Rather than fitting contrast quantization to whole im-
age, the clique-adaptive camera we propose finely quantizes
only the differences between adjacent pixels. Even very
limited contrasts (e.g. 8-bit, 1% step, < 13 : 1) between
pixels are sufficient to describe any image, including even
the most extreme HDR scenes, because a) the lens’ spatial
impulse response (PSF) limits log-intensity gradient mag-
nitude; b) large contrasts often span many pixels, and c)
we can correct any out-of-range measurements that are sur-
rounded by correctly-measured neighbors (see Section 3).

Differences between adjacent pixel values form a dis-
crete approximation of the image gradients ∇Ild. Specif-
ically, for a pixel at integer locations (m,n) we define
lgx(m,n) and lgy(m,n) as the log-intensity forward dif-
ferences:

(lgx(m,n), lgy(m,n)) ∼= ∇Ild(m,n) (3)

Although we could have used forward differences of inten-
sity rather than log intensity, Ild measurement is simpler
because exposure value k disappears. Using (2):

lgx(m,n) = log(Id(m + 1, n)) − log(Id(m,n))
= γ(log(Is(m + 1, n)) − log(Is(m,n)))

lgy(m,n) = γ(log(Is(m,n + 1) − log(Is(m,n)))

In this form, each gradient estimate lgx and lgy is computed
from two locally-adjusted intensity detectors. As long as
both detectors use the same k value, k has no effect; pairs of
sensors can locally and independently regulate themselves
to best avoid sensor saturation. While earlier, neurally in-
spired sensors also used self-regulated gain k(m,n), it var-
ied at each pixel, irretrievably discarding low-frequency im-
age content. Gradient sensors that share k avoid this loss.

Unfortunately, shared k values pose a conundrum. To
measure any forward difference accurately, two pixels must
find a shared k value that will avoid saturation for both Ild

values. More formally, our A/D converter can only measure
values between Imin

ld and Imax
ld , and the shared k value acts

as a shared offset chosen to fit both pixel values within the
A/D input range. However, each sensor m,n is part of four
separate forward differences to the right, left, top and bot-
tom. Choosing k for one sensor pair means the other three
pairs connected to m,n must also share that k. These pairs,
in turn, must share the same k with their neighbors, and by
induction the entire camera is forced to to share a single k
value. Without k variation we cannot measure HDR scenes,
yet we cannot vary k if we measure all forward differences
simultaneously.

2.2 Measurement Cliques

The ‘clique-adaptive’ design we propose solves the co-
nundrum by splitting forward difference measurements into
two or more disjoint sets, each measured in turn. For ex-
ample, suppose we measured only the horizontal forward
differences lgx(m,n) for all pixels with even-numbered m.
No other forward difference shares the same pixel, so each
pixel pair can now choose its own best k value indepen-
dently. An undirected graph describes it well: make a graph
node for each pixel (m,n), and draw an edge to connect the
pixels in each forward-difference measurement. The graph
partitions all pixels into cliques (fully-connected subgraphs)
and each clique ‘adapts’ to its own best k value. Three more
sets of cliques can complete the image measurements. An
obvious solution makes a second clique set from lgx(m,n)
for all odd-numbered m, and a third and fourth clique set
from lgy(m,n) for all even- and odd- numbered n respec-
tively.

Generalizing this approach leads to a wide variety of
clique-adaptive sensor designs. For any design, begin by
partitioning the detector grid into a first set of cliques–small
disjoint groups of adjacent pixels. Each clique finds the k
value to avoid saturation of any of its pixel members, and
we only measure forward differences within a clique. In this
way, each clique is similar to a tiny auto-exposure camera
with only a few pixels. Finally, design one or more addi-
tional clique sets to ensure each forward difference in the
image at least once.
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Figure 3. ‘Box clique’ photosensor groups: each 4-sensor clique
adjusts to measure local intensities, alternating between the A and
C clique sets.

Figure 3 shows the design we chose to simulate, as
this checkerboard-like arrangement of 4-pixel cliques seems
well suited for hardware implementation. Each clique is a
square of 4 adjacent pixels, and two clique sets A,C mea-
sure all forward differences once. Each photo-detector se-
lects between two local k values, yet an M × N pixel sen-
sor must find only MN

2 separate k values. In Figure 2,
we give an overview of the proposed log-gradient camera.
Note that the A/D converter does not measure (lgx, lgy) di-
rectly, but instead measures Ild for each clique member and
then subtracts the results digitally. This may initially seem
unwise because it doubles quantization noise, but this ap-
proach permits asynchronous measurement of clique mem-
bers, and ensures that (lgx, lgy) and any diagonal links mea-
sured within a clique will have zero curl (see Section 3). It
also permits the A/D converter to keep Imin

ld , Imax
ld input

limits fixed, and keep all measured analog signals positive-
valued.

Measurement by cliques can also improve common-
mode noise rejection. Many existing image sensor chips
transfer intensity-indicating signals as an analog voltage,
current or charge to A/D converters located away from the
image-sensing area of the chip, and this long-distance trans-
fer is susceptible to noise, cross-talk from nearby digital
switching circuits and external EMI/RFI. Differential sig-
nalling improves noise immunity by sending a signal and
its negative (+S,−S) along two adjacent paths; unwanted
‘common mode’ noise N that invaded both pathways is re-
moved at the receiver by subtraction: (N +S)−(N −S) =
2S. Sending each of the four clique member’s Ild signals
along adjacent paths can provide common mode noise re-
jection without new signal pathways, because unwanted sig-
nals are cancelled by the subtraction used to compute the
clique’s four (lgx, lgy) values.

2.3 Reconstruction Methods

Reconstruction from gradients amounts to solving a
Poisson equation [6]. Specifically, we wish to recover 2D
log intensity Ild whose gradients Ix and Iy are close to the
sensed gradients lgx and lgy in least-squares sense. This

amounts to minimizing the following functional:

J(I) =
∫ ∫

(Ix − lgx)2 + (Iy − lgy)2dxdy (4)

The Euler-Lagrange equation to minimize J is

∂J

∂Ild
− d

dx

∂J

∂Ix
− d

dy

∂J

∂Iy
= 0 (5)

which gives the Poisson equation

∇2Ild =
∂

∂x
lgx +

∂

∂y
lgy (6)

where ∇2Ild = ∂2I
∂x2 + ∂2I

∂y2 is the Laplacian. Id can then be
obtained from Ild. For solving the Poisson equation, we use
a sine transform based method [22].

Dirichlet boundary conditions are a natural choice for
image reconstruction, and require absolute intensity values
around the periphery of the image. Instead of direct mea-
surement of an image that may include very high contrasts,
we propose to encircle the entire sensor array with a 1D ring
of periphery sensors that encode only the difference from
their periphery neighbors. Sensors inside the periphery then
measure their differences from these sensor’s values, rather
than zero-valued Dirichlet boundaries. Image reconstruc-
tion then proceeds in two steps:

1. Determine boundary intensity values using the periph-
ery sensors alone (a 1D Poisson problem),

2. Combine these boundary values with (lgx, lgy) to
solve for all interior pixel values (a 2D Poisson prob-
lem).

The unknown offset in the reconstructed 1D signal is then
equivalent to a global exposure setting. However, if our 1D
periphery sensor solution contains large errors, then these
errors will propagate into the 2D interior solution.

3 Sensor Error Corrections

An HDR scene will easily saturate detectors in a con-
ventional camera, but the consequences are simple; the out-
put image will contain featureless regions of white or black.
The opposite is true for our proposed gradient camera: each
clique’s shared, self-adjusting k value greatly reduces the
chances of any detector saturation, but when saturation oc-
curs the erroneous gradients can severely disrupt the recon-
structed image. Fortunately, these errors are both detectable
and correctable.

3.1. Curl Correction

Independently adapted cliques greatly reduce the chance
that any pixel within them will saturate. Image statistics



−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

−0.1

0

0.1

0.2

0.3

0.4

Figure 4. Sensor Error Correction: In the left column, an 8-bit
intensity camera captures the Nave HDR scene [top], but loses
2.29% pixels to unmeasurable white; these pixels are marked
white in [mid]. However, an 8-bit, 1% step log-gradient cam-
era can measure all but 2788 or 0.41% of its gradients; these are
marked white in [bott]. In the right column, [top] shows intensity
error caused by reconstructing uncorrected gradients; the Poisson
solver propagates these errors widely across the image. After curl
correction, only 4 disjoint graphs remain, with a total of 28 un-
known gradients, causing 4 small dimple-like errors in intensity
[mid]. After disjoint graph correction [bot], error falls to 4 dots
caused by underestimated offsets for the 4 graphs.

are also in our favor: images of natural scenes usually have
power spectra that fall rapidly with spatial frequency. Rely-
ing on Pentland’s fractal analysis [20], Weiss [25] showed
that derivative filters applied to such scenes produce sparse
outputs with near-zero values almost everywhere. In addi-
tion, our ‘box clique’ design ensures that if a pixel sensor
was saturated within one clique set, it may escape satura-
tion when measured in another. None of these tendencies
are guarantees, of course; as shown in Figure 4 occluded
light sources and transparency can sometimes saturate pix-
els within cliques and corrupt their gradient measurements.
We can detect corrupt gradients directly from saturated sen-
sors, and then compute corrected values from the curl.

Image intensity, like any other 2D scalar function, de-
fines a unique gradient vector field with zero curl, a con-
servative field where the integral of the gradient over any
closed-loop path is zero. Any non-zero curl in the gradient

camera’s output always indicates an error in image sensing.
These errors come either from unresponsive dead pixels, or
from cliques whose contrast exceeds the A/D input range,
forcing one or more pixels to out-of-range or ‘saturated’
values. Any gradient (lgx, lgy) made from a saturated pixel
is incorrect, causing nonzero curl. On a discrete image, the
curl C at pixel m,n is the sum of forward differences along
the smallest closed path:

C(m,n) = (lgx(m,n + 1) − lgx(m,n))
− (lgy(m + 1, n) − lgy(m,n))

(7)

and is the discrete equivalent of lgxy − lgyx. Nonzero
curl at C(m,n) is caused by one or more erroneous gradi-
ents along the closed square path (lgy(m,n), lgx(m,n +
1),−lgy(m + 1, n),−lgx(m,n)) that begins and ends at
(m,n). If the lgx(m,n) gradient is wrong, its error also
causes a nonzero curl at C(m,n − 1). Similarly, erroneous
lgy(m,n) will also cause nonzero curl at C(m − 1, n). To
compute a corrected set of gradients we find the K pixels
with nonzero curl, write a curl equation (7) for each one,
and solve the system of equations to find replacement val-
ues for the erroneous gradients.

Begin with the left-hand-side of (7). Stack all the non-
zero curl values C from the curl-afflicted pixels to form
a K × 1 vector C, using lexicographical ordering of ele-
ments. The right-hand side of (7) becomes a sparse matrix
A of constants times a vector x. This vector contains all
(lgx, lgy) from our collection of K (7) equations, but seg-
regates the corrupted or unknown gradient values from the

known, properly measured gradients: x =
[

x1

x2

]
. The up-

per part x1 is the P×1 vector of stacked lgx and lgy gradient
measurements that we know are trustworthy; the lower part
x2 is an L × 1 vector holds the unknown (saturated) gradi-
ent measurements we wish to recover. The linear system of
equations is:

Ax = A

[
x1

x2

]
= C (8)

where A is a K × (P + L) sparse matrix. Each row of
A represents one of the K equations and will have only 4
non-zero values: two 1’s corresponding to lgx(m,n + 1)
and lgy(m,n) and two −1’s corresponding to lgx(m,n))
and lgy(m + 1, n). Partitioning A as AK×(P+L) =[

AK×P
1 AK×L

2 ,
]
, lets us write

A2x2 = c − A1x1 (9)

Thus x2 = (AT
2 A2)−1AT

2 (c − A1x1) and hence the satu-
rated gradient measurements can be recovered, as demon-
strated in Fig. 4.

This solution requires rank(A2) ≥ L, a condition eas-
ily met if erroneous gradients do not completely enclose an
image feature. The next section describes a reasonable so-
lution to the rank(A2) < L case as well.



3.2. Disjoint Graph Correction

The same formalism we used for cliques helps us de-
scribe gradient corrections for the rank(A2) < L case.
Suppose we regard the entire image as a graph with pixel
nodes and with forward-difference links. If we remove
all links made from unreliable measurements that cause
nonzero curl, then we may have partitioned the graph. If
we did not, then rank(A2) will be equal to L, and curl cor-
rection can restore the missing links. However, if the graph
separates into two or more sets of pixels, then the rank drops
below L and curl correction fails.

For example, Figure 4[left top] shows windows backlit
by direct sunlight, causing extremely high gradients around
the window edges. The [left bottom] image shows there
are many invalid gradient estimates there, but not enough to
completely enclose any window. After curl correction, only
four tiny, very bright spots within the window remain, each
forming its own disjoint graph [right middle]. We know that
all gradients connecting the two graphs exceeded the A/D’s
measuring ability, but we don’t know how much. Our solu-
tion is simple and ad-hoc: we choose just one broken link
between the two disjoint graphs, and assign it a gradient
value of one A/D quantizing level higher than the A/D con-
verter’s maximum. Adding just one link to each disjoint
graph reconnects it to the image. We then repeat the curl
correction to construct values for all remaining unknown
gradients. The Poisson solver reconstructs the zero-curl re-
sult whose error consists of an under-estimated offset for
the formerly disjoint graphs [right bottom].

4 Applications and Results

4.1 HDR with Low-Contrast Details

Figure 5 shows simulation results for a log-gradient cam-
era using the box-clique design of Section 2. We began
with two copies of the floating-point HDR source image
from [6], one for the A and C clique sets respectively.
We simulated an 8-bit A/D with 1% quantization steps be-
tween − log(12.6) ≤ Ild ≤ 0, and whose midpoint is
mid = −log(1.01128) = −log(3.57)). For each clique of
4 log-intensity pixels, we chose the k value that ensures the
average of all 4 pixels maps to the A/D midpoint mid, and
then found an 8-bit value for each pixel in the clique. As the
left side Figure 5 shows, both the A and C cliques produce
values tightly clustered around 128, with a few edge-driven
outliers. On the right, the simulated camera output Ild faith-
fully reconstructs the original scene. Though difficult to
illustrate on low-contrast printed paper, both Figures 1(c)
and 5(c) show simulations of our proposed design repro-
duces high contrast (HDR) scenes quite well. Even scenes
such as Figure 4 with directly visible light sources sharp-

Figure 5. Simulation of 4-pixel clique design on Synagogue HDR
map. [top left] A image, [top right] C image, [bottom] recon-
structed Ild image

ened with in-focus occluders did not induce unrecoverable
errors; in fact, scenes that generated disjoint graphs in our
simulated camera were particularly difficult to find. Our re-
sults assumed very modest hardware consisting of an 8-bit
A/D converter. For comparison, most consumer-grade dig-
ital cameras use 10, 12, or even 14-bit A/D converters, and
typically provide a usable contrast range of ∼= 1000 : 1. Fig-
ures 1(c) and 5(c) both depict scenes with contrasts > 10+5,
and would overwhelm these ordinary cameras.

4.2 Quantization Hiding

Even though the proposed gradient camera captures
HDR images easily, its measurements and reconstructed
output images usually have far less visible quantization er-
ror than a traditional intensity-measuring camera. Intensity
cameras approximate images as functions with piecewise-
constant values, where the A/D converter sets a fixed num-
ber of uniformly spaced levels. Gradient cameras ap-
proximate images as intensity functions with piecewise-
linear values (piecewise-constant gradients) instead, with
the number of describable gradients set by the A/D con-
verter. In addition, the Poisson solver’s results do not al-
ways follow these strictly quantized gradients, but instead
finds the image whose gradients best match the given val-
ues in the least squares sense.

As shown in Fig 6, reconstruction even from coarsely
quantized gradients is still quite accurate, because quanti-
zation induces discontinuities only in the intensities second



Figure 6. Gradient quantization is far less visible than intensity
quantization [top row]: source image; source after 3-bit intensity
quantization; bottom row: source after 3-bit log(intensity) quanti-
zation, source viewed by simulated 3-bit gradient camera output.

derivatives or higher. Figure 6 top row shows the origi-
nal intensity image before and after uniform 3-bit intensity
quantization, where the step-like discontinuities cause no-
ticeable ‘contouring’ artifacts. If 3-bit quantization is ap-
plied to log(intensity) for side-by-side comparison to the
gradient camera, the contouring artifacts are even worse
(lower left). However, a 3-bit gradient camera’s output
(lower right) avoids these artifacts and is visually very sim-
ilar to the original. While dramatic, this comparison is
not entirely fair; the intensity camera measures only one
value per pixel, but the gradient camera measures two
(lgx, lgy). However, even a reduction to 2-bit quantiza-
tion for (lgx, lgy) will enjoy the interpolation and smooth-
ing provided by Poisson solvers and will approximate the
original signal far more better than intensity quantization.

4.3 Motion Rejection

Several existing digital cameras now include stabilizers
(e.g. Canon S1-is, Minolta A-2). These mechanisms help
prevent image blurring caused by hand tremors during long
time exposures. A gradient camera can also offer some
blur prevention by combining multiple image capture with
thresholds, as demonstrated in Figure 7.

The principle is quite simple. Any fixed but noisy cam-
era viewing a stationary scene can reduce image noise by
averaging a steadily growing set of new images. When the
image at any pixel changes significantly, then the wisest
choice is to stop averaging before the changes can cause
blurring. Now suppose each pixel is allowed to choose its
own stopping time. The result for a traditional intensity
camera is only slightly different; a few pixels will continue
averaging for slightly longer because they happen to follow

a constant-intensity path through the scene. However, the
results are very different for a gradient-sensing camera. In-
stead of stopping when a pixel’s value changes, we stop av-
eraging only when its gradient is different. Gradient sensors
can ignore the uniform intensity changes caused by moving
but smooth-shaded surfaces, averaging until it encounters
a step-like or ridge-like discontinuity in intensity. In Fig-
ure 7 we simulate a motion-rejecting gradient camera where
each gradient sensor stops averaging only when the incom-
ing gradient differs from the average by more than the noise
variance for new images.

Figure 7. Gradient cameras reject motion and reduce noise better
than intensity cameras when used as a gated estimator. A gated
estimator finds the average of a stream of input values, locks its
value permanently if given an outlier. [Top Row] source scene;
time-average of source image + Gaussian noise moved in a 5-
pixel-wide circle in 15 frame-times. [middle row]: Gated intensity
camera result; Gated gradient camera result. [bottom row]:time-
to-lock (from 0 to 15) for intensity camera; time-to-lock for gra-
dient camera. Both pixel-gated cameras avoided motion blur well,
but intensity camera lock time was much shorter and the results
show much more noise. Similar adjacent gradients are much more
common than similar adjacent intensities. Please use zoom with
your PDF browser.

Figure 7 shows promising results. On the first row,
+/ − 5 pixel (x, y) translation blurs the ordinary camera
considerably. The middle image shows the intensity image
result; as bottom row shows, most pixels stopped almost im-
mediately (very dark), preserving sharpness but performing
very little noise reduction. Back on the 1st row, the gradient
camera result is both sharp and low noise, and the bottom
row shows both a longer averaging time and more uniform
distribution of this time across the image.



5 Summary and Conclusions

A gradient camera is similar to existing intensity cam-
eras in electro-optical structure, but by measuring only the
local changes in the image, we gain some significant ad-
vantages. It needs little or no exposure metering to capture
high contrast scenes, hides effects of quantization well and
distributes noise as low-frequency error rather than masking
high frequencies.

However, the gradient camera requires significant com-
putation to construct a displayable image, and may require
extensive modifications to existing sensor designs. As the
Poisson solvers required for reconstruction are demanding
tasks to execute at interactive rates, it may be difficult to im-
plement a real-time digital viewfinder for this camera. Sim-
ilarly, our current proposal involves taking two measure-
ments at each pixel with different, locally adjusted gains.
This two-step exposure method may limit extensions of gra-
dient cameras to video, though a globally-adjusted two-step
video system has been successfully implemented [12]. The
extra on-chip circuitry required for cliques and adaptation
may also reduce the size of the light sensor area. However,
chip level CMOS processing makes per-pixel operations in-
creasingly practical.

Our paper addressed only stationary cameras viewing
stationary scenes, but several other directions look promis-
ing. We proposed only a luminance camera, but extensions
to color suggest novel opportunities. As chrominance is
usually directly attributable to reflectance rather than illu-
mination, separate HDR capture for each color channel may
be unnecessary, and instead chrominance might be sensed
and encoded as a low-dynamic range adjunct to luminance.
As our sense of color has far lower spatial resolution than
luminance, there may be interesting possibilities to include
color sensing as part of each clique. Also, given the variety
of clique and sensor patterns possible, alternatives to rect-
angular grids deserve a thorough exploration. For example,
a diagonal grid superimposed on an axis-aligned grid has
been shown to improve convergence in some projectors.

Despite the challenges and limitations, gradient based
sensing is worth further exploration. We believe digital
cameras might substantially improve their own abilities to
capture visually meaningful assessments of a scene by mea-
suring its changes.
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