
A Prototype System that Learns by Reading Simplified Texts

Kenneth D. Forbus, Christopher Riesbeck, Lawrence Birnbaum,
Kevin Livingston, Abhishek Sharma, Leo Ureel

EECS Department, Northwestern University
2133 Sheridan Road, Evanston, IL, 60208

forbus@northwestern.edu
Abstract

Systems that could learn by reading would radically change
the economics of building large knowledge bases. This
paper describes Learning Reader, a prototype system that
extends its knowledge base by reading. Learning Reader
consists of three components. The Reader, which converts
text into formally represented cases, uses a Direct Memory
Access Parser operating over a large knowledge base,
derived from ResearchCyc. The Q/A system, which
provides a means of quizzing the system on what it has
learned, uses focused sets of axioms automatically extracted
from the knowledge base for tractability. The Ruminator,
which attempts to improve the system's understanding of
what it has read by off-line processing, generates questions
for itself by several means, including analogies with prior
material and automatically constructed generalizations from
examples in the KB and its prior reading. We discuss the
architecture of the system, how each component works, and
some experimental results.

Introduction
One of the long-term dreams of Artificial Intelligence is to
create systems that can bootstrap themselves, learning from
the world in the ways that people do. Learning by reading
is a particularly attractive version of this vision, since that
is a powerful source of knowledge for people, and there are
now massive amounts of text available on-line. Indeed,
many researchers are working to directly use such texts to
extract facts matching particular patterns (e.g., Etzioni et al
2005) or to answer specific queries (e.g., Matuszek et al
2005). Such efforts focus on scale, at the cost of limiting
the kinds of information they seek. We are focusing on a
different set of tradeoffs. In the Learning Reader project,
we are starting with simplified text. This is based on the
observation that, for centuries, human cultures have taught
children using simplified language: Less complex
grammatical constructions, shorter texts, more scaffolding
as to what they are about. We focus on attempting to learn
as much as possible from each piece of text, while placing
as few a priori limitations on the structure of what is to be
learned as possible. Similarly, human children do a lot of
learning in homes and schools, where the sources of
information are controlled for accuracy, only later learning
“on the street” when they are more experienced. We

believe a similar sequence of learning could be beneficial
for AI systems that do large-scale learning on their own.
By starting with simplified texts of known quality, we
think we can improve their comprehension skills to the
point where they can successfully learn from “street”
sources, like the Wikipedia.

Figure 1 shows the architecture of Learning Reader.
The starting endowment of the knowledge base has been
extracted from ResearchCyc1. The Reader processes text,
producing cases that are stored back into the knowledge

base. The Ruminator subsequently examines these cases,
asking itself questions to improve its understanding of
what it has read. The Q/A system provides a
parameterized questions interface that enables trainers to
quiz the system.

While our goal is open-domain learning by reading, to
drive our effort we have chosen an area which is extremely
broad and reasonably subtle: world history. Our corpus
currently consists of 62 stories (956 sentences) about the
Middle East, including its geography, history, and some
information about current events. All the examples and
experiments described in this paper are based on system
performance with this corpus.

We begin by describing Learning Reader, starting with
the overall architecture and how texts were simplified. We

1 http://research.cyc.com/

Figure 1: Learning Reader Architecture

Knowledge Base

Reader Ruminator QA

Stories
Questions Answers

then describe how each component works and provide
quantitative data concerning their performance. Then we
discuss two system-level experiments, which provide
evidence that the Learning Reader prototype can indeed
learn by reading. Finally, we discuss some closely related
efforts and future work.

Learning Reader: The System
We have architected Learning Reader to be run either as a
stand-alone system on a single CPU, or as a set of agents
on a cluster, each on its own CPU. The agents are
implemented using the agent software developed for
Companion cognitive systems (Forbus & Hinrichs, 2004),
which communicate via KQML. In both configurations,
the knowledge base is used as a blackboard for
communication between components. In the stand-alone
configuration, it is literally a shared KB in the same Lisp
environment. In the multi-agent configuration, each agent
has a copy of the KB, and all relevant changes made by an
agent to its copy of the KB are propagated to the other
agents. A web-based interface enables interactive use in
either configuration, and scripting facilities support batch-
mode experiments. This flexibility has been invaluable in
facilitating development and performing experiments.

Stories were simplified in a two step process. First,
complex sentences were rewritten, typically into multiple
simpler sentences. Second, the story contents were broken
up into snippets, each with an identifiable topic category.
Examples of topic categories include geography, history,
person, organization, terrorist-attacks. The manually
identified topic is stored with the text snippet and is
available during processing. (Currently, the only
component which uses this topic information is the
Ruminator, during its search for retrievals and
generalizations, as explained below.) The corpus of 62
stories used in all the experiments below, for instance, was
translated into 186 text snippets via this process.

We describe each of the components in turn next.

The Reader
The primary goal of the Reader is to identify quickly and
accurately what knowledge an input text is commenting
on. For any given text, the rest of the system needs to know
what’s old knowledge and what’s new. For this reason, we
use the Direct Memory Access Parsing (DMAP) model of
natural language understanding (Martin and Riesbeck,
1986). DMAP treats understanding as a recognition
process, rather than as a semantic composition process. A
DMAP system sees an input as a stream of references to
concepts. It incrementally matches those references against
phrasal patterns. When patterns are completely matched,
they generate additional higher-order conceptual
references.

For example, the lexical items in “an attack occurred in
Baghdad” initially generate references to the concepts for
AttackOnObject and CityOfBaghdad, These concepts plus

the original lexical items in turn match the phrasal pattern
((isa ?event Event) Occur-TheWord In-TheWord
(isa ?location GeographicalRegion)), because
AttackOnObject is an Event and CityOfBaghdad is a
GeographicalRegion. Matching this phrasal pattern
identifies a reference to the conceptual assertion

(eventOccursAt ?event ?location), where ?event and
?location are known to be the attack and Baghdad
concepts already seen. The Reader then queries the KB for
existing instances. Thus, in this example, the Reader will
query memory for known instances of attacks that have
occurred in Baghdad, to provide a specific value for
?event. If none is found, a Skolem constant will be
generated. Figure 2 shows how DMAP-based reading is
tightly integrated with the central LR knowledge base and
reasoning engine at every step in the process.

For example, given the text snippet

“An attack occurred in Al Anbar. The bombing
occurred on August 3, 2005. The attack killed 14
soldiers.”

DMAP produces the following output:
(deathToll Bombing-653 ArmyPersonnel 14)
(isa Bombing-653 AttackOnTangible)
(dateOfEvent Bombing-653
 (DayFn 3 (MonthFn August (YearFn 2005))))
(isa Bombing-653 Bombing)

(isa (DayFn 3 (MonthFn August (YearFn 2005)))
Date)
(eventOccursAt Bombing-653 AlAnbar-ProvinceIraq)

Words

Name
Cache

Proper Name
Lookup

Lexical
Lookup

Semantic
Lookup

Phrasal
Pattern
Matcher

Interpretation
Manager

Cyc Lexicon Research
Cyc

Extracted
Patterns

Instances

Lexical Concepts

Concepts

Assertion
Sets

Interpretation

Figure 2: The Reader in Learning Reader

Table 1: DMAP Statistics

Average results /
text

1K
Patterns

28K
Patterns

Avg. # sentences 15.4 15.4

Processing time 10.84 s 147.69 s

Sentences w/
assertions

6.6 7.2

#Assertions found 16.9 22.5

(isa AlAnbar-ProvinceIraq GeographicalRegion)
(isa Bombing-653 Event)
(isa Bombing-653 Attack)
Since DMAP did not know of any attack that satisfied what
it was reading, it created a new instance (Bombing-653),
but it was careful to use entities that it already understood
(e.g., AlAnbar-ProvinceIraq) rather than, for instance,
creating a new entity and being forced to resolve it later, as
many NLU systems do.
The research goal for the DMAP-based Reader is to
develop scalable techniques for knowledge-rich lexically-
based language understanding in large realistically-sized
knowledge bases. The challenges boil down to scale and
variability. In terms of scale, the Reader has to manage
over 28,000 phrasal patterns, and avoid queries like “an
event in a location” that can retrieve thousands of
instances. In terms of variability, the Reader has to deal
with a KB that was developed by a number of knowledge
engineers over time. This leads inevitably to variations in
detail, e.g., some event descriptions omit critical
information like specific time and place, specificity, e.g.,
an agentive assertion might use doneBy or perpretatedBy
or some other related but not identical relationships, and
representational choice, e.g., over time, increasing use has
been made of structured non-atomic terms (NATs) rather
than named entities. The Reader can not simply ask for “all
attacks in Baghdad.” It has to look for all events that are
consistent with being an attack in Baghdad, without being
overwhelmed with irrelevant results.

The current DMAP-based Reader has been tested on the
entire LR corpus of stories, with the complete set of over
28,000 plus phrasal patterns, and a more focused set of a
little over 1,000 patterns, to see which variables contribute
most to speed and accuracy. (A small subset (50) of these
were hand-generated, the rest were automatically translated
from linguistic knowledge in the ResearchCyc KB
contents.) A summary of its performance so far appears in
Table 1. Details on these experiments are being reported
elsewhere, and more experiments are needed to identify
key bottlenecks and accuracy levels. But this data already
provides some interesting information. Increasing the
number of phrasal patterns from 1,000 to 28,000 resulted
in only a linear degradation in processing speed. We saw,
however, a less than linear improvement in corpus
coverage. The average number of sentences per story for
which one or more assertions were recognized went from
6.6 out of 15.4 to 7.2. The average number of assertions
per story went from 16.9 to 22.5. This is likely due to the
fact that the original set of 1,000 patterns was selected to
provide the most coverage on our particular test corpus,
and the remaining 27,000 provide a smaller contribution to
covering this corpus. There was however a significant
increase in the types of predicates in the KB reachable by
phrasal patterns. Of the approximately 9,000 predicates in
the Research Cyc ontology (including the bookkeeping and
structural predicates), 3% are reachable with the 1,000
phrasal pattern set, while 13% are reachable using the
28,000 phrasal pattern set. A preliminary answer key was

also created representing some of the primary assertions
we expect from each story. Currently the Reader
reproduces 84% of this key (using the 28,000 phrasal
pattern set). However, this answer key does not represent
all the assertions that should be produced, and coverage
may decrease as the answer key is made more complete.

The Q/A System
The purpose of the current Q/A system is to provide a
means of quizzing the system, to examine what it has
learned. Consequently, we are using a simple
parameterized question template scheme (cf. Cohen et al,
1998) to ask a selection of questions that seem particularly
appropriate for the domain we are dealing with. (Planned
extensions are described below.) The current templates
are: (1) Who is <Person>?, (2) Where did <Event>
occur?, (3) Where might <Person> be?, (4) What are the
goals of <Person>?, (5) What are the consequences of
<Event>?, (6) When did <Event> occur?, (7) Who is
involved in <Event>?, (8) Who is acquainted with (or
knows) <IntelligentAgent>? (9) Why did <Event> occur?,
(10) Where is <SpatialThing>?, and (11) What are the
goals of <Country>?

In each template, the parameter (e.g., <Person>)
indicates the kind of thing for which the question makes
sense (specifically, a collection in the Cyc ontology). Each
template expands into a set of formal queries, all of which
are attempted in order to answer the question. The
minimum number of formal queries per template is one,
the maximum is 13 (location), with a mean of 5. For
example, question 3 uses queries involving hasBeenIn,
citizens, and objectFoundInLocation.

One problem with large knowledge bases is that, as they
grow, the cost of inference can become astronomical, with
failed queries taking hours or even days2. Our solution to
this problem is to restrict the set of axioms used for
reasoning. In the FIRE reasoning engine, backchaining is
restricted to small sets of axioms called chainers. A
chainer is a single partition within the KB, used for
reasoning, in the sense of Amir & McIlraith (2005). We
further restrict axioms to Horn clauses. These restrictions
reduce completeness, but help ensure that reasoning
remains tractable. We have experimented with two types
of axioms in the partitions. The first is a simple
exploitation of inheritance among relations (i.e., the
specPred hierarchy in the Cyc ontology). This is the
chainer used during Q/A, consisting of 787 axioms. A
more complex chainer is used during rumination, as
described below.

The Ruminator
Inference during reading tends to be focused, following the
most probable paths required to make sense of the text.
But people seem to also learn by later reflecting upon what
they have read, connecting it more deeply to what they

2 cf. www.projecthalo.com/content/docs/

already know and pondering its implications. The
Ruminator models this kind of off-line mulling of new
material. The operation of the Ruminator can be divided
into three phases: Elaboration, question generation, and
question processing. We discuss each in turn.

Elaboration: The input to the Ruminator is a case
representing a snippet as understood by the Reader. The
first step is to enrich the case with information about the
entities and events involved from the knowledge base. We
do this by using dynamic case construction techniques
(Mostek et al 2000) to extract from the KB facts that are
directly linked to the entities and events of the story. This
elaboration serves two purposes. First, it reduces the
amount of work needed for subsequent inferences about
the story. Second, it "primes the pump" for analogical
processing in the next phase. We call these descriptions
conceptual models. For example, in the snippet used
earlier, this process adds facts indicating that Al Anbar is a
province, in the country of Iraq.
Question Generation: A key process in rumination is
generating interesting questions to consider. We use three
strategies for generating questions. The simplest uses a
form of knowledge patterns (Clark et al 2000), canonical
questions that one asks about a kind of entity. Given our
current focus on world history, we use formalized versions
of the standard Journalist's Questions (who, what, when,
where, why, how) as query templates that are applied to
each event to generate one set of questions. These are the
same queries that are used for Q/A, as noted above. In the
Al Anbar example, for instance, one question the
Ruminator generates in this way is, paraphrased, “Who is
involved in the Al Anbar attack?”

The second strategy, analogical retrieval, is based on the
insight that if two things are similar in some ways, they
might be similar in others. We use the MAC/FAC model
of similarity-based retrieval (Forbus et al 1994) to retrieve
cases. The retrieval probe is the conceptual model for the
story. The case library used for a story is chosen based on
the topic given for the text snippet, and includes all
instances of that concept from both the KB and the
system's prior reading. The second stage of MAC/FAC
uses SME (Falkenhainer et al 1989; Forbus et al 1994), a
model of analogical matching, to construct candidate
inferences about the probe using the retrieved case. These
candidate inferences serve as the basis for another set of
questions. For example, based on an analogy with a
terrorist attack in Farah, Afghanistan, one question the
Ruminator generated about the Al Anbar example used
above is, paraphrasing, “Was the device used in the Al
Anbar attack something like a rocket?”

The third strategy is to compare the new story with
generalizations made about the topic. The generalizations
are automatically constructed via analogical processing,
using SEQL (Kuehne et al 2000), over all of the instances
of that topic in the KB and the system's prior reading. By
running SME on the generalizations constructed about a
topic, we get questions that reflect the system's experience

with that topic3. We use an extension of SEQL due to
Halstead & Forbus (2005) that provides probabilities for
statements in generalizations. This provides us with
information that can be used for prioritizing questions:
Candidate inferences generated from a more likely
statement are more likely to be interesting, however they
turn out.

For example, in the experiment described below, 186
text snippets gave rise to 871 knowledge pattern questions
and 1,238 analogical questions, for a total of 2,109
questions. The average number of questions/snippet is
11.3, 6.6 (58%) of which on average are from analogies.

Question Processing: Recall that the chainer used for
Q/A is designed to provide rapid, on-line performance.
Rumination, being an off-line process, can expend more
resources, so the chainer for rumination is much larger,
drawing on a larger portion of the KB. However,
rumination must still be relatively efficient, in order to
handle large bodies of text. Consequently, we also
developed techniques for automatically extracting Horn
clauses from relevant subsets of the knowledge base, and
automatically analyzing them for efficiency.
The extraction process is guided by the structure of
Learning Reader. That is, we ideally want to prove any
and all queries that can be generated via Q/A, using
whatever kinds of statements appear in the KB currently,
as well as whatever kinds of statements can be generated
by the Reader and by the Ruminator. Thus an analysis of
the KB contents, to ascertain what is currently available,
plus a structural analysis of the phrasal patterns of the
Reader, to ascertain the kinds of statements that could be
later learned via reading, guides the process of what
axioms to extract. In essence, for each query pattern, we
start with the set of axioms that can prove that pattern. The
KB axioms are typically not Horn, so we translate them
into clausal form to extract a Horn clause subset (cf.
Peterson et al 1998). The antecedents of each Horn clause
are examined to see if they are potentially available in the
KB, or if they are obtainable by the Reader. If they are, the
Horn clause is added to the set of axioms for the Chainer.
If they are not, then the failed antecedents are examined to
see there are Horn clauses that could prove them. This
process continues for a maximum depth (currently 3),
filtering out any rules that have antecedents that will not be
derivable within that boundary. Rules that map from
specPreds to the query predicates are included, up to a
depth of 6, as opposed to the unlimited specPred recursion
used in the Q/A chainer. Other recursive clauses are
eliminated for performance reasons. Further automatic
static analysis is done to eliminate reasoning bottlenecks4,
which can speed inference by as much as a factor of 70,
while dropping completeness by only a few percent.

Two of the three sources of questions we use are non-
deductive, so it is possible to generate questions that

3 We speculate that such questions eventually become new knowledge
patterns, but we have not experimented with this yet.
4 This process is described in a separate paper in preparation.

simply don't make sense, given what the system already
knows. (e.g., “Is it true that the City of San Antonio’s
spouse is Chile?”) We use type inference with argument
restrictions to eliminate questions that are clearly internally
inconsistent5. As with Q/A, we use restricted inference to
attempt to answer the questions that seem to make sense.
Answers, when found, are stored in the conceptual model.

As can be seen from the statistics above, the Ruminator
can generate a huge number of questions. Those questions
that it cannot answer are stored in the KB, as a queue of
open questions for future consideration. When a new story
is read, it reconsiders these questions to see if they have
been answered. We plan to allow the Ruminator to ask its
trainers a limited number of questions per story, so we
have been exploring how to prioritize questions.

System-Level Experiments
Each of the components in Learning Reader has novel
aspects, but how well do they all work together?
Does Reading lead to better Q/A results? To examine
this question, we used the Reader in batch mode, reading
all 62 stories, one snippet at a time, as discussed above.
The Ruminator was not used, in order to focus on what was
gained by Reader over what was in the KB originally.
Questions relevant to the stories were generated by finding
all entities in the KB post-reading that could be used in the
parameterized questions. Before reading, Q/A answered
87 questions (10%), and after reading, 320 questions
(37%). This indicates that Reader is indeed generating
new facts which can be used by Q/A to answer questions.
This is especially impressive given that the Q/A system
cannot even ask about most of the kinds of facts that the
system can potentially produce (e.g., deathToll in the
earlier example).
Does Rumination lead to better Q/A results? We have
examined this question by running the Ruminator in batch
mode, over all of the stories that had been read by the
Reader in the prior experiment. We used the same Q/A
rules to ask the same questions. Two conditions were
tested: Deductive Rumination (DR) only included facts
derived via deductive inference from the Ruminator’s
chainer. Promiscuous Conjecture Acceptance (PCA) also
included inferences derived via analogy with prior cases,
which were simply accepted as true if they did not
introduce new individuals (i.e., no analogy skolems). In
the DR condition, the number of Q/A questions answered
rose to 434 (50% of total, an increase of 35%). In PCA,
525 (60%) of the questions were answered, an increase of
64% over no rumination, and an increase of 21% over the
DR condition.

It is crucial, of course, to consider accuracy. We
manually scored all answers to determine this. Q/A before

5 Unfortunately this process is imperfect, because many of the argument
restrictions in the KB are very weak, e.g. SpatialThing or even
Thing.

reading was 100% accurate. Only one error occurred in
Q/A after reading, leading to an accuracy of 99.69%. The
DR condition was similarly precise, increasing the number
of errors to only 3, or 99.31% accuracy. The PCA
condition, as one might expect, had substantially more
errors, 48, dropping accuracy to 90.84%. Put another way,
of the 90 additional answers provided by PCA over DR,
50% of them were incorrect. Given that the analogical
inferences were simply accepted without further scrutiny in
the PCA condition, this is actually a higher accuracy than
we expected. These results are summarized in Table 2.

Condition #Answers % #
Wrong

Accuracy

Before
Reading

87 10% 0 100%

Reading only 320 37% 1 99.7%
Reading +
Deductive

Rumination

434 50% 3 99.3%

Reading +
Promiscuous
Conjecture
Acceptance

525 60% 48 90.8%

Table 2: Summary of System-Level Experiments

System-level issues: The presence of noise in learned
knowledge is perhaps one of the key issues in learning by
reading. There are three sources of noise: Errors in the
initial knowledge base, imperfect understanding in the
Reader, and conjectures inappropriately accepted during
Rumination. While not all of the first two kinds of
problems are necessarily caught by Q/A, given the limited
number of patterns used, it can be a very useful filter. For
example, in one run we ended up with the Sudan being
viewed as a military person, and the assertion that, up to
1920, Iraq was a definite NL attribute. These
inconsistencies were caught when filtering questions to
detect if they were inappropriate. This detection of
inappropriate self-questions could be used as evidence of
an earlier misunderstanding, and we plan on modifying the
elaboration stage of Rumination to scrutinize incoming
facts more cautiously, to seek out contradictions on its
own. The provenance of all information in a case is
recorded with it, providing the potential to track down such
misunderstandings and correct them.

These results bring into sharp relief a fundamental
problem for learning by reading systems: How does noise
in the KB change as a function of learning by reading?
Under what conditions does the feedback loop provided by
the read/ruminate cycle act to dampen noise in the KB over
time, versus amplify it? This will be investigated in future
experiments, as outlined below.

Related Work
Most systems that learn by reading are aimed at extracting
particular kinds of facts from the web. For example,
KnowItAll (Etzioni et al 2005) extracts named entities and
OPINE (Popescu & Etzioni, 2005) extracts properties of
products. While impressive in the quantity of information
they can acquire, they do not attempt to understand a story
as a whole, nor do they attempt to integrate it into a large
pre-existing knowledge base. Closer to Learning Reader is
Cycorp's "Factovore" (Matuszek et al 2005), which uses
web searches to find candidate answers to queries
generated by using a hand-generated set of templates.
Their question generation process is similar to our use of
knowledge patterns in the Ruminator, but they do not have
the equivalent of our analogy-based question generation
strategies. For us, questions are generated based on what
we have read, whereas for them information extraction is
done in order to answer specific questions. Cycorp also
uses a human editorial staff to validate knowledge as part
of their cycle. Our goal is that trainers should never know
the underlying representations that Learning Reader is
creating. We hope to enable people to extend it as long as
they can use simplified English, without being AI experts.

Discussion
We have described Learning Reader, a prototype system
that learns by reading simplified texts. While Learning
Reader is very much in its early stages, we believe the
results shown here indicate great promise, both as a
method for extending knowledge bases and for a potential
computational model for how people learn by reading.

There are several directions we plan to pursue next.
First, we plan to greatly expand our corpus. Our original
corpus will be doubled in size to test breadth, and a further
expansion will be done by systematically building up
stories about a particular area, so that we can explore the
impact of noise on learning from a large body of
interrelated material. Second, we intend to use DMAP for
question-parsing instead of parameterized questions. This
will expand coverage and provide the basis for
implementing an interactive dialogue system, to allow
trainers to ask follow-up questions, and to allow the
Ruminator to ask its trainers a limited number of questions,
with answers being interpreted also via DMAP. Third, we
are adding a process to the Ruminator which scrutinizes
newly learned knowledge for errors, in order to detect both
KB errors and reading errors, and to more safely use non-
deductive rumination strategies. We also plan to expand
the role of evidential reasoning in the Ruminator,
exploiting the probabilities generated via SEQL to help
decide what action to take when a misunderstanding is
diagnosed. Finally, as the capabilities of the system grow,
we plan on comparing its behavior to that of people, by for
example giving them both the same sequence of texts and
comparing the conclusions (and misconceptions) that arise
from each.

Acknowledgements
This research was supported by a seedling grant from the
Information Processing Technology Office of DARPA.

References
Amir, E. and McIlraith, S. 2005 Partition-Based Logical

Reasoning for First-Order and Propositional Theories,
Artificial Intelligence 162 (1-2), pp. 49-88

Clark, P., Thompson, J. and Porter, B. 2000. Knowledge
Patterns. Proceedings of KR2000.

Cohen, P., Schrag, R., Jones, E., Pease, A., Lin, A., Starr,
B., Gunning, D., and Burke, M. 1998. The DARPA
High-Performance Knowledge Bases Project. AI
Magazine, 19(4), Winter, 1998, 25-49

Etzioni, O., Cafarella, M., Downey, D., Popescu, A.,
Shaked, T., Soderland, S., Weld, D., and Yates, A.
Unsupervised Named-Entity Extraction from the Web:
An Experimental Study. Artificial Intelligence.

Falkenhainer, B., Forbus, K. and Gentner, D. 1989. The
Structure-Mapping Engine: Algorithms and Examples.
Artificial Intelligence.

Forbus, K., Ferguson, R., and Gentner, D. 1994.
Incremental structure-mapping. Proceedings of
CogSci94.

Forbus, K., Gentner, D. and Law, K. 1994. MAC/FAC: A
model of similarity-based retrieval. Cognitive Science

Halstead, D. and Forbus, K. 2005. Transforming between
Propositions and Features: Bridging the Gap.
Proceedings of AAAI05.

Kuehne, S., Forbus, K., Gentner, D. and Quinn, B. 2000.
SEQL: Category learning as progressive abstraction
using structure mapping. Proceedings of CogSci2000

Martin, C.E. and Riesbeck, C.K. Uniform Parsing and
Inferencing for Learning. Proceedings of the Fifth
National Conference on Artificial Intelligence,
Philadelphia, PA, August 11 - 15, 1986, pp 257-261.

Matuszek, C., Witbrock, M., Kahlert, R., Cabral, J.,
Schneider, D., Shah, P., and Lenat, D. 2005. Searching
for Common Sense: Populating Cyc from the Web.
Proceedings of AAAI05

Mostek, T., Forbus, K. and Meverden, C. 2000. Dynamic
case creation and expansion for analogical reasoning.
Proceedings of AAAI-2000.

Peterson, B., Andersen, W., and Engel, J. 1998.
Knowledge Bus: Generating Application-focused
Databases from Large Ontologies. Proceedings of the 5th
KRDB Workshop, Seattle, WA.

Popescu, A., and Etzioni, O. 2005. Extracting Product
Features and Opinions from Reviews. Proceedings of
HLT-EMNLP 2005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

