
Resolving References and Identifying Existing Knowledge

in a Memory Based Parser

Kevin Livingston and Christopher K. Riesbeck

EECS Department

Northwestern University

2133 Sheridan Rd. Evanston, IL 60208, USA

{livingston; c-riesbeck}@northwestern.edu

Abstract

Learning by reading systems, designed to acquire episodic
(instance based) knowledge, ultimately have to integrate
that knowledge into an underlying memory. In order to
effectively integrate new knowledge with existing
knowledge such a system needs to be able to resolve
references to the instances (agents, locations, events, etc.) it
is reading about with those already existing in memory. This
is necessary to extend existing memory structures, and to
avoid incorrectly producing duplicate memories.
 Direct Memory Access Parsing (DMAP) leverages
existing knowledge and performs reference resolution and
memory integration in the early stages of parsing natural
language text. By performing incremental memory
integration our system can reduce the number of ambiguous
sentence interpretations and coreference mappings it will
explore in-depth, however this savings is currently canceled
out by the run-time cost of reference resolution algorithm.
This paper supports the continued investigation of this line
of research, which is to identify and evaluate the extent to
which semantic and episodic memory can facilitate natural
language understanding, especially when used early in the
language understanding process.

Introduction

Learning by reading has at its core the production and
utilization of a large scale knowledge base, a memory, for
the learning system to integrate what it is learning with
what it already knows. Ultimately learning readers are
acquiring knowledge from text.
 There are two kinds of knowledge typically acquired by
learning by reading systems. The first is generalized
knowledge such as ontologies (e.g. the heart is a pump),
and relations (e.g. the body is made of cells). The second is
episodic or instance based knowledge, for example, Barack
Obama is president, Mozart died in 1791. This type of
knowledge also includes event instances, such as the
Madrid train bombings in 2004, or the attack in
Afghanistan last week. Our focus is primarily on acquiring
and integrating episodic (instance based) knowledge.
 For systems learning about specific instances, including
event descriptions, it is important to be able to ground all
references to existing structures in memory and create new

structures when needed. This process also involves the
resolution of coreferences across sentences. For example,
consider a system reading the following two sentences in
the context of a news story.

An attack occurred in Iraq.
Insurgents bombed a group soldiers.

In reading the second sentence, there are three references
that need to be resolved in order to produce a complete
understanding. These references are the insurgents, the
soldiers, and a bombing event. A reader needs to
understand these references within the context of the story,
by establishing coreference mappings to other references
in the same story, including that the bombing event the
same as the attack in the first sentence, and ground these
references to any relevant structures already in memory.
Failure to do so would result in fragmented understanding,
or replication of instances or events which does not
correspond to the actual state of the world. For example,
incorrectly assuming there are two distinct events in the
two sentences above, would also mean not knowing that
the bombing occurred in Iraq, or that the attack targeted
soldiers.
 We are interested in producing a learning by reading
system that can read, for example, about an election taking
place one day, and then read about the winner the next day,
and recognize that the descriptions are referring to the
same event. The system should be able to extend its
existing representation of the election, produced from the
first story, with the new knowledge of the outcome and
winner of the election. Further, if weeks or months later the
system reads a story discussing the same election, it should
recall the same memory structure it constructed in the past,
not hallucinate a new, nearly identical, event. Building
complete understandings of large collections of events
requires not only the ability to recognize repeated
references to the same event, but also the ability to
understand and learn how new events relate to old ones.
For example, that the bombings performed today by Israel
were in response to the kidnappings of Israeli soldiers
yesterday by members of Hezbollah. To be able to do this a
reader must be able to ground references in existing

memory structures (recognize what it already knows), and
integrate new knowledge to extend what it already knows.
 Direct Memory Access Parsing (DMAP) is an end-to-
end language understanding model, running from input text
through the production of references to existing knowledge
structures in its underlying memory, with the ability to
create and integrate new knowledge when necessary. In
contrast to the standard syntactic-semantic pipeline that
defers memory integration and reference resolution until
the end, DMAP performs reference resolution and memory
integration as it parses. A motivation for this algorithm is
our belief that the grounded references and existing
memory can be used to guide coreference decisions and
overall story understanding. Our research is exploring the
construction of a system that can use what it already knows
to understand new information, and also rapidly recognize
and understand information it has already seen. Fully
integrating an interpretation in a large and incomplete
memory presents numerous challenges, many of which are
likely not unique to the DMAP approach.

Reference Resolution and Memory

DMAP uses a collection of language patterns that
recursively map textual references to knowledge structures,
and even specific instances in memory when possible.
Instances include not only individuals like people, George
W. Bush, or countries, Iraq, but also events in episodic
memory, such as the Madrid train bombings of 2004.
Functionally the pattern matcher in DMAP is similar to a
tabular chart parser (Kay 1996). The pattern matcher has
mappings from sequences of strings, lexical, and semantic
concepts, to semantic assertions which they can be
translated into. These assertions are grounded in the
existing knowledge base whenever possible, and new
assertions are generated only as needed. More detail on the
architecture of this implementation of DMAP is presented
by Livingston and Riesbeck (2007).
 DMAP is an attempt to treat language understanding as
a recognition and pattern matching process, as opposed to a
knowledge construction and reasoning task. As sentences
are being parsed, in order to build a coherent and complete
representation of the story, DMAP establishes coreference
mappings between the references in new sentences and
those from previous sentences. As the example sentences
in the introduction show, these coreference mappings are
essential to building a complete representation of what is
being described when a description spans multiple
sentences. Identifying what references corefer within a
story can produce a coherent semantic structure for that
story, however those references still need to be grounded to
existing references in memory to complete the
understanding of that story and tie it to existing episodic
knowledge.

Semantic References

DMAP translates text to semantic structure early in the
understanding process. For example, the sentence “The
soldiers attacked the bunker” produces the following
semantic structure (represented in the semantics of
ResearchCyc (Lenat 1995), the underlying knowledge base
used by this implementation of DMAP).
(isa ?s (GroupFn Soldier))

(isa ?a AttackOnObject)

(performedBy ?a ?s)

(isa ?b Bunker)

(objectAttacked ?a ?b)

The representation is a set of predicate logic assertions.
Symbols starting with a question mark represent an
ungrounded, or open, reference. In a representation such as
this, where events are reified, the event becomes another
reference in the semantic structure just like the reference to
the soldiers or the bunker. Our system constructs
interpretations by identifying which of these references
corefer to similar semantic references produced from the
sentences that preceded this sentence in the story, and by
grounding all of these references in the underlying
memory. If no suitable reference can be identified in
memory, DMAP will create a new instance to fill the role.
Resolving references to memory includes not only objects,
like people and places, but also events, like elections and
bombings. For example, if text refers to the collapse of two
buildings in New York, we would like to ground this
reference to the existing memory structure for the
September 11th attacks.
 Identifying references is complicated in a large
knowledge base (like ResearchCyc), by incompleteness,
variations in level and scope of descriptions (e.g.
describing a group of people as sailors or military
personnel; or using the predicate parentOf vs. the
predicate fatherOf), variations in how two similar events
can be described by different sources, and also
inconsistencies and noise in the knowledge. However, by
far the most complicated problem in grounding event
references in an underlying memory is operating under an
open world assumption.
 Maintaining an open world assumption means that some
pieces of the interpretation produced from a text may be
present in memory, while others may not. For example,
imagine a specific event is known by a reader to have
occurred in a location on a specific date, however the
performer of that event is yet unknown. If a new story
comes in stating all three pieces of information, querying
for the conjunct of all three assertions will result in a
failure to retrieve anything from memory (for the standard
methods of handling conjuncts used by most reasoning
systems and knowledge bases), since one piece of
information is unknown the logical conjunct is also
unknown.

Reference Resolution

To operate in an open world, our DMAP implementation
breaks the representation into pieces and queries for them
one at time, instead of querying for the entire
representation constructed thus far for the story. Each piece
corresponds to a set of assertions that were produced from
one pattern matching rule. Patterns roughly correspond to
one English phrase or sentence. Each sentence will
therefore produce at least one such piece, but could
produce more. The previous example sentence “The
soldiers attacked the bunker,” produces only one set of
assertions. However, changing the sentence to “The
soldiers attacked the bunker on July 18, 2008,” will result
in two sets of assertions, one corresponding to the pattern
we have already discussed <agent> attack <object>, and a
second corresponding to <event> on <date>. We refer to
the process of applying patterns to translate text into sets of
assertions, as parsing in our DMAP implementation. Our
parsing stage only includes references to ground instances
when they were explicitly mentioned in the text being read,
for example “Iraq” or “the United States Army”. Further,
the only coreference information available after parsing is
that which is explicitly encoded in the patterns, all other
coreference resolution is performed in the subsequent
reference resolution algorithm. For a more details of the
DMAP parsing algorithm see Livingston and Riesbeck
(2007).
 The reference resolution algorithm receives as inputs the
semantic interpretation of the story prior to the current
sentence, including coreference mappings between the
references in that interpretation, and a list of bindings to
existing ground instances that interpretation could be
referencing. It also receives the semantic fragments from
parsing the current sentence. The algorithm’s task is to
output a new set of coreference mappings that integrate the
new assertions, as well as a new list of ground instances to
which those references could be referring. The algorithm
may remove ground references from the list if they do not
agree with the new information being added to the
representation (e.g. the system could resolve which
“George Bush” is being referred to, when previously it was
ambiguous). New references to ground instances may be
added as well. For example, if the text referrers to the
terrorists that performed an attack, and the attack was
already grounded as the Madrid train bombings of 2004, it
can now ground the terrorists as members of Al-Qaeda.
 When bindings (ground instances) are present for a
given reference, and DMAP is attempting to decide if that
reference corefers with a new reference, DMAP can
substitute those bindings into the assertions where the new
reference appears and then look to confirm this assertion in
memory. For example, if DMAP is reading a story about a
bombing, and has a reminding to a ground instance,
Bombing-54, and the next sentence is, “The attack was
performed by Al-Qaeda,” DMAP needs to decide if the
attack in this sentence corefers to the bombing in the story
it is already tracking, and if so if they both then
collectively still refer to Bombing-54 in memory. The

sentence in this example produces, among others the
assertion (performedBy ?attack Al-Qaeda). To see
if the reference ?attack corefers with the bombing in the
story and Bombing-54 at the same time, DMAP can
substitute the value in and attempt to confirm the assertion
(performedBy Bombing-54 Al-Qaeda) in memory. If
this query returns true, then the system is can be confident
in making ?attack (“the attack”) from this sentence
corefer with the reference to the bombing, and that both
likely refer to Bombing-54, unless contradicting
information is later found when integrating subsequent
sentences.
 However, it is possible that the query for
(performedBy Bombing-54 Al-Qaeda) could return
no results. Since DMAP must operate under the open
world assumption (as does, presumably, any open ended
learning system), it does not know if this means Bombing-
54 is known to be performed by another agent, or if it is
simply unknown who performed Bombing-54. To answer
this question DMAP must issue an open, and more time
consuming, query to find out if there is a known performer
for Bombing-54. This can be accomplished by querying
for (performedBy Bombing-54 ?agent). If no results
are returned, the performer is unknown, and it is consistent
that Bombing-54 could have been performed by Al-
Qaeda. If, on the other hand, a value is returned, it must be
checked to see if it is consistent with the value provided by
the story. For example, the value of ?agent could be a
member of Al-Qaeda, or it could be a parent organization
(assuming for the moment Al-Qaeda has one). Currently
the reference is only seen as consistent if it is equal (in
which case the original fully grounded query would have
returned true) due to resource constraints. It is a source of
future work to expand this to accept variability in level of
description or metonymy, for example “hundreds” vs.
“418” or “Iraq” vs. “Baghdad”.
 Finally if the open query returned a result that was not
consistent with Bombing-54, two options are available to
the DMAP implementation. The first is make the two
references in question corefer anyway and discard the
reminding to Bombing-54. The second is to keep the
reminding to Bombing-54, and decide that the reference to
“the attack” referrers to a different event that does not
corefer with the first. DMAP will continue to search for
confirmed results, potentially creating two event references
here, if it can find confirmed remindings in memory which
support this. However, in lieu of that, the system will
prefer to produce an interpretation of the story that is more
coherent, as is measured by how many assertions share
arguments. Thus if Bombing-54 was not a good match, it
will continue to produce one single event description, and
discard the reminding to Bombing-54, believing instead
that the event in the story is some new event not previously
encountered. These are not the only potential solutions
available, just the ones used by this implementation
currently, see future work for more discussion.

Experiment

We believe a language understanding system should be
able to leverage its existing knowledge to improve
understanding and decrease both the level of apparent
ambiguity and runtime. The DMAP model maps text to
semantic and episodic knowledge early in the language
understanding process. Therefore we measured the
difference in the runtime and the amount of ambiguity
evaluated by DMAP when a story was seen for the first
time, versus when that story’s content was already in
memory. Ideally DMAP would be able to read something it
already knows faster than it could the first time.
 The complexity of the reference resolution problem
grows with the number of references in the story, since
each new reference has to be integrated with the ever
growing list of references up until that point. This
obviously results in an exponential operation. Integrating
these references with memory can further amplify this
effect, especially when there is an ambiguity of reference
to existing knowledge structures (which “President Bush”
is being referred to, or which “attack in Afghanistan”, etc.).
To start exploring the impact ambiguity has on the
reference resolution algorithm, we represented the same
semantic and episodic content in three stories, varying the
number of sentences and references DMAP needed to
integrate in order to understand the story.
 The following three stories produce identical
interpretations and refer to the same single event.

Story A

An attack occurred in Afghanistan.
The bombing was performed by Al-Qaeda.
The attack occurred on July 18, 2008.
The attack targeted United States soldiers.

Story A presents an event description spread across four
sentences. Each sentence contains a reference to an attack,
or in the case of the second sentence, a bombing. When
DMAP processes this story, it will read the first sentence
and construct a representation for an attack in Afghanistan.
It will also look in memory for candidate events to ground
this reference in, and to use for subsequent reference
resolution. With every subsequent sentence DMAP will
have to decide if the event referenced in that sentence is the
same as the event it is already tracking, using the reference
resolution algorithm described earlier in this paper. DMAP
will have to resolve four distinct event references.

Story B

There was an attack on July 18, 2008.
The bombing occurred in Afghanistan.
Al-Qaeda targeted United States soldiers.

Story B tells the same story as Story A, although it does so
in three sentences. Story B has three distinct event
references that need to be resolved. The first two sentences
have an attack and a bombing explicitly mentioned as their
subjects. The third sentence has an implicit reference to an

event, which appears clearly in the semantic representation
of targeting.

Story C

Al-Qaeda performed an attack on July 18, 2008.
United States soldiers were targeted by the bombing
in Afghanistan.

Story C again represents information identical to that
presented in Stories A and B. This story compresses the
explanation into two sentences, and there are two event
references that need to be resolved by DMAP.
 All stories contain the same five pieces of information
about the event: type of event, location, date, perpetrator,
and target. The major difference is that Story A has four
distinct references to the event that ultimately need to be
found to corefer, Story B has three distinct references, and
Story C only two references that need to be resolved inter-
sentence.

Representation and References

Processing Stories A, B, and C result in identical sets of
predicate logic assertions. Below is the predicate logic
representation of Stories A, B, and C. The representation is
in ResearchCyc semantics. Symbols prefixed by “DMAP”
are instances created by DMAP in this reading, or in a
previous reading and then retrieved from memory. Only
assertions directly relevant to the interpretation of the text
are presented by DMAP. For example, DMAP does not re-
assert that DMAP-TerroristGroup-162 (Al-Qaeda) is an
instance of TerroristGroup when that is already
known in memory and not mentioned in the

text.

Representation of Stories A, B, and C

(isa DMAP-Bombing-14991 Bombing)

(eventOccursAt DMAP-Bombing-14991

 Afghanistan)

(dateOfEvent DMAP-Bombing-14991

 (DayFn 18 (MonthFn July (YearFn 2008))))

(performedBy DMAP-Bombing-14991

 DMAP-TerroristGroup-162)

(intendedAttackTargets DMAP-Bombing-14991

 DMAP-Group-14990)

(isa DMAP-Group-14990

 (GroupFn MilitaryPerson))

(isa DMAP-Group-14990

 (GroupFn (MemberFn (ArmedForcesFn

 UnitedStatesOfAmerica))))

(isa DMAP-TerroristGroup-162 Agent-Generic)

(isa UnitedStatesOfAmerica Organization)

(isa Afghanistan PartiallyTangible)

(isa (DayFn 18 (MonthFn July (YearFn 2008)))

 CalendarDay)

Processing Story A will result in one set of assertions per
sentence, each being processed by the reference resolution
algorithm independently. This is a little different than what
happens in the processing of Story C. For example, the

second sentence of Story C will produce two sets of
assertions, one representing a bombing that targeted US
soldiers, and another representing a bombing that occurred
in Afghanistan. Due to the way the pattern matching
occurred, the pattern matcher can indicate that the bombing
in both sets of assertions is the same event, resulting in
effectively one event reference for the whole sentence.
Although there is an identical set of predicate logic
assertions passing through the reference resolution
algorithm, there are fewer references to resolve in Story C,
then there are in Story B, and fewer in Story B then there
are in Story A.

Results

The results from reading the three stories before the related
assertions existed in memory, and then again after the
ground references were available in memory to retrieve are
listed in Table 1. The table shows the times taken to
perform pattern matching, and reference resolution, as well
as the total time for both operations. The difference for
each story, contrasted between the two conditions, is given
in the delta columns. In addition to the time taken to
perform these operations, the number of combinations of a
new sentence with the existing interpretation(s) is given in
the states column. In the last column the number of
reference resolution mappings attempted when combining
new semantic fragments is given.
 Patterns are currently (and naively) allowed to match
nearly all possible subsets of the sentences including
seeing in the second sentence of Story C only the words “...
soldiers were … in …” and interpreting that as a reference
to soldiers being popular (since “in” can be interpreted as
fashionable or popular). Obviously longer sentences, such
as those in Story C, have the opportunity to produce far
more of these fragmentary understandings, and thus an
increase in parsing time. Story A produces approximately
300 semantic fragments, Story B only 150, and story C
over 650 semantic fragments. There is a linear relationship

between the number of pattern matching rules applied
(semantic fragments produced) and the total parsing time;
processing runs at about 3ms per match.
 All of these fragments are handed off to the reference
resolution algorithm to determine which ones fit best.
Using the algorithm described above, and attempting to
maximize text coverage, mitigates much of the ambiguity
handed off to the reference resolution algorithm, as can be
seen in the processing times.
 The run time for the reference resolution algorithm is
proportional to the product of the number of semantic
ambiguities explored and the number of reference
mappings explored. Reference resolution time is fairly fast
in all cases before ground instances exist in memory. In
processing Story A, DMAP evaluates more ambiguity than
B or C, and this corresponds to increased run time as well.
Although Stories B and C evaluate the same number of
semantic ambiguities, story C spends more time figuring
out how to resolve the references between sentences.
 When references are available in memory, DMAP
spends more time exploring each ambiguity, nearly twice
as long. However, in the case of Stories B and C, DMAP is
able to significantly reduce the number of ambiguities
which need to be explored. The slowdown is somewhat
mitigated by a more direct path though the search space,
although DMAP still operated at a net loss with respect to
run time. When DMAP had references in memory to aid its
decision making, it could process story B and C correctly
by evaluating fewer states. It used 44% less for story B,
and 22% less for story C. These stories have more
ambiguity packed into individual sentences and therefore
pruning opportunities are more available and more
beneficial than for story A.
 Even though Story B is longer than Story C (more
sentences, not more words), and more complicated than
story A, it still process the least number of ambiguities, and
does so in the least amount of time. Further in all three
stories (less so in Story A), DMAP was able to leverage
memory in order to reduce the number of ambiguities

 Time Ambiguity

Ground

Instances

Available Story

Pattern

Matching

(ms) Change

Reference

Resolution

(ms) Change

Total

Time

(ms) Change States Change

Reference

Mappings

Explored Change

A 680 90 770 45 27

B 390 30 420 18 8 No

C 2250 40 2290 18 15

A 720

40

(106%)

200 110

(222%)

920 150

(119%)

45 0

(0%)

23 -4

(85%)

B 260 -130

(67%)

50 20

(167%)

310 -110

(74%)

10 -8

(56%)

2 -6

(25%)
Yes

C 2400 150

(107%)

80 40

(200%)

2480 190

(108%)

14 -4

(78%)

12 -3

(80%)

Table 1. Processing time for Stories A, B, and C, with and without ground instances available in memory.

which it explored. The bottom line is that having the right
kind of guidance from memory can greatly assist reference
resolution and ambiguity reduction.

Related Work

Memory based natural language understating techniques
date back to Quillian’s (1969) Teachable Language
Comprehender (TLC), which used semantic connections to
propose parsing possibilities first (e.g. what might “a
doctor's patient” mean?) and then verify the syntax second.
PHRAN (PHRasal Analyzer) (Wilensky and Arena, 1980)
incorporated the idea of phrasal patterns to direct memory
parsers. DMAP (Martin, 1990) went further. Where the
other parsers described would construct interpretations,
DMAP searched a hierarchical memory base for matching
or similar semantic structures, making parsing a process of
recognition. Indexed Concept Parsing (ICP) (Fitzgerald,
1994) also used memory based techniques.
 Most NLU work however uses a pipeline model where
language understanding is broken down into a sequence of
operations, which typically include part of speech tagging
and syntax analysis followed by semantic analysis.
Systems such as Frail3 (Charniak and Goldman, 1988)
started to extend the pipeline by using pragmatic axioms
during the parsing process. Grosz et al. (1995) present
work on producing coherent discourse structures over
multiple sentences.
 Information Extraction (IE) approaches use both
statistical and phrase based parsing. While much of the IE
work focuses on entity detection and relation extraction
from isolated sentences (Etzioni et al 2005), there has been
work to build case frames starting with PALKA (Kim and
Moldovan, 1993) and AutoSlog (Riloff, 1993). Humphreys
et. al. (1997) also focus on event coreference.

Future Work

The results in this paper show that DMAP can reduce the
number of ambiguities it needs to explore by incrementally
grounding references in memory. However, the number of
references that need to be resolved by this algorithm
impacts its running time. The more interconnected and less
ambiguous the semantic structures being produced by the
parser are, the faster reference resolution can be performed.
Further if the system had access to larger patterns like
scripts (Shank and Abelson 1977) matching them would
result implicitly in reference resolution. For example,
matching the following story with the classic restaurant
script, would resolve the ambiguity of “he” in the third
sentence.

John went to the restaurant.
The waiter came over.
He ordered a hamburger.

The script would map “he” as the agent ordering to John
and not the waiter. An in-domain example would be the

ability to recognize, for example, that the attack from one
sentence is being performed in retaliation to the bombing
from a different sentence, which would allow DMPA to
better understand who are the likely actors or targets, as it
would be specified in the script-level knowledge of the
concept retaliation.
Adding more complicated patterns will not likely be free,
as having larger organizing structures does not dictate what
happens when multiple structures are in play
simultaneously, or other similarly complicated
configurations. Scripts are being used to resolve references
and track events over sequences of news stories in
information extraction systems such as Brussell (Wagner
2009). We feel that this is an important direction of future
research, which will open new opportunities for progress
toward the goal of complete text to integrated-memory
(end-to-end) language understanding, operating in a time
scale comparable (or faster) than human reading speed.
 Other future work includes extending how DMAP can
ground references in memory and extend existing
knowledge. Repair strategies (Martin 1990) are what
DMAP invokes when information in a story is close but
does not directly correspond to what is in memory.
Currently when this DMAP implementation sees a
discrepancy its only strategy is to assume the information
is new, and discard any references the story has produced
to existing memory. Other options could include changing
the underlying knowledge to correspond with the new
information, or believing that the new information is in
error. Related to this would be to introduce more reasoning
into the process that checks if references in memory are
consistent. This would include more reasoning about
anaphora, especially metonymy.
 Work to reduce the number of semantic interpretations
coming out of the parsing algorithm, or to better prioritize
the order of their processing could reduce load on the
reference resolution algorithm, and also potentially reduce
ambiguity that results in more parsing states. One option is
to investigate the integration of feedback from a syntactic
parser to identify more or less likely parses due to syntactic
structure. Another option would be leverage context to
activate, deactivate, or prioritize rules so that those that
produce more relevant semantic structure to the current
context will be produced first.
 This paper supports the continued investigation of this
line of research, which is to identify and evaluate the
extent to which semantic and episodic memory can
facilitate natural language understanding, especially when
used early in the language understanding process.

Acknowledgements

The authors would like to acknowledge the other members
of the Learning Reader research group for their discussion
and help which contributed to this paper: Ken Forbus,
Larry Birnbaum, Abhishek Sharma, and Leo Ureel. This
project was funded through DARPA, grant HR0011-04-1-

0051. We would like to thank Cycorp for access to and
support with using Research Cyc. The Qualitative
Reasoning Group (QRG) at Northwestern has also been
essential to this work through ongoing support with using
their Fire reasoning engine (Forbus 1993).

References

Charniak, E., Goldman, R., 1988. A logic for semantic

interpretation, Proceedings of the 26th annual meet-ing on

Association for Computational Linguistics, p.87-94, June 07-10,

1988, Buffalo, New York.

Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.,

Shaked, T., Soderland, S., Weld, D. S., and Yates, A. 2004. Web-

scale information extraction in knowitall: (preliminary results). In

Proceedings of the 13th international Conference on World Wide

Web (New York, NY, USA, May 17 - 20, 2004). WWW '04.

ACM Press, New York, NY, 100-110.

Fitzgerald, W. 1994. Building Embedded Conceptual Parsers.

PhD thesis, Northwestern University.

Forbus, K. D., de Kleer, J. 1993 Building Problem Solvers, MIT

Press, Cambridge, MA, 1993

Forbus, K. D., Riesbeck, C. K., Birnbaum, L., Livingston, K.,

Sharma, A., Ureel, L. 2007. Integrating Natural Language,

Knowledge Representation and Reasoning, and Analogical

Processing to Learn by Reading, Twenty-Second Conference on

Artificial Intelligence (AAAI-07), Vancouver, British Columbia,

Canada, July 22-26, 2007

Grosz, B., Weinstein S., Joshi, A. 1995 Centering: A framework

for modeling the local coherence of dis-course Computational

Linguistics.

Humphreys, K., Gaizauskas, R., Azzam, S. 1997. Event

coreference for information extraction. In Proceedings of the

Workshop on Operational Factors in Practical, Robust Anaphora

Resolution for Unrestricted Texts, Madrid, Spain (1997) 75–81

Kay, M. 1996 Chart generation. In Proceedings of the 34th

Annual Meeting on Association For Computational Linguistics

(Santa Cruz, California, June 24 - 27, 1996). Annual Meeting of

the ACL. Association for Computational Linguistics, Morristown,

NJ, 200-204.

Kim, J. and Moldovan, D.. 1993 Acquisition of Semantic Patterns

for Information Extraction from Corpora. In Proceedings of the

Ninth IEEE Conference on Artificial Intelligence for

Applications, pages 171–176, Los Alamitos, CA,. IEEE

Computer Society Press.

Lenat, D. B. 1995 CYC: A Large-Scale Investment in Knowledge

Infrastructure. Communications of the ACM 38 (11): 33–38.

Livingston, K., and Riesbeck, C. K. 2007. Using Episodic

Memory in a Memory Based Parser to Assist Machine Reading,

Working notes of the AAAI 2007 Spring Symposium on Machine

Reading, Stanford University, California, USA, March 26-28,

2007

Martin, C. E. 1990. Direct Memory Access Parsing. PhD thesis,

Yale University.

Quillian, M. R. 1969. The teachable language comprehender.

BBN Scientific Report 10. Bolt Beranek and Newman, Boston

MA..

Riesbeck, C. and Martin, C., 1985 Direct Memory Access

Parsing, Yale University Report 354, 1985.

Riloff, E. 1993 Automatically Constructing a Dictionary for

Information Extraction Tasks. In Proceedings of the Eleventh

National Conference on Artificial Intelligence, pages 811–816.

AAAI Press/The MIT Press.

Schank, R and Ableson, R 1977. Scripts, Plans, Goals and

Understanding. Hillsdale, NJ: Lawrence Erlbaum 1977

Wagner, E. J., Liu, J., Birnbaum, L., Forbus, K. D.: 2009. Rich

Interfaces for Reading News on the Web. In Proceedings of the

2009 International Conference on Intelligent User Interfaces.

Sanibel Island, FL, 2009.

Wilensky, R., and Arens, Y.. 1980. PHRAN: A Knowledge-

Based Natural Language Understander. In Proceedings of the

18th Annual Meeting of the Association for Computational

Linguistics. Philadelphia, PA. June 1980.

