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Abstract 

Learning by reading systems, designed to acquire episodic 
(instance based) knowledge, ultimately have to integrate 
that knowledge into an underlying memory. In order to 
effectively integrate new knowledge with existing 
knowledge such a system needs to be able to resolve 
references to the instances (agents, locations, events, etc.) it 
is reading about with those already existing in memory. This 
is necessary to extend existing memory structures, and to 
avoid incorrectly producing duplicate memories. 
 Direct Memory Access Parsing (DMAP) leverages 
existing knowledge and performs reference resolution and 
memory integration in the early stages of parsing natural 
language text. By performing incremental memory 
integration our system can reduce the number of ambiguous 
sentence interpretations and coreference mappings it will 
explore in-depth, however this savings is currently canceled 
out by the run-time cost of reference resolution algorithm. 
This paper supports the continued investigation of this line 
of research, which is to identify and evaluate the extent to 
which semantic and episodic memory can facilitate natural 
language understanding, especially when used early in the 
language understanding process.  

Introduction 

Learning by reading has at its core the production and 
utilization of a large scale knowledge base, a memory, for 
the learning system to integrate what it is learning with 
what it already knows. Ultimately learning readers are 
acquiring knowledge from text. 
 There are two kinds of knowledge typically acquired by 
learning by reading systems. The first is generalized 
knowledge such as ontologies (e.g. the heart is a pump), 
and relations (e.g. the body is made of cells). The second is 
episodic or instance based knowledge, for example, Barack 
Obama is president, Mozart died in 1791. This type of 
knowledge also includes event instances, such as the 
Madrid train bombings in 2004, or the attack in 
Afghanistan last week. Our focus is primarily on acquiring 
and integrating episodic (instance based) knowledge. 
 For systems learning about specific instances, including 
event descriptions, it is important to be able to ground all 
references to existing structures in memory and create new 

structures when needed. This process also involves the 
resolution of coreferences across sentences. For example, 
consider a system reading the following two sentences in 
the context of a news story. 

An attack occurred in Iraq. 
Insurgents bombed a group soldiers. 

In reading the second sentence, there are three references 
that need to be resolved in order to produce a complete 
understanding. These references are the insurgents, the 
soldiers, and a bombing event. A reader needs to 
understand these references within the context of the story, 
by establishing coreference mappings to other references 
in the same story, including that the bombing event the 
same as the attack in the first sentence, and ground these 
references to any relevant structures already in memory. 
Failure to do so would result in fragmented understanding, 
or replication of instances or events which does not 
correspond to the actual state of the world. For example, 
incorrectly assuming there are two distinct events in the 
two sentences above, would also mean not knowing that 
the bombing occurred in Iraq, or that the attack targeted 
soldiers. 
 We are interested in producing a learning by reading 
system that can read, for example, about an election taking 
place one day, and then read about the winner the next day, 
and recognize that the descriptions are referring to the 
same event. The system should be able to extend its 
existing representation of the election, produced from the 
first story, with the new knowledge of the outcome and 
winner of the election. Further, if weeks or months later the 
system reads a story discussing the same election, it should 
recall the same memory structure it constructed in the past, 
not hallucinate a new, nearly identical, event. Building 
complete understandings of large collections of events 
requires not only the ability to recognize repeated 
references to the same event, but also the ability to 
understand and learn how new events relate to old ones. 
For example, that the bombings performed today by Israel 
were in response to the kidnappings of Israeli soldiers 
yesterday by members of Hezbollah. To be able to do this a 
reader must be able to ground references in existing 



memory structures (recognize what it already knows), and 
integrate new knowledge to extend what it already knows. 
 Direct Memory Access Parsing (DMAP) is an end-to-
end language understanding model, running from input text 
through the production of references to existing knowledge 
structures in its underlying memory, with the ability to 
create and integrate new knowledge when necessary. In 
contrast to the standard syntactic-semantic pipeline that 
defers memory integration and reference resolution until 
the end, DMAP performs reference resolution and memory 
integration as it parses. A motivation for this algorithm is 
our belief that the grounded references and existing 
memory can be used to guide coreference decisions and 
overall story understanding. Our research is exploring the 
construction of a system that can use what it already knows 
to understand new information, and also rapidly recognize 
and understand information it has already seen. Fully 
integrating an interpretation in a large and incomplete 
memory presents numerous challenges, many of which are 
likely not unique to the DMAP approach. 

Reference Resolution and Memory 

DMAP uses a collection of language patterns that 
recursively map textual references to knowledge structures, 
and even specific instances in memory when possible. 
Instances include not only individuals like people, George 
W. Bush, or countries, Iraq, but also events in episodic 
memory, such as the Madrid train bombings of 2004. 
Functionally the pattern matcher in DMAP is similar to a 
tabular chart parser (Kay 1996). The pattern matcher has 
mappings from sequences of strings, lexical, and semantic 
concepts, to semantic assertions which they can be 
translated into. These assertions are grounded in the 
existing knowledge base whenever possible, and new 
assertions are generated only as needed. More detail on the 
architecture of this implementation of DMAP is presented 
by Livingston and Riesbeck (2007). 
 DMAP is an attempt to treat language understanding as 
a recognition and pattern matching process, as opposed to a 
knowledge construction and reasoning task. As sentences 
are being parsed, in order to build a coherent and complete 
representation of the story, DMAP establishes coreference 
mappings between the references in new sentences and 
those from previous sentences. As the example sentences 
in the introduction show, these coreference mappings are 
essential to building a complete representation of what is 
being described when a description spans multiple 
sentences. Identifying what references corefer within a 
story can produce a coherent semantic structure for that 
story, however those references still need to be grounded to 
existing references in memory to complete the 
understanding of that story and tie it to existing episodic 
knowledge. 

Semantic References 

DMAP translates text to semantic structure early in the 
understanding process. For example, the sentence “The 
soldiers attacked the bunker” produces the following 
semantic structure (represented in the semantics of 
ResearchCyc (Lenat 1995), the underlying knowledge base 
used by this implementation of DMAP). 
(isa ?s (GroupFn Soldier)) 

(isa ?a AttackOnObject) 

(performedBy ?a ?s) 

(isa ?b Bunker) 

(objectAttacked ?a ?b) 

The representation is a set of predicate logic assertions. 
Symbols starting with a question mark represent an 
ungrounded, or open, reference. In a representation such as 
this, where events are reified, the event becomes another 
reference in the semantic structure just like the reference to 
the soldiers or the bunker. Our system constructs 
interpretations by identifying which of these references 
corefer to similar semantic references produced from the 
sentences that preceded this sentence in the story, and by 
grounding all of these references in the underlying 
memory. If no suitable reference can be identified in 
memory, DMAP will create a new instance to fill the role. 
Resolving references to memory includes not only objects, 
like people and places, but also events, like elections and 
bombings. For example, if text refers to the collapse of two 
buildings in New York, we would like to ground this 
reference to the existing memory structure for the 
September 11th attacks. 
 Identifying references is complicated in a large 
knowledge base (like ResearchCyc), by incompleteness, 
variations in level and scope of descriptions (e.g. 
describing a group of people as sailors or military 
personnel; or using the predicate parentOf vs. the 
predicate fatherOf), variations in how two similar events 
can be described by different sources, and also 
inconsistencies and noise in the knowledge. However, by 
far the most complicated problem in grounding event 
references in an underlying memory is operating under an 
open world assumption. 
 Maintaining an open world assumption means that some 
pieces of the interpretation produced from a text may be 
present in memory, while others may not. For example, 
imagine a specific event is known by a reader to have 
occurred in a location on a specific date, however the 
performer of that event is yet unknown. If a new story 
comes in stating all three pieces of information, querying 
for the conjunct of all three assertions will result in a 
failure to retrieve anything from memory (for the standard 
methods of handling conjuncts used by most reasoning 
systems and knowledge bases), since one piece of 
information is unknown the logical conjunct is also 
unknown. 



Reference Resolution 

To operate in an open world, our DMAP implementation 
breaks the representation into pieces and queries for them 
one at time, instead of querying for the entire 
representation constructed thus far for the story. Each piece 
corresponds to a set of assertions that were produced from 
one pattern matching rule. Patterns roughly correspond to 
one English phrase or sentence. Each sentence will 
therefore produce at least one such piece, but could 
produce more. The previous example sentence “The 
soldiers attacked the bunker,” produces only one set of 
assertions. However, changing the sentence to “The 
soldiers attacked the bunker on July 18, 2008,” will result 
in two sets of assertions, one corresponding to the pattern 
we have already discussed <agent> attack <object>, and a 
second corresponding to <event> on <date>. We refer to 
the process of applying patterns to translate text into sets of 
assertions, as parsing in our DMAP implementation. Our 
parsing stage only includes references to ground instances 
when they were explicitly mentioned in the text being read, 
for example “Iraq” or “the United States Army”. Further, 
the only coreference information available after parsing is 
that which is explicitly encoded in the patterns, all other 
coreference resolution is performed in the subsequent 
reference resolution algorithm. For a more details of the 
DMAP parsing algorithm see Livingston and Riesbeck 
(2007). 
 The reference resolution algorithm receives as inputs the 
semantic interpretation of the story prior to the current 
sentence, including coreference mappings between the 
references in that interpretation, and a list of bindings to 
existing ground instances that interpretation could be 
referencing. It also receives the semantic fragments from 
parsing the current sentence. The algorithm’s task is to 
output a new set of coreference mappings that integrate the 
new assertions, as well as a new list of ground instances to 
which those references could be referring. The algorithm 
may remove ground references from the list if they do not 
agree with the new information being added to the 
representation (e.g. the system could resolve which 
“George Bush” is being referred to, when previously it was 
ambiguous). New references to ground instances may be 
added as well. For example, if the text referrers to the 
terrorists that performed an attack, and the attack was 
already grounded as the Madrid train bombings of 2004, it 
can now ground the terrorists as members of Al-Qaeda. 
 When bindings (ground instances) are present for a 
given reference, and DMAP is attempting to decide if that 
reference corefers with a new reference, DMAP can 
substitute those bindings into the assertions where the new 
reference appears and then look to confirm this assertion in 
memory. For example, if DMAP is reading a story about a 
bombing, and has a reminding to a ground instance, 
Bombing-54, and the next sentence is, “The attack was 
performed by Al-Qaeda,” DMAP needs to decide if the 
attack in this sentence corefers to the bombing in the story 
it is already tracking, and if so if they both then 
collectively still refer to Bombing-54 in memory. The 

sentence in this example produces, among others the 
assertion (performedBy ?attack Al-Qaeda). To see 
if the reference ?attack corefers with the bombing in the 
story and Bombing-54 at the same time, DMAP can 
substitute the value in and attempt to confirm the assertion 
(performedBy Bombing-54 Al-Qaeda) in memory. If 
this query returns true, then the system is can be confident 
in making ?attack (“the attack”) from this sentence 
corefer with the reference to the bombing, and that both 
likely refer to Bombing-54, unless contradicting 
information is later found when integrating subsequent 
sentences. 
 However, it is possible that the query for 
(performedBy Bombing-54 Al-Qaeda) could return 
no results. Since DMAP must operate under the open 
world assumption (as does, presumably, any open ended 
learning system), it does not know if this means Bombing-
54 is known to be performed by another agent, or if it is 
simply unknown who performed Bombing-54. To answer 
this question DMAP must issue an open, and more time 
consuming, query to find out if there is a known performer 
for Bombing-54. This can be accomplished by querying 
for (performedBy Bombing-54 ?agent). If no results 
are returned, the performer is unknown, and it is consistent 
that Bombing-54 could have been performed by Al-
Qaeda. If, on the other hand, a value is returned, it must be 
checked to see if it is consistent with the value provided by 
the story. For example, the value of ?agent could be a 
member of Al-Qaeda, or it could be a parent organization 
(assuming for the moment Al-Qaeda has one). Currently 
the reference is only seen as consistent if it is equal (in 
which case the original fully grounded query would have 
returned true) due to resource constraints. It is a source of 
future work to expand this to accept variability in level of 
description or metonymy, for example “hundreds” vs. 
“418” or “Iraq” vs. “Baghdad”.  
 Finally if the open query returned a result that was not 
consistent with Bombing-54, two options are available to 
the DMAP implementation. The first is make the two 
references in question corefer anyway and discard the 
reminding to Bombing-54. The second is to keep the 
reminding to Bombing-54, and decide that the reference to 
“the attack” referrers to a different event that does not  
corefer with the first. DMAP will continue to search for 
confirmed results, potentially creating two event references 
here, if it can find confirmed remindings in memory which 
support this. However, in lieu of that, the system will 
prefer to produce an interpretation of the story that is more 
coherent, as is measured by how many assertions share 
arguments. Thus if Bombing-54 was not a good match, it 
will continue to produce one single event description, and 
discard the reminding to Bombing-54, believing instead 
that the event in the story is some new event not previously 
encountered. These are not the only potential solutions 
available, just the ones used by this implementation 
currently, see future work for more discussion. 



Experiment 

We believe a language understanding system should be 
able to leverage its existing knowledge to improve 
understanding and decrease both the level of apparent 
ambiguity and runtime. The DMAP model maps text to 
semantic and episodic knowledge early in the language 
understanding process. Therefore we measured the 
difference in the runtime and the amount of ambiguity 
evaluated by DMAP when a story was seen for the first 
time, versus when that story’s content was already in 
memory. Ideally DMAP would be able to read something it 
already knows faster than it could the first time.  
 The complexity of the reference resolution problem 
grows with the number of references in the story, since 
each new reference has to be integrated with the ever 
growing list of references up until that point. This 
obviously results in an exponential operation. Integrating 
these references with memory can further amplify this 
effect, especially when there is an ambiguity of reference 
to existing knowledge structures (which “President Bush” 
is being referred to, or which “attack in Afghanistan”, etc.). 
To start exploring the impact ambiguity has on the 
reference resolution algorithm, we represented the same 
semantic and episodic content in three stories, varying the 
number of sentences and references DMAP needed to 
integrate in order to understand the story. 
 The following three stories produce identical 
interpretations and refer to the same single event. 

Story A 

An attack occurred in Afghanistan.  
The bombing was performed by Al-Qaeda.  
The attack occurred on July 18, 2008.  
The attack targeted United States soldiers.  

Story A presents an event description spread across four 
sentences. Each sentence contains a reference to an attack, 
or in the case of the second sentence, a bombing. When 
DMAP processes this story, it will read the first sentence 
and construct a representation for an attack in Afghanistan. 
It will also look in memory for candidate events to ground 
this reference in, and to use for subsequent reference 
resolution. With every subsequent sentence DMAP will 
have to decide if the event referenced in that sentence is the 
same as the event it is already tracking, using the reference 
resolution algorithm described earlier in this paper. DMAP 
will have to resolve four distinct event references. 

Story B 

There was an attack on July 18, 2008.  
The bombing occurred in Afghanistan. 
Al-Qaeda targeted United States soldiers.  

Story B tells the same story as Story A, although it does so 
in three sentences. Story B has three distinct event 
references that need to be resolved. The first two sentences 
have an attack and a bombing explicitly mentioned as their 
subjects. The third sentence has an implicit reference to an 

event, which appears clearly in the semantic representation 
of targeting. 

Story C 

Al-Qaeda performed an attack on July 18, 2008.  
United States soldiers were targeted by the bombing 
in Afghanistan.  

Story C again represents information identical to that 
presented in Stories A and B. This story compresses the 
explanation into two sentences, and there are two event 
references that need to be resolved by DMAP. 
 All stories contain the same five pieces of information 
about the event: type of event, location, date, perpetrator, 
and target. The major difference is that Story A has four 
distinct references to the event that ultimately need to be 
found to corefer, Story B has three distinct references, and 
Story C only two references that need to be resolved inter-
sentence. 

Representation and References 

Processing Stories A, B, and C result in identical sets of 
predicate logic assertions. Below is the predicate logic 
representation of Stories A, B, and C. The representation is 
in ResearchCyc semantics. Symbols prefixed by “DMAP” 
are instances created by DMAP in this reading, or in a 
previous reading and then retrieved from memory. Only 
assertions directly relevant to the interpretation of the text 
are presented by DMAP. For example, DMAP does not re-
assert that DMAP-TerroristGroup-162 (Al-Qaeda) is an 
instance of TerroristGroup when that is already 
known in memory and not mentioned in the 

text. 

Representation of Stories A, B, and C 

(isa DMAP-Bombing-14991 Bombing) 

(eventOccursAt DMAP-Bombing-14991 

               Afghanistan) 

(dateOfEvent DMAP-Bombing-14991 

  (DayFn 18 (MonthFn July (YearFn 2008)))) 

(performedBy DMAP-Bombing-14991 

             DMAP-TerroristGroup-162) 

(intendedAttackTargets DMAP-Bombing-14991 

                       DMAP-Group-14990) 

(isa DMAP-Group-14990 

     (GroupFn MilitaryPerson)) 

(isa DMAP-Group-14990 

     (GroupFn (MemberFn (ArmedForcesFn 

               UnitedStatesOfAmerica)))) 

(isa DMAP-TerroristGroup-162 Agent-Generic) 

(isa UnitedStatesOfAmerica Organization)  

(isa Afghanistan PartiallyTangible)  

(isa (DayFn 18 (MonthFn July (YearFn 2008))) 

     CalendarDay)  

Processing Story A will result in one set of assertions per 
sentence, each being processed by the reference resolution 
algorithm independently. This is a little different than what 
happens in the processing of Story C. For example, the 



second sentence of Story C will produce two sets of 
assertions, one representing a bombing that targeted US 
soldiers, and another representing a bombing that occurred 
in Afghanistan. Due to the way the pattern matching 
occurred, the pattern matcher can indicate that the bombing 
in both sets of assertions is the same event, resulting in 
effectively one event reference for the whole sentence. 
Although there is an identical set of predicate logic 
assertions passing through the reference resolution 
algorithm, there are fewer references to resolve in Story C, 
then there are in Story B, and fewer in Story B then there 
are in Story A. 

Results 

The results from reading the three stories before the related 
assertions existed in memory, and then again after the 
ground references were available in memory to retrieve are 
listed in Table 1. The table shows the times taken to 
perform pattern matching, and reference resolution, as well 
as the total time for both operations. The difference for 
each story, contrasted between the two conditions, is given 
in the delta columns. In addition to the time taken to 
perform these operations, the number of combinations of a 
new sentence with the existing interpretation(s) is given in 
the states column. In the last column the number of 
reference resolution mappings attempted when combining 
new semantic fragments is given. 
 Patterns are currently (and naively) allowed to match 
nearly all possible subsets of the sentences including 
seeing in the second sentence of Story C only the words “... 
soldiers were … in …” and interpreting that as a reference 
to soldiers being popular (since “in” can be interpreted as 
fashionable or popular). Obviously longer sentences, such 
as those in Story C, have the opportunity to produce far 
more of these fragmentary understandings, and thus an 
increase in parsing time. Story A produces approximately 
300 semantic fragments, Story B only 150, and story C 
over 650 semantic fragments. There is a linear relationship 

between the number of pattern matching rules applied 
(semantic fragments produced) and the total parsing time; 
processing runs at about 3ms per match. 
 All of these fragments are handed off to the reference 
resolution algorithm to determine which ones fit best. 
Using the algorithm described above, and attempting to 
maximize text coverage, mitigates much of the ambiguity 
handed off to the reference resolution algorithm, as can be 
seen in the processing times.  
 The run time for the reference resolution algorithm is 
proportional to the product of the number of semantic 
ambiguities explored and the number of reference 
mappings explored. Reference resolution time is fairly fast 
in all cases before ground instances exist in memory. In 
processing Story A, DMAP evaluates more ambiguity than 
B or C, and this corresponds to increased run time as well. 
Although Stories B and C evaluate the same number of 
semantic ambiguities, story C spends more time figuring 
out how to resolve the references between sentences. 
 When references are available in memory, DMAP 
spends more time exploring each ambiguity, nearly twice 
as long. However, in the case of Stories B and C, DMAP is 
able to significantly reduce the number of ambiguities 
which need to be explored. The slowdown is somewhat 
mitigated by a more direct path though the search space, 
although DMAP still operated at a net loss with respect to 
run time. When DMAP had references in memory to aid its 
decision making, it could process story B and C correctly 
by evaluating fewer states. It used 44% less for story B, 
and 22% less for story C. These stories have more 
ambiguity packed into individual sentences and therefore 
pruning opportunities are more available and more 
beneficial than for story A. 
 Even though Story B is longer than Story C (more 
sentences, not more words), and more complicated than 
story A, it still process the least number of ambiguities, and 
does so in the least amount of time. Further in all three 
stories (less so in Story A), DMAP was able to leverage 
memory in order to reduce the number of ambiguities 

  Time Ambiguity 

Ground 

Instances 

Available Story 

Pattern 

Matching 

(ms) Change 

Reference 

Resolution 

(ms) Change 

Total 

Time 

(ms) Change States Change 

Reference 

Mappings 

Explored Change 

A 680   90   770   45   27   

B 390   30   420   18   8   No 

C 2250   40   2290   18   15   

A 720 

 

40 

(106%) 

200 110 

(222%) 

920 150 

(119%) 

45 0  

(0%) 

23 -4 

(85%) 

B 260 -130 

(67%) 

50 20 

(167%) 

310 -110 

(74%) 

10 -8 

(56%) 

2 -6 

(25%) 
Yes 

C 2400 150 

(107%) 

80 40 

(200%) 

2480 190 

(108%) 

14 -4 

(78%) 

12 -3 

(80%) 

Table 1. Processing time for Stories A, B, and C, with and without ground instances available in memory. 

 



which it explored. The bottom line is that having the right 
kind of guidance from memory can greatly assist reference 
resolution and ambiguity reduction. 

Related Work 

Memory based natural language understating techniques 
date back to Quillian’s (1969) Teachable Language 
Comprehender (TLC), which used semantic connections to 
propose parsing possibilities first (e.g. what might “a 
doctor's patient” mean?) and then verify the syntax second. 
PHRAN (PHRasal Analyzer) (Wilensky and Arena, 1980) 
incorporated the idea of phrasal patterns to direct memory 
parsers. DMAP (Martin, 1990) went further. Where the 
other parsers described would construct interpretations, 
DMAP searched a hierarchical memory base for matching 
or similar semantic structures, making parsing a process of 
recognition. Indexed Concept Parsing (ICP) (Fitzgerald, 
1994) also used memory based techniques. 
 Most NLU work however uses a pipeline model where 
language understanding is broken down into a sequence of 
operations, which typically include part of speech tagging 
and syntax analysis followed by semantic analysis. 
Systems such as Frail3 (Charniak and Goldman, 1988) 
started to extend the pipeline by using pragmatic axioms 
during the parsing process. Grosz et al. (1995) present 
work on producing coherent discourse structures over 
multiple sentences. 
 Information Extraction (IE) approaches use both 
statistical and phrase based parsing. While much of the IE 
work focuses on entity detection and relation extraction 
from isolated sentences (Etzioni et al 2005), there has been 
work to build case frames starting with PALKA (Kim and 
Moldovan, 1993) and AutoSlog (Riloff, 1993). Humphreys 
et. al. (1997) also focus on event coreference. 

Future Work 

The results in this paper show that DMAP can reduce the 
number of ambiguities it needs to explore by incrementally 
grounding references in memory. However, the number of 
references that need to be resolved by this algorithm 
impacts its running time. The more interconnected and less 
ambiguous the semantic structures being produced by the 
parser are, the faster reference resolution can be performed. 
Further if the system had access to larger patterns like 
scripts (Shank and Abelson 1977) matching them would 
result implicitly in reference resolution. For example, 
matching the following story with the classic restaurant 
script, would resolve the ambiguity of “he” in the third 
sentence. 

John went to the restaurant.  
The waiter came over. 
He ordered a hamburger.  

 
The script would map “he” as the agent ordering to John 
and not the waiter. An in-domain example would be the 

ability to recognize, for example, that the attack from one 
sentence is being performed in retaliation to the bombing 
from a different sentence, which would allow DMPA to 
better understand who are the likely actors or targets, as it 
would be specified in the script-level knowledge of the 
concept retaliation. 
Adding more complicated patterns will not likely be free, 
as having larger organizing structures does not dictate what 
happens when multiple structures are in play 
simultaneously, or other similarly complicated 
configurations. Scripts are being used to resolve references 
and track events over sequences of news stories in 
information extraction systems such as Brussell (Wagner 
2009). We feel that this is an important direction of future 
research, which will open new opportunities for progress 
toward the goal of complete text to integrated-memory 
(end-to-end) language understanding, operating in a time 
scale comparable (or faster) than human reading speed. 
 Other future work includes extending how DMAP can 
ground references in memory and extend existing 
knowledge. Repair strategies (Martin 1990) are what 
DMAP invokes when information in a story is close but 
does not directly correspond to what is in memory. 
Currently when this DMAP implementation sees a 
discrepancy its only strategy is to assume the information 
is new, and discard any references the story has produced 
to existing memory. Other options could include changing 
the underlying knowledge to correspond with the new 
information, or believing that the new information is in 
error. Related to this would be to introduce more reasoning 
into the process that checks if references in memory are 
consistent. This would include more reasoning about 
anaphora, especially metonymy. 
 Work to reduce the number of semantic interpretations 
coming out of the parsing algorithm, or to better prioritize 
the order of their processing could reduce load on the 
reference resolution algorithm, and also potentially reduce 
ambiguity that results in more parsing states. One option is 
to investigate the integration of feedback from a syntactic 
parser to identify more or less likely parses due to syntactic 
structure. Another option would be leverage context to 
activate, deactivate, or prioritize rules so that those that 
produce more relevant semantic structure to the current 
context will be produced first. 
 This paper supports the continued investigation of this 
line of research, which is to identify and evaluate the 
extent to which semantic and episodic memory can 
facilitate natural language understanding, especially when 
used early in the language understanding process. 
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