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Unix Systems Programming In a Nutshell 
 
Unix presents a huge set of interfaces to the systems programmer.  However, much of 
this complexity can be tamed by understanding several fundamental abstractions and 
models, as well as by knowing where to look for more detail. It is important to note, 
however, that Unix does not always conform to these abstractions and models.  
Furthermore, although the Unix interfaces have the appearance of orthogonality, 
orthogonality is not always maintained.   This document attempts to describe the 
fundamental concepts and to point out commonly used interfaces.   Examples are geared 
to Linux. 

The Different Varieties Of Unix 
The evolution of Unix has resulted in a number of different contemporary 
implementations:  BSD, System V, Linux, Mach, …   Different implementations have 
slightly different semantics for their basic interfaces, and often provide additional 
interfaces.  For example, Mach-based Unices have always offered kernel threads, while 
BSD-based Unices generally have not.   If you look at code that is intended to be portable 
across different Unices, you’ ll see many #ifdefs that specialize what is done to the 
specific Unix.   

Documentation 
Man pages are the basic on-line reference documentation.  No matter how primitive your 
terminal is, you can always get man pages.  To get a man page for, for example, the open 
call, type “man open”.  If there is both a command and an interface by a given name, man 
will tell you the command.  To have it print the interface you need to specify the 
appropriate “section”  of the manual.  For example, “man chmod”  will tell you about the 
chmod command, while “man 2 chmod”  will tell you about the chmod interface, on 
which, not surprisingly, the chmod command is based. 
 
The problem with man is that if you don’t know the name of what you’re looking for, 
you’re in trouble.  If you don’t know that the interface to delete files is called “unlink” , 
you could try running “man –k delete”  or “apropos delete”  and then sifting through the 
many man pages, but that can be somewhat painful.   
 
Code can sometimes provide examples from which you can generalize.  For example, if 
you look at the source of rm, you will soon discover that it uses unlink.  Often, code 
examples, as well as other documentation can be found on the web.  Of course, it helps if 
you use a powerful search engine such as www.google.com. 
 
Rick Stevens’s “Advanced Programming In the Unix Environment”  is an excellent. 

Everything Tries To Be A File 
Unix tries very hard to make all sorts of objects look like files.  This means two things: 
that these objects are named as files in the file system, and that they can be accessed 
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using the same interface that is used to access files.  For example, /dev/dsp is the name of 
the sound card.  /dev/dsp can be opened and read (recording sound samples from line-in) 
and written (playing sound samples to line-out) in the same way as any ordinary file.   
 
Sometimes the file abstraction breaks down, however.  For example, it is meaningless to 
lseek on /dev/dsp since the sound card can’ t go forward or backward in time.  Naming 
can also break down.   For example, pipes are anonymous, being implicitly named by the 
processes at their endpoints.  Another example is sockets, the abstraction for using the 
network.  We cannot very well name a remote socket within the local file system. 

Files Try To Be Streams of Bytes 
Unix treats all files as streams of bytes.  It has no clue about what they mean.  For 
example, it is a convention that ASCII text files use the linefeed to denote the end of a 
line, but Unix does not treat the linefeed character in any special way.  There are only a 
few exceptions to this rule, mostly involving terminals, a topic that won’t be discussed 
here.  (“Terminals” , despite the archaic name, are important, however, because all 
keyboard sessions go through the terminal system.  The xterms that you have probably 
used enumerable times are based on “pseudoterminals.” )   

Errors in Unix   
Generally, Unix interfaces have integer return values.  A negative return value indicates 
an exceptional condition.  The global integer variable errno provides more information on 
the error and the perror function can be used to print a meaningful description of the 
error.  For example, 
   i nt  f d =open( “ f oo” , O_RDWR) ;   
 i f  ( f d<0)  {   
  per r or ( “ Can’ t  open f oo” ) ; exi t ( - 1) ;  
 }  

attempts to open the file “foo”  for both reading and writing.  If the open fails, open will 
return a negative number and set errno to the appropriate error code.  The perror will then 
print “Can’t open foo: [description of error code in errno]” . 

File I/O in Unix versus Standard I/O in C versus …  
This document will next discuss how to do I/O with plain files with the raw Unix 
interfaces.  It important to note that the run-time libraries of most programming 
languages add a layer above this to simplify application-level programming or to increase 
performance by sophisticated buffering.  As you will see, the raw Unix interface is quite 
primitive.   
 
Probably the most familiar run-time library is C’s Standard I/O library, which provides 
buffered I/O, simple parsing tools, and other tools.  For example, consider how much 
work you might have to go through to write the following with the raw Unix interface 
we’ ll describe below. 
 doubl e x, y;  
 FI LE * i n=f open( “ i nput . t xt ” , ” r ” ) ,  * out =f open( “ out put . t xt ” ,  “ w+” ) ;  
 f scanf ( i n, ” %l f  %l f ” ,  &x,  &y)  ;  
 f pr i nt f ( out , ” %l f ” ,  x+y) ;  
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 f c l ose( i n) ;  f c l ose( out ) ;  

C++ I/O streams provide even a higher level of abstraction, as well as static type 
checking to reduce the chance of errors.  

File I/O 
In Unix, the basic calls for file I/O are open(), read(), write(), lseek(), and close().  Before 
a file can be accessed, it must be opened.  For example, 
 i nt  f d=open( “ f oo” , O_RDWR |  O_CREAT) ;  

opens the file foo for reading and writing.  If foo doesn’t exist, it is first created and then 
opened.  Note that “foo”  could name a plain file, a fifo, a device, or many other kinds of 
objects.  The same open() call (and the subsequent calls we discuss in this section) can be 
used.  Open() returns a file descriptor, which identifies the open file to the kernel.  
Objects that do not have names in the file system cannot be opened using open.  
However, whatever call is made to open them, the result is a file descriptor which can be 
used with the remainder of the calls described in this section. 
 
An open file has associated with it a file pointer, which denotes the next byte of the file 
that will be read or written.  Generally, after an open, this pointer points to the first byte 
of the file (offset zero).  The read call is used to read bytes starting at the current file 
pointer.  For example, the following attempts to read 10 bytes from the file into a buffer: 
 char  buf [ 10] ;  
 i nt  num_r ead=r ead( f d, buf , 10) ;  

There are no guarantees that the read() will succeed, or whether it will actually read 10 
bytes.  If read() returns a negative value, an error has occurred and more detailed error 
information is available in errno.  If read() returns zero, the end of the file has been 
reached.  If read() returns a positive number less than the requested size of the read (10, 
here), then it is up to the program to call read() again to read the remaining bytes.  The 
file pointer moves forward by the number of bytes that were actually read.    
 
The write() call operates analogously to the read() call.   
 
By default, both read() and write() are blocking—they will not return until either an error 
condition occurs, the end of the file is reached, or some number of bytes are read.  It is 
also possible to set a file descriptor to be non-blocking, in which case if a call is about to 
block, it immediately returns a negative number and sets errno to EWOULDBLOCK.   
 
A call may be interrupted by a signal (see below) in which case a negative number is 
returned and errno is set to EINTR.  Strictly speaking, this is not really an error, but it is 
the programmer’s responsibility to repeat the call.   
 
While the file pointer moves implicitly during read() and write() calls, it is also possible 
to move it explicitly using the lseek() call.  For example, suppose we want to back up to 
the beginning of the file.  We would do this by executing: 
 l seek( f d, 0, SEEK_SET) ;  

 
When we are finished with the file descriptor, we must close() it: 
 c l ose( f d) ;  
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More On File Descriptors 
File descriptors are a central concept in Unix.  Although some objects may not map into 
the file system namespace and therefore need to be opened or created using other 
interfaces, once they have been opened, they are accessed through a file descriptor.  Such 
file descriptors can generally be passed to the same interfaces as file descriptors for actual 
files.   Note that these statements are hedged because there are exceptions—Unix is not 
entirely orthogonal.  There are special calls for certain kinds of file descriptors.  For 
example, UDP sockets are usually used with the sendto() and recvfrom() calls instead of 
write() and read().  Also, it meaningless to execute lseek() on a socket or a sequential file 
(a tape, for example).  
 
Every program starts with three open file descriptors, stdin (0) , stdout (1), and stderr (2).  
File descriptors are inherited by child processes.  This forms the basis for IPC using 
anonymous pipes, as we shall see later.  The dup() and dup2() calls are useful for cloning 
and duplicating file descriptors within a process.   The following example makes writes 
to stdout appear the in file “stdout.log” . 
 i nt  f d = open( “ st dout . l og” , O_WRONLY) ;  
 dup2( f d, f i l eno( st dout ) )  

Unix shells use this kind of idiom to implement redirection. 
 
The fcntl() is used to set attributes of file descriptors.  Fcntl() is a good example of how 
Unix sweeps complexity under the rug.  It is really a number of interfaces masquerading 
as one.  The second argument is basically the name of the interface you desired.  By 
making the interface an argument, fnctl is extensible.  The Linux version has been 
extended to 12 calls.  Sadly, however, this extensibility also leads to non-standard calls.  
Here is an example of how to set a file descriptor for non-blocking I/O: 
 f nct l ( f d, F_SET_FL, f cnt l ( f d, F_GETFL)  |  O_NONBLOCK) ;  

 
File descriptors may refer to objects that have special properties or functions that are 
specific to the kind of device that they are or on which they reside.  For example, a sound 
card probably allows its sample rate and resolution to be adjusted.  The ioctl() call 
provides a mechanism to make such device-specific calls.  In effect, ioctl() allows the 
device driver and other optional components of the kernel to expose functionality to the 
application.  The acceptable arguments to ioctl() depend on the version of Unix and what 
device drivers, etc, you have loaded. 

Processes 
Unix processes are fairly heavyweight entities.  Except for the very first process, which is 
created by the kernel, each new process is be created by cloning an existing process using 
the fork() call.  The forker and forkee have a parent/child relationship.  These 
relationships imply the existence of a tree of processes rooted at the first process, which 
is normally called init.  Each process has a unique id, which can be recovered with the 
getpid() call, and a unique parent, whose id can be found using the getppid() call. 
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The fork() call often paired with a version of the exec() call, which replaces the current 
process image with a new one loaded from disk, and with a version of the wait() call, 
which waits for a child process to terminate.  This common idiom looks like this: 
 i nt  r c=f or k( ) ;  
 i f  ( r c<0)  {   
  per r or ( “ f or k f ai l ed” ) ;  
 }  el sei f  ( r c==0)  {  
  / /  chi l d pr ocess 
  execl p( “ l s” , ” l s” , 0) ;  
  / /  onl y get  her e i f  execl p f ai l ed 
  per r or ( “ can’ t  exec l s” ) ;  
 }  el se {  
  / /  par ent  pr ocess 
  wai t pi d( r c, 0, 0) ;  
  / /  chi l d f i ni shed,  cont i nue 
 }  

Threads 
Some Unices do not support threads, some support only user-level threads, and some 
support kernel threads that are comparable to those in Win32.  Generally, the pthread 
interface is used to access thread functionality on Unix.  For more information try “man 
pthread_intro”  or “man pthread_create” . 

Interprocess Communication 
Unix has a number of mechanisms for IPC.  All Unices support (anonymous) pipes.  
Most support named pipes.  Most that support Berkeley sockets (described in another 
handout) support Unix domain sockets.  Most support shared memory segments. 
 
Anonymous pipes are the most primitive IPC mechanism.  A pipe supports a 
unidirectional flow of data between two file descriptors.  Generally, pipes are used for 
communication between parent and child processes. A process creates a pipe and then 
forks.  This clones the file descriptors that point to the pipe’s endpoints—both the parent 
and the child have a handle to both ends of the pipe.  The parent process then closes one 
end of the pipe while the child closes the other end.  Writes on one end can then be read 
at the other end.  Here is an example in which the parent uses a pipe to receive a message 
from its child (note lack of error checking). 
 i nt  t hepi pe[ 2] ;  
 pi pe( t hepi pe) ;  / /  t hi s cr eat es t he pi pe 
 i f  ( f or k( ) )  {  
  / /  par ent  pr ocess sends dat a 
  c l ose( t hepi pe[ 1] ) ;  / /  c l ose wr i t i ng end of  pi pe 
  r ead( t hepi pe[ 0] , buf , l en) ;   / /  r ead message f r om chi l d 
 }  el se {  
  / /  chi l d pr ocess 
  c l ose( t hepi pe[ 0] ) ;  / /  c l ose r eadi ng end of  pi pe 
  wr i t e( t hepi pe[ 1] , buf , l en) ;  / /  wr i t e message t o par ent  
 }  
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Named pipes extend the pipe abstraction to allow processes that do not share a 
parent/child relationship to communicate.  Named pipes are created on the file system 
using mkfifo: 
 $ mkf i f o t hef i f o   

This command creates a special file “thefifo”  which processes can open() for either 
reading or writing.  In either case, the open() call blocks until the corresponding call is 
made on the other end.  This allows two process to rendezvous.  For example suppose 
process one executes: 
 i nt  f d = open( “ t hef i f o” , O_RDONLY) ;  

This open will block until someone opens thefifo for writing.  Some time later, process 
two might come along and execute: 
 i nt  f d = open( “ t hef i f o” , O_WRONLY) ;  

At this point, both process one’s and process two’s opens will finish.  Process two can 
then send messages to process one by writing to its file descriptor, while process one can 
receive these messages by reading from its file descriptor.  Notice how strongly the file 
abstraction holds here. 
 
Both named and anonymous pipes are half-duplex.  Data can flow only one way through 
them.  For two way communication it is necessary to use a pair of pipes or Unix domain 
sockets.  Unix domain sockets are similar to named pipes in that the channel is named in 
the file system.  However, open is not used.  Instead, the Berkeley sockets interface, 
which is described in a separate handout, is used to acquire a file descriptor.  Once the 
file descriptor has been acquired, it can be handled according to the file abstraction. 
 
Two processes, even if they are parent and child, implicitly share no memory.  Shared 
memory segments can, however, be explicitly created and used using the shmem 
interface.  More information on how to use shared memory segments can be found via 
“man shmget”  and friends. 

Synchronization and Signals 
The pthread interface supports many forms of thread synchronization primitives, such as 
semaphores and condition variables.  More details on these tools can be found in any 
operating system textbook and in the pthread man pages. 
 
Synchronization between processes uses different tools.  We have already seen how a 
parent process can wait for a child to terminate.  Processes can also synchronize by 
sending signals.   In addition, the kernel synchronizes and communicates with processes 
by sending signals.  To send a signal, the kill() system call is used.  For example, 
 k i l l ( get ppi d( ) , SI GUSR1)  

sends the parent process a “SIGUSR1” signal, which is the first “user defined”  signal.  
There are other, pre-defined, signals which are most often sent by the kernel.  For 
example, the kernel sends a SIGSEGV when a process incurs a segfault.  In response to a 
signal, the parent process immediately executes a signal handler.  There are default signal 
handlers for all signals.  Generally, these cause the process to terminate.  That is precisely 
what would happen in our example.  However, the process can install its own signal 
handlers, however, using the signal() and sigaction() calls.  For example, suppose our 
process had executed the following before receiving the SIGUSR1. 
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 voi d Si gnal Handl er ( i nt  s i gnum)  {  
  f pr i nf ( st der r , ” Hi !   Caught  si gnal  %d\ n” ,  s i gnum) ;  
 }  
 s i gnal ( SI GUSR1, &Si gnal Handl er ) ;  

In that case, SignalHandler() would have been called instead of the default handler and, 
instead of terminating, the program would have printed “Hi! Caught signal 10” . 
 
A common misconception about signals is that they somehow “queue”, so that n calls to 
kill(getppid(),SIGUSR1) will result in n innovations of SignalHandler, for example.  In 
fact, signals are either on or off.  The kill call turns the signal on, while the invocation 
turns the signal off.  If the “first”  invocation of SignalHandler is delayed until all n kills 
have executed, then it will be executed only once.  The implication is that the signal 
handler must be prepared to handle all that may have transpired before it was invoked.  
This is vitally important in asynchronous I/O, which we will not discuss further here. 
 
Sometimes a process may want to temporarily ignore signals that arrive.  For example, it 
may want to execute some code as a critical section.  The sigprocmask() call can be used 
to “mask”  signals.  It is important to note that some signals cannot be masked.  SIGKILL 
is one example.  It is never possible to prevent your process from being forcibly killed.   

Select and Friends 
A common problem in Unix systems programming is to wait for one of several events to 
happen.  Events in Unix include: a file descriptor becoming available for reading, writing, 
or entering an exceptional condition, a certain amount of time passing, and a signal 
having been handled.  Consider file descriptors.  Recall that, by default, calls such as read 
and write are blocking.  If you try to read a file descriptor and nothing is available, the 
read will not return until data is available or an error occurs.  Now suppose you want to 
read from whichever of two file descriptors has data available.  Obviously, reading first 
from one and then from the other will not work—you may block on one file descriptor 
while there is a data available on the other.  One option is to set the file descriptors to 
non-blocking and then repeatedly attempt the reads until one does not return 
EWOULDBLOCK.  However, this will burn up CPU like crazy—CPU that another 
process could use.  Another option is to use asynchronous I/O, in which you ask Unix to 
send you a SIGIO signal whenever some file descriptor changes state.  This can be 
painful to code.   
 
A simple alternative is to use the select() call.  Select says “wait efficiently until at least 
one of this set of file descriptors is available for reading, or at least one of this other set of 
file descriptors is available for writing, or at least one of this still other set of file 
descriptors has an exceptional condition, or a signal is handled, or a certain amount of 
time has passed”.  We could code our example in the following way: 
 f d_set  r ead_f ds;  
 FD_ZERO( &r ead_f ds)  
 FD_SET( f d1, &r ead_f ds) ;  
 FD_SET( f d2, &r ead_f ds) ;  
 i nt  r c = sel ect ( MAX( f d1, f d2) +1, &r ead_f ds, 0, 0, 0) ;  
 i f  ( r c<0)  {  
  / /  er r or  happened 
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  i f  ( er r no==EI NTR)  {  
   / /  s i gnal  was handl ed,  sel ect  i nt er r upt ed 
  }  
 }  el sei f  ( r c==0)  {  
  / /  t i me out  happened 
 }  el se {  
  / /  r c i s t he number  of  f ds t hat  ar e avai bl e 
  i f  ( FD_I SSET( f d1, &r ead_f ds)  {  
   / /  t her e i s at  l east  one byt e t o be r ead on f d1 
  }  
  i f  ( FD_I SSET( f d2, &r ead_f ds)  {  
   / /  t her e i s at  l east  one byt e t o be r ead on f d2 
  }  
 }  

Here read_fds is the set of file descriptors that we want to read from.  In this example, the 
next three arguments to select (the set of file descriptors we want to write to, the set of 
file descriptors we want to check for exceptional conditions, and the amount of time 
before a timeout) are set to zero because we are not interested in any of these events and 
we are willing to wait indefinitely. 
 
There are several other functions that are similar to select, but sometimes easier to use.  
These include poll(), sleep(), and usleep().   
  

Other Topics Of Interest 
This document has avoided talking about the following topics because they are not 
necessary in this course.  They are presented here along with suggestions for man pages 
to look at to learn more.  Stevens’s book can also be quite helpful here. 
 

• File system management (creat(), mkdir(), unlink(), stat(), lstat(), …) 
• Security (chmod(), chown(), chgrp(), flock()) 
• Terminals, sessions,  and process groups (tty, getty, termios) 
• Xwindow system (X) 
• Message queues (msgget) 
• Semaphores (semget) 
• Sockets (socket) (also see socket introduction) 


