
EECS 213, Fall 2009
Lab Assignment L1: Manipulating Bits

Introduction

The purpose of this assignment is to become more familiar with bit-level representations and manipulations.
You’ll do this by solving a series of programming “puzzles.” Many of these puzzles are quite artificial, but
you’ll find yourself thinking much more about bits in working your way through them.

Logistics

You may work in a group of up to two people in solving the problems for this assignment. The only “hand-
in” will be electronic. Any clarifications and revisions to the assignment will be posted on the course Web
page.

Hand Out Instructions

You will need the file datalab-handout.tar, which you can find in ∼cs213/HANDOUT on
213.cs.northwestern.edu.
Start by copying datalab-handout.tar to a (protected) directory in which you plan to do your work.
Then give the command: tar xvf datalab-handout.tar. This will cause a number of files to be
unpacked in the directory. The only file you will be modifying and turning in is bits.c.
The file btest.c allows you to evaluate the functional correctness of your code. The file README contains
additional documentation about btest. Use the command make btest to generate the test code and run
it with the command ./btest. The file dlc is a compiler binary that you can use to check your solutions
for compliance with the coding rules. The remaining files are used to build btest.
Looking at the file bits.c you’ll notice a C structure team into which you should insert the requested
identifying information about the one or two individuals comprising your programming team. Do this right
away so you don’t forget.
The bits.c file also contains a skeleton for each of the 15 programming puzzles. Your assignment is to
complete each function skeleton using only straightline code (i.e., no loops or conditionals) and a limited
number of C arithmetic and logical operators. Specifically, you are only allowed to use the following eight
operators:

1



! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits. See the comments in bits.c for detailed rules and a discussion of the desired coding style.

Evaluation

Your code will be compiled with GCC and run and tested on 213.cs.northwestern.edu. Your score will be
computed out of a maximum of 75 points based on the following distribution:

40 Correctness of code running on 213.cs.northwestern.edu.

30 Performance of code, based on number of operators used in each function.

5 Style points, based on your instructor’s subjective evaluation of the quality of your solutions and your
comments.

The 15 puzzles you must solve have been given a difficulty rating between 1 and 4, such that their weighted
sum totals to 40. We will evaluate your functions using the test arguments in btest.c. You will get full
credit for a puzzle if it passes all of the tests performed by btest.c, half credit if it fails one test, and no
credit otherwise.
Regarding performance, our main concern at this point in the course is that you can get the right answer.
However, we want to instill in you a sense of keeping things as short and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function
we’ve established a maximum number of operators that you are allowed to use for each function. This limit
is very generous and is designed only to catch egregiously inefficient solutions. You will receive two points
for each function that satisfies the operator limit.
Finally, we’ve reserved 5 points for a subjective evaluation of the style of your solutions and your com-
menting. Your solutions should be as clean and straightforward as possible. Your comments should be
informative, but they need not be extensive.

Part I: Bit manipulations

Table 1 describes a set of functions that manipulate and test sets of bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number
of operators you are allowed to use to implement each function.
Function bitNor computes the NOR function. That is, when applied to arguments x and y, it returns
˜(x|y). You may only use the operators & and ˜. Function bitXor should duplicate the behavior of the
bit operation ˆ, using only the operations & and ˜.
Function isNotEqual compares x to y for inequality. As with all predicate operations, it should return 1
if the tested condition holds and 0 otherwise.

2



Name Description Rating Max Ops
bitNor(x,y) ˜(x|y) using only & and ˜ 1 8
bitXor(x,y) ˆ using only & and ˜ 2 14
isNotEqual(x,y) x != y? 2 6
getByte(x,n) Extract byte n from x 2 6
copyLSB(x) Set all bits to LSB of x 2 5
logicalShift(x,n) Logical right shift x by n 3 16
bitCount(x) Count number of 1’s in x 4 40
bang(x) Compute !x without using ! operator 4 12
leastBitPos(x) Mark least significant 1 bit 4 30

Table 1: Bit-Level Manipulation Functions.

Name Description Rating Max Ops
tmax(void) largest two’s complement integer 1 4
isNonNegative(x) x >= 0? 3 6
isGreater(x,y) x > y? 3 24
divpwr2(x,n) x/(1<<n) 3 15
abs(x) absolute value 4 10
addOK(x,y) Does x+y overflow? 3 20

Table 2: Arithmetic Functions

Function getByte extracts a byte from a word. The bytes within a word are ordered from 0 (least signif-
icant) to 3 (most significant). Function copyLSB replicates a copy of the least significant bit in all 32 bits
of the result. Function logicalShift performs logical right shifts. You may assume the shift amount n

satisfies 1 ≤ n ≤ 31.
Function bitCount returns a count of the number of 1’s in the argument. Function bang computes logical
negation without using the ! operator. Function leastBitPos generates a mask consisting of a single bit
marking the position of the least significant one bit in the argument. If the argument equals 0, it returns 0.

Part II: Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’s complement representation of integers.
Function tmax returns the largest integer.
Function isNonNegative determines whether x is less than or equal to 0.
Function isGreater determines whether x is greater than y.
Function divpwr2 divides its first argument by 2

n, where n is the second argument. You may assume that
0 ≤ n ≤ 30. It must round toward zero.

3



Function abs is equivalent to the expression x<0?-x:x, giving the absolute value of x for all values other
than TMin .
Function addOK determines whether its two arguments can be added together without overflow.

Advice

You are welcome to do your code development using any system or compiler you choose. Just make sure
that the version you turn in compiles and runs correctly on 213.cs.northwestern.edu. If it doesn’t compile,
we can’t grade it.
The dlc program, a modified version of an ANSI C compiler, will be used to check your programs for
compliance with the coding style rules. The typical usage is

./dlc bits.c

Type ./dlc -help for a list of command line options. The README file is also helpful. Some notes on
dlc:

• The dlc program runs silently unless it detects a problem.

• Don’t include <stdio.h> in your bits.c file, as it confuses dlc and results in some non-intuitive
error messages.

Check the file README for documentation on running the btest program. You’ll find it helpful to work
through the functions one at a time, testing each one as you go. You can use the -f flag to instruct btest
to test only a single function, e.g., ./btest -f isPositive.

Hand In Instructions

• Make sure you have included your identifying information in your file bits.c.

• Remove any extraneous print statements.

• Create a team name of the form:

– “ID” where ID is your netid, if you are working alone, or
– “ID1+ID2” where ID1 is the netid of the first team member and ID 2 is the netid of the second

team member.

This should be the same as the team name you entered in the structure in bits.c.

• To handin your bits.c file, type:

make handin TEAM=teamname

4



where teamname is the team name described above.

• After the handin, if you discover a mistake and want to submit a revised copy, type

make handin TEAM=teamname VERSION=2

Keep incrementing the version number with each submission.

• Beat The Prof Contest! You can see how your solutions stack up against the Prof’s, as well as agaisnt
other participants in the class. To do so, run ./submit.pl. This will update the contest web page
that is available at http://213.cs.northwestern.edu/∼cs213/dlcontest.html

5


