
Modeling and Taming Parallel TCP on the Wide Area Network

Dong Lu Yi Qiao Peter A. Dinda Fabián E. Bustamante
Department of Computer Science, Northwestern University

�donglu,yqiao,pdinda,fabianb�@cs.northwestern.edu

Abstract

Parallel TCP flows are broadly used in the high perfor-
mance distributed computing community to enhance net-
work throughput, particularly for large data transfers. Pre-
vious research has studied the mechanism by which parallel
TCP improves aggregate throughput, but there doesn’t ex-
ist any practical mechanism to predict its throughput and its
impact on the background traffic. In this work, we address
how to predict parallel TCP throughput as a function of the
number of flows, as well as how to predict the correspond-
ing impact on cross traffic. To the best of our knowledge,
we are the first to answer the following question on behalf
of a user: what number of parallel flows will give the high-
est throughput with less than a �� impact on cross traffic?
We term this the maximum nondisruptive throughput. We be-
gin by studying the behavior of parallel TCP in simulation
to help derive a model for predicting parallel TCP through-
put and its impact on cross traffic. Combining this model
with some previous findings we derive a simple, yet effec-
tive, online advisor. We evaluate our advisor through exten-
sive simulations and wide-area experimentation.

1. Introduction

Data intensive computing applications require efficient
management and transfer of terabytes of data over wide area
networks. For example, the Large Hadron Collider (LHC) at
the European physics center CERN is predicted to generate
several petabytes of raw and derived data per year for ap-
proximately 15 years starting from 2005 [5]. Data grids aim
to provide the essential infrastructure and services for these
applications, and a reliable, high-speed data transfer service
is a fundamental and critical component.

Effort sponsored by the National Science Foundation under Grants ANI-
0093221, ACI-0112891, ANI-0301108, EIA-0130869, and EIA-0224449.
Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author and do not necessarily reflect the views
of the National Science Foundation (NSF).

Recent research has demonstrated that the actual TCP
throughput achieved by applications is, persistently, signif-
icantly smaller than the physical bandwidth “available” ac-
cording to the end-to-end structural and load characteris-
tics of the network [30]. Here, we define TCP throughput as
the ratio of effective data over its transfer time, also called
goodput [27].

Parallel TCP flows have been widely used to increase
throughput. For example, GridFTP [4], part of the Globus
project [10], supports parallel data transfer and has been
widely used in computational grids [5].

A key challenge in using parallel TCP is determining the
number of flows to use for a particular transfer. This number
affects both the throughput that the transfer will achieve and
the impact that it will have on other traffic sharing links with
these data flows. While there has been significant previous
work on the understanding of parallel TCP performance, no
practical parallel TCP throughput prediction techniques ex-
ist and there is no analysis work or system that can support
the following API call:

struct ParallelTCPChar {
int num_flows;
double max_nondisruptive_thru;
double cross_traffic_impact;

};
ParallelTCPChar *
TameParallelTCP(Address dest,

double maximpact);

Here, the user calls TameParallelTCP() with the
destination of her transfer and the maximum percentage im-
pact she is willing to have on cross traffic. The call evalu-
ates the path and returns the number of parallel flows she
should use to achieve the maximum possible throughput,
while causing no more impact than the specified. We refer
to this as the maximum nondisruptive throughput (MNT).

The following sections address the implementation of
such a function. With this in mind, we look for answers to
the following questions:

� How does parallel TCP affect the throughput of the
user’s transfer, the throughput of cross traffic, and the
aggregate throughput, in different scenarios?

� How can these throughputs be predicted, online and
with a small set of measurements, as functions of the
number of parallel TCP flows?

� How can these predictions be used to implement the
TameParallelTCP() function?

To the best of our knowledge, we are the first to propose
a practical mechanism to predict the throughput of paral-
lel TCP flows and to answer TameParallelTCP()-like
questions by estimating the impact on the cross traffic.

Throughout the paper, we use “parallelism level” inter-
changeably with “the number of parallel TCP flows”. A
version of our TameParallelTCP() implementation is
available from
http://plab.cs.northwestern.edu/Clairvoyance/Tame.html

2. Related work

The available bandwidth of a path is defined as “the max-
imum rate that the path can provide to a flow, without re-
ducing the rate of the rest of the traffic.” [15, 16]. Available
bandwidth has been a central topic of research in packet net-
works over the years. To measure it accurately, quickly, and
non-intrusively, researchers have developed a variety of al-
gorithms and systems. Tools that measure either the bot-
tleneck link capacity or the available bandwidth include
IGI [15], Remos [18], Nettimer [17] and pathload [16],
among others. Most of these tools use packet pair or packet
train techniques to conduct the measurements and typically
take a long time to converge.

Previous research [17] has shown that, in most cases, the
throughput that TCP achieves is considerably lower than
the available bandwidth. Parallel TCP is one response to
this observation. Sivakumar et al. [30] present PSockets,
a library that stripes data over several sockets and eval-
uate its performance through wide-area experimentation.
The authors concluded that this approach can enhance TCP
throughput and, in certain situations, be more effective than
tuning the TCP window size. Allcock et al. [5] evaluate
the performance of parallel GridFTP data transfers on the
wide-area, and applied GridFTP to the data management
and transfer service in Grid environments.

Considerable effort has been spent on understanding the
aggregate behavior of parallel TCP flows on wide area net-
works. Shenker et al [29] were first to point out that a small
number of TCP connections with the same RTT and bottle-
neck can get their congestion window synchronized. Qiu et
al. [27] studied the aggregate TCP throughput, goodput and
loss probability on a bottleneck link via extensive ns2-based
simulations. They found that a large number of TCP flows
with the same round trip time (RTT) can also become syn-
chronized on the bottleneck link when the average size of
each TCP congestion window is larger than three packets.

A detailed explanation for this synchronization was given in
[27]. Due to global synchronization, all the flows share the
resource fairly: in the steady state they experience the same
loss rate, RTT and thus the same bandwidth.

The work most relevant to ours is that of Hacker et
al [12]. The authors observe that parallel TCP increases ag-
gregate throughput by recovering faster from a loss event
when the network is not congested. The authors go on to
propose a theoretical model for the upper bound of parallel
TCP throughput for an uncongested path. The model pro-
duces a tight upper bound only if the network is not con-
gested before and after adding the parallel TCP flows; the
aggregated throughput then increases linearly with the num-
ber of parallel TCP flows. Clearly this reduces the utility of
the model as networks are often congested.

Hacker et al also concluded that, in the absence of con-
gestion, the use of parallel TCP flows is equivalent to us-
ing a large MSS on a single flow, with the added benefit of
reducing the negative effects of random packet loss. They
advise application developers not to use an arbitrary large
number of parallel TCP flows, but conclude that it is dif-
ficult, if not impossible, to determine the point of conges-
tion in the end-to-end path a priori, and therefore to decide
on the proper number of parallel TCP flows.

Most TCP throughput models have limited practical util-
ity due to the difficulty of obtaining accurate model parame-
ters such as TCP loss rate and ��� . For example, Goyal et
al [11] concluded that it is hard to obtain accurate estimates
of network loss rates as observed by TCP flows using prob-
ing methods, and that polling SNMP MIBs on the routers
can do much better. However, the MIB statistics are for the
aggregate traffic crossing a interface on the router while it is
well-known that TCP has a bias against long round trip time
connections [27]; the approach is thus limited to those paths
where the bottleneck router is using RED. It is also neces-
sary in this and similar approaches to determine the bottle-
neck router on the end-to-end path (a difficult problem) and
have SNMP access to it (rarely available today). Even if this
is possible, with current models for parallel TCP we would
have to know the loss rate after adding in � parallel TCP
flows. However, even with the tools like web100 [21], we
cannot obtain this rate by simply measuring the network.

Our work makes the following new contributions to the
state of the art:

� We predict throughput for both congested and uncon-
gested paths as a function of the level of parallelism.

� We estimate the impact of parallel TCP on cross traffic
as a function of the level of parallelism.

� We do so using only a small number of probes and no
additional tools.

It is widely believed that, under congested situations,
parallel TCP flows achieve better performance by effec-

N1

N2

N3 N4

N5

N6

Bottleneck Link

L1

L2

L3

L4

L5

Figure 1. Simulation Topology.

tively behaving unfairly, stealing bandwidth from cross traf-
fic. This has prompted some researchers to propose modify-
ing TCP in order to make it better suited for parallel trans-
fers by considering both efficiency and fairness [13, 14]. We
believe it will be difficult to persuade people to modify their
TCP implementations just to use parallel TCP more fairly.
By relying on our prediction tools, a user or administrator
should be able to trade off a transfer’s throughput and its de-
gree of impact on cross traffic, achieving what we refer to
as the maximum nondisruptive throughput (MNT). All these
are at application level without requiring modifications to
pre-existing TCP implementations.

3. Analyzing parallel TCP throughput

In this section, we use simulation to understand the be-
havior of parallel TCP under different scenarios. For all our
simulation-based studies we make use of the ns2 network
simulator [2].

3.1. Simulation Setup

In a simulation study on aggregate TCP throughput on a
bottleneck link, Qiu et al. [27] developed a simple yet realis-
tic topology model for wide-area Internet connections based
on the Internet hierarchical routing structure (Figure 1). We
adopt this same topology for our simulations. Each simula-
tion is 100 seconds long, with cross traffic randomly starting
during the first 8 seconds and parallel TCP flows all starting
at 10 seconds into the simulation. Cross traffic goes from N1
to N5, while parallel TCP flows go from N2 to N6. The bot-
tleneck link is L3. We employ TCP Reno [8] for both cross
traffic and parallel TCP flows, as this is the most widely de-
ployed TCP congestion control algorithm. In addition, com-
parable results were obtained using TCP Tahoe. Both Drop-
Tail and Random Early Detection (RED) [9] queue manage-
ment policies are studied as they are the most commonly
used queue management policies on the Internet. DropTail
and RED have similar performance in most our simulations.
The exception is in Scenario 1. Here, when there are more
than 10 cross traffic flows, the cross traffic dominates the
queue and starves the parallel TCP flows under the Drop-
Tail policy. Unless otherwise noted, we show results for the
DropTail policy.

60 KB1000 Mbps1000 Mbps100 Mbps20 ms6
60 KB10000 Mbps10000 Mbps1000 Mbps50 ms5

BW*RTT10000 Mbps10000 Mbps1000 Mbps50 ms4

BW*RTT1000 Mbps1000 Mbps100 Mbps50 ms3

BW*RTT1000 Mbps1000 Mbps100 Mbps20 ms2

BW*RTT10 Mbps10 Mbps1.5 Mbps20 ms1

TCP Buffer
L4, L5

Bandwidth

L1, L2

Bandwidth

L3

Bandwidth

L3

Latency
Scenario

≥

≥

≥

≥

The latency for L1 and L2 is fixed at 4 milliseconds, while the latency for L4 and
L5 is fixed at 5 milliseconds. The buffer size on each node is fixed at 25 packets.

Both DropTail and RED queue management policies are simulated.

Figure 2. Simulation Scenarios.

We use TCP flows as cross traffic because of TCP’s dom-
inance in the current Internet, as reported in the the work by
Smith et al. [31], in which TCP accounted for 90-91% of
the packets and about 90-96% of the bytes transferred in
traces collected in 1999-2000 from a educational institution
(UNC) and a research lab (NLANR).

We analyze Parallel TCP throughput under a variety of
representative scenarios including a typical slow connection
such as cable or DSL (Scenario 1), a coast-to-coast high-
speed Internet connection (Scenario 2) and a current (Sce-
nario 3) and next generation global-scale Internet connec-
tions (Scenario 4). Two additional scenarios (Scenarios 5
and 6) are used to represent cases where the TCP buffer has
not been appropriately tuned [32]. Figure 2 summarizes the
different simulation scenarios. For each scenario, we simu-
late from 1 to 31 parallel TCP flows with 5, 10, 15, 20, 25
and 30 random TCP cross traffic flows.

3.2. Simulation results

We summarize our results in this section. Much more de-
tail is available in our technical report [19].

Scenario 1 is used to represent a typical slow connection.
Our simulations show that that the primary benefit from par-
allel TCP comes from being able to steal bandwidth from
the existing cross traffic.

Scenario 2 represents a current coast-to-coast connection
with low latency and medium bandwidth. Our simulations
show that there are some limited benefits from using parallel
TCP without competition in this scenario. In the presence of
cross traffic, however, parallel TCP is an even stronger com-
petitor. Parallel TCP allows us to increase overall through-
put, albeit marginally.

Scenario 3 is a high latency, medium bandwidth link rep-
resenting a current global-scale fast Internet connection. In
this case there are significant benefits to using parallel TCP
even in the absence of cross traffic. The performance of par-
allel TCP under scenarios 2 and 3, without cross traffic, can
be explained using Hacker’s theory [12] that parallel TCP
recovers faster than single TCP when there is a time out.
This effect is more important as the RTT increases, because

the time out will be longer and a single TCP cannot recover
fast enough.

The benefit of using parallel TCP, with and without cross
traffic, are quite high in Scenario 4. Additional throughput
in the presence of cross traffic, is mainly due to an increase
in overall throughput.

The advantage of parallel TCP is even more significant
with mistuned TCP buffers. Scenario 5 represents a high
bandwidth and high latency link with a small socket buffer
size. The benefits of parallel TCP are quite high, regard-
less of the amount of cross traffic. These gains come at no
cost to the existing cross traffic. Parallel TCP gains perfor-
mance not only by recovering faster after a time out, but also
by providing an effectively larger buffer size. There are di-
minishing returns as the number of flows is increased. Sce-
nario 6 is similar.

3.3. Observations

The dramatically different behaviors of the previ-
ous section illustrate the challenges in providing a sound
TameParallelTCP()-like call. Parallel TCP and cross
traffic as functions of the number of flows adopt a wide
range of forms, depending on the topology of the net-
work and the configuration of endpoints. In addition, even
if one were to disregard the almost prohibitively high costs
of directly measuring these curves, the cross traffic im-
pact would be very difficult to determine. Without a priori
knowledge of the parallel TCP loss rate, the model pro-
posed by Hacker, et al [12] only works in uncongested
networks like our Scenario 5.

4. Modeling and predicting throughput

In this section we combine our simulation work with
our analytic treatment of TCP performance to develop a
model that can be used to predict the throughput of paral-
lel TCP flows in practice. Our approach only needs to send
two probes at different parallelism levels and record their
throughput. We don’t need any additional tools to measure
the ��� and loss rate, which can be hard to obtain in prac-
tice as we discussed in Section 1.

4.1. Algorithm

Mathis et al. [22] developed a simple model for single
flow TCP Reno throughput on the assumption that TCP’s
performance is determined by the congestion avoidance al-
gorithm and that retransmission timeouts are avoided:

�� �
���

���

�
���

�

(1)

Here, � is the loss rate or loss probability, and � is the num-
ber of packets that are acknowledged by a received mes-
sage. ��� and ��� are the maximum segment size and
round trip time respectively.

Padhye et al. [26] developed an improved single flow
TCP Reno throughput model that considers timeout effects.

Bollinger et al [7] show that these two models are es-
sentially equivalent with packet loss rates less than 1/100,
which was validated on the current Internet by Zhang et
al [34]. Hacker et al. [12], based on Bollinger’s findings,
present a model for the upper bound of the throughput of �
parallel TCP flows. The authors assume that both��� and
��� are stable. Hacker’s upper bound model can be stated
as:

��� �
���

���
�

��
��

�
��
��

� � � �� ��
��

� (2)

where �� is the packet loss rate for flow 	. However, the au-
thors don’t provide any mechanism to estimate the loss rate
at other parallel levels for prediction purposes. Therefore,
the authors acknowledge that the upper bound is tight only
when the network is not congested and the loss rate doesn’t
increase with more parallel TCP flows. The model only has
limited utility otherwise.

In our model, we introduce the notion of the number of
cross traffic flows,
, and assume that
 does not change
dramatically over significantly large time periods. Note that
our model doesn’t require knowledge of
. Both previous
work [35] and our own work on characterizing, modeling,
and predicting single flow TCP throughput [20] have shown
this assumption to be a valid one.

It is widely believed that the TCP throughput shows sta-
tistical stability over considerable periods of time. Balakr-
ishnan et al found that end-to-end TCP throughput to hosts
often varied by less than a factor of two over timescales on
the order of many tens of minutes, and that the throughput
was piecewise stationary over timescales of similar magni-
tude [6]. Myers et al examined performance from a wide
range of clients to a wide range of servers and found that
bandwidth to the servers and server rankings from the point
of view of a client were remarkably stable over time [25].
Zhang et al [35] used the notion of the Operational Con-
stancy Region (OCR) to evaluate the temporal locality of
end-to-end TCP throughput. The OCR is the length of the
period where the ratio between the maximum and minimum
observed TCP throughput is less than a constant factor �.
They found that � ��% of OCRs are longer than 1 hour
when � � � and � 	�% of all OCRs exceed 3 hours when
� � ��.

The Internet does, however, dynamically change thus
new measurements are necessary when the TCP through-
put has significantly changed. The Network Weather Ser-
vice [33] periodically probes the network to resample the

TCP throughput. Instead, our system dynamically resam-
ples the path at each OCR [20]. Dynamic monitoring is be-
yond the scope of this paper and is addressed in our other
work [20].

We also assume that all of the parallel TCP flows see the
same loss rate and have the same ��� , although both are
functions of � and
. These two assumptions have been in-
dependently verified [27], as discussed in Section 2. We de-
note with �� the loss rate after adding � parallel TCP con-
nections, and with ���� the round trip time at this point.

Along different paths, the value of ��� can vary rang-
ing from the default 536 bytes to much larger values (for
example to support 9000 byte Ethernet jumbo frames on
LANs). Our prediction model does not depend on the a pri-
ori knowledge of ���. We do assume, however, that this
value does not change after connection establishment. This
is a valid assumption as both sides with either use path MTU
discovery at connection establishment time [23] or use the
default 576 byte path MTU.

Based on Equation 1 and the assumptions discussed
above, we developed the following parallel TCP through-
put model that essentially sums � TCP flows:

��� �
���

����

��
��

��
��
�

(3)

The TCP flows share the same RTT and loss rate and thus
the same throughput. Both �� and ���� are actually func-
tions of � and
. Given that we assume
 is stable dur-
ing a period of time, we treat them as functions of � alone.
� is a constant in the range ��� �
 that we use to repre-
sent the effects of TCP timeouts. In the following, we as-
sume that � is stable for a path over at least short peri-
ods, so that our model is equivalent to Padhye’s model with
timeout considerations [26]. This assumption is firmly sup-
ported by the plethora of research on the statistical stability
of TCP throughput as discussed above. Note that � will be
canceled in the following derivations, therefore our model
doesn’t require the knowledge of �.

If we had a model that could compute the relationship
between ��, ���� and the parallelism level � based on a
small set of measurements, we could then use Equation 3 to
predict the throughput for any parallelism level. This is in
essence what we do. We developed several parametric mod-
els for this relationship based on measurements.

Morris [24] and Qiu, et al [27, 28] independently found
that the loss rate is proportional to the square of the to-
tal number of TCP connections on the bottleneck link,
namely �
����. Through wide area experiments, Hacker,
et al [12, 13] showed that ��� on a given path is stable
and can be treated as constant. Similarly, we also assume
that ��� is a constant during a short period of time. There-

fore we have

�� ���� �

� � �� �
� ��� � �� (4)

where �� is a constant. Given that
 is also a constant,
Equation 4 is equivalent to a full order 2 polynomial:

�� ���� �

� � �� �� � �� � �� � (5)

where �� � ��
 and � � �
����. To use Equation 5, we
need to send three probes at different parallelism levels to
determine the value of �, �� and �. Clearly, there is a trade-
off between the sophistication of the model and the number
of measurements needed to fit it. Recognizing this trade-off,
we simplified the full order 2 polynomial to a partial order
2 polynomial as shown in Equation 6. This model requires
only two probes to determine the parameters � and �.

�� ���� �

� � �� �� � � (6)

Here � and � are parameters to be fit based on measure-
ments. We could further simplify the partial order 2 model
to a linear model that also requires two probes.

�� ���� �

� � �� �� � (7)

We measured the performance of these three alternatives
in a wide-area testbed [3], and found that

1. Equations 5 and 6 are better models than Equation 7.

2. The full order two polynomial model (Equation 5) is not signifi-
cantly better than the partial order 2 polynomial (Equation 6) and
can occasionally be worse due to its sensitivity to sampling errors
caused by small network fluctuations. Another problem with the full
order two polynomial model is that it is sensitive to the choice of
probe parallelism.

3. The full order 2 model requires three probes instead of the two

needed for the linear and partial polynomial models.

As a result, we use Equation 6 for our system and the dis-
cussion in the rest of the paper, unless otherwise noted.

In order to use the model in practice, we have to actively
probe a path at two different parallelism levels. The proce-
dure is derived as follows.

We denote ���
��

�

in Equation 3 as �. Note that � and

��� are all constants under our assumptions. We define a
new variable ���:

��� � ��
��� �

�

������
� ���� � �� (8)

Combining Equations 3 and 8, we obtain:

��� �
��
���

(9)

Based on Equation 9, we could use the TCP through-
put at two different parallelism levels to predict the TCP

throughput at other levels. Let �� and �� be the two paral-
lelism levels that are probed:

���� �
���
����

�
���

����� � ��
(10)

and

���� �
���
����

�
���

����� � ��
(11)

From which we can determine:

�� �

��
�

����

� � ��
�

����

�

��� � ���
(12)

and

�� �
��

�

����
�
� ����

� (13)

By substituting �� and �� in Equation 8 with the expres-
sions in Equations 12 and 13, we can now predict the TCP
throughput for other levels of parallelism using Equation 9.

Notice how our prediction requires only two TCP
throughput probes, one for each of the two different par-
allelism levels (�� and ��). Both the probing and the
calculation process are simple and incur little over-
head, the majority being the communication cost of the two
probes.

4.2. Evaluation

We evaluated our model through online experimentation
on PlanetLab [3], a planetary-scale testbed. We randomly
choose 41 distinct end-to-end paths with end nodes located
in North America, Asia, Europe and Australia. For each
path, we conduct 10 rounds of experiments using Iperf [1]
to obtain our measurements. A round of experiment starts
with two probes for prediction purposes, immediately fol-
lowed by parallel TCP transfers with up to 30 parallel TCP
flows.

We adopt the mean relative error as our performance
metric. Relative error is defined as:

�����	������� �
����	�	���
������
���

������
���
(14)

Mean relative error on a path is the average of all the rela-
tive prediction errors on the path. Mean relative error for a
given number of parallel TCP flows is the average of the rel-
ative prediction errors of all the experiments for that num-
ber of parallel TCP flows.

Figure 3 shows two examples of prediction using our
model. The graphs show the actual and predicted through-
put (based on measurements at �� � � and �� � ��). It
can be seen that, for Example 1, predictions made based on

0 5 10 15 20 25 30
15

20

25

30

35

40

45

50

55

60

65

Number of Parallel TCP Flows

T
hr

ou
gh

pu
t (

M
bp

s)

planetlab7.nbgisp.com to planet2.cs.ucsb.edu

Measurement
Linear
Partial Order−2 Polynomial
Full Order−2 Polynomial

(a) Example 1: from nbgisp.com to ucsb.edu

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

Number of Parallel TCP Flows

T
hr

ou
gh

pu
t (

M
bp

s)

planetlab4.cs.berkekey.edu to planet02.csc.ncsu.edu

Measurement
Linear
Partial Order−2 Polynomial
Full Order−2 Polynomial

(b) Example 2: from berkeley.edu to ncsu.edu

Figure 3. Throughput prediction examples.

the partial order 2 and full order 2 polynomials are virtu-
ally identical and have similar accuracy, while the predic-
tion curve derived using the linear model deviates signifi-
cantly from the measurement curve. In our second exam-
ple, the prediction made using the partial order 2 polyno-
mial and the linear model are virtually identical and equally
accurate. The prediction curve generated by the full order 2
polynomial, however, deviates significantly from the mea-
surement curve.

Figure 4 shows the performance of our parallel TCP
throughput predictor using two probes at parallelism lev-
els �� � � and �� � �� for all of the PlanetLab pairs. Only
the partial order 2 polynomial model is used here. Both the
mean and standard deviation of the relative errors (across
different parallelism levels) is shown, with the graph or-
dered by the standard deviation. The results are quite en-
couraging: in most cases, our predictions have a small mean
and standard deviation of relative prediction errors.

Our predictor is relatively insensitive to the particular
level of parallelism for the probes. Figure 5 shows the
mean relative error for our predictor using ��� 	�, ��� ���
and ��� ��� parallel probes. We can see that we obtain sim-

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

ID of the End-to-End paths

M
ea

n
an

d
S

T
D

 o
f r

el
at

iv
e

er
ro

rs
Standard Deviation

Mean

Figure 4. Prediction error statistics. Paths ID
are ordered by the standard deviation.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

ID of the End-to-End paths

m
ea

n
re

la
tiv

e
pr

ed
ic

tio
n

er
ro

r

probe1-8

probe1-10

probe1-15

Figure 5. Prediction sensitivity to the selec-
tion of probes.

ilar performance in all cases. Of course, it is important not
to use parallelism levels that are too close together (such as
��� ��), as such probes are very sensitive to small fluctua-
tions in the network or the existing cross traffic.

As it can be seen from Figure 6, the mean relative er-
ror for a given number of parallel TCP flows is not related
to the number of parallel TCP flows. The figure, a scatter
plot of the mean relative error (across all 41 paths) versus
the number of parallel TCP flows, shows no clear trend. The
correlation coefficient � between the mean relative predic-
tion error and the number of parallel TCP flows is � ���.

Our experimental results have shown how, using the
model derived in this section, one can effectively predict
the throughput of parallel TCP for a wide range of paral-
lelism relying only on two active probes at different levels
of parallelism. In the following we try to estimate the ef-
fect of parallel TCP in the existing cross traffic for a given
level of parallelism, the last “piece” necessary to make the
TameParallelTCP() call possible.

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30

number of parallel TCP flows

m
ea

n
 r

el
at

iv
e

p
re

d
ic

ti
o

n
 e

rr
o

r

Figure 6. Relative prediction error for paral-
lel TCP throughput as a function of number
of parallel TCP flows.

5. Taming parallel TCP

There are a number of considerable challenges when try-
ing to estimate the effect on cross traffic with an online sys-
tem running on the end points:

1. The available bandwidth on the bottleneck link(s) is unknown.

2. The number of cross traffic flows and their loss rates and bandwidths
on the bottleneck link(s) (the offered load) are unknown.

3. Making use of an additional network measurement tool (such as

Pathload [16]) to determine the current load on the path is problem-

atic since it can take a long time to converge. In addition, the mea-

surement accuracy cannot be guaranteed. One would like to avoid

any additional overhead beyond the required two active probes nec-

essary to predict the throughput of parallel TCP flows.

In what follows, we make simplifying assumptions about
the cross traffic’s view of the shared links on the path in or-
der to provide an estimate of impact on the cross traffic from
the same two probes from which we derived the throughput
curve in the previous section.

5.1. Algorithm

We assume that all TCP connections, including our par-
allel TCP flows and the cross traffic, share the same loss rate
on a bottleneck link. This assumption is valid as long as one
of the two following conditions can be satisfied:

1. The cross traffic has an RTT similar to our parallel TCP flows. In that
case, all connections are very likely to have their congestion window
synchronized, and thus share the same loss rate. This fact has been
independently verified by other research groups [29, 27, 28].

2. The router on the bottleneck link is using Random Early Detection

(RED) [9] as its queue management policy, something that is be-

coming increasingly common. Research has demonstrated that with

RED, different flows roughly experience the same loss rate (the

RED rate, which depends on the queue occupancy) under steady

state [9, 28].

Our approach to determining the effect of parallel TCP
on cross traffic is based on our algorithm to estimate the
parallel TCP throughput (Section 4). The key idea is to es-
timate �� � ��� �

� as a function of the number of paral-
lel TCP flows. Based on the assumption that cross traffic
shares the same loss rate as parallel TCP flows, we can then
use the simple TCP throughput model (Equation 1) to esti-
mate the relative change to the cross traffic throughput.

Recall in Section 4 that we model ������ �

� with a par-
tial order 2 polynomial function ������ (Equation 6). Af-
ter obtaining the two necessary measurements, we can cal-
culate the value of � and � and are now able to estimate the
loss rate as a function of the number of parallel TCP flows.

Relying on our assumptions, we have also obtained the
loss rate of the cross traffic as a function of the number of
parallel TCP flows � given there are
 cross traffic flows
(recall that
 is relatively stable, see Section 4).

Thus, based on Equation 1, we can now estimate the rela-
tive change on each of the individual TCP throughputs with-
out knowing
 using the following equation:

��� �

����	

�����

�
���

� ����	

�����

�
���

����	

�����

�
���

(15)

� ��
�
���

���
(16)

� ��
�
�� ��� � �

�� ��� � �
(17)

Here, ��� is the relative throughput change for each flow.
Equation 16 shows that all the flows share the same relative
throughput change. ��� and � are constants as described
in Section 4, and ���� is stable as was shown by Hacker,

et al [12].
�

���
���

can be estimated using Equation 6. Both �

and � can be obtained with two probes as we discussed in
Section 4. Note that �� and �� can be any parallelism lev-
els. In practice, however, we are most interested in estimat-
ing the relative throughput change after adding in � � paral-
lel TCP flows in comparison with adding in only one TCP
flow, therefore �� equals 1 in this case.

In practice, we add another constraint to the
TameParallelTCP() function to avoid the poten-
tial “diminishing returns” problem where more paral-
lel TCP flows bring only marginal benefits. With the
TameParallelTCP() function, we can estimate the ag-
gregate throughput at any parallelism level. We then
check to ensure that the performance gain is over an
administrator-determined threshold after adding in an ad-
ditional TCP flow. If the performance gain is below the
threshold, we do not add more flows even when the im-
pact on cross traffic is within the user’s limit. This is im-
portant because we can avoid the system overhead and
network overhead by avoiding unnecessary TCP flows.

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

50000000

0 10 20 30 40 50

number of parallel TCP f low s

T
hr

ou
gh

pu
t (

B
yt

es
/s

ec
on

d)

parallel TCP

cross traff ic

estimated cross traff ic

(a) Scenario 4 with 5 cross traffic

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

0 10 20 30 40 50

number of parallel TCP flows

th
ro

u
g

h
p

u
t

(B
yt

es
/s

ec
)

parallel TCP

cross traff ic

estimated cross traffic

(b) Scenario 6 with 15 cross traffic

Figure 7. Cross traffic estimation examples.

5.2. Evaluation

We have done a thorough ns2-based evaluation of our
cross traffic estimator. The simulator allows us to analyze
our estimator by controlling settings including bottleneck
bandwidth and cross traffic characteristics.

Our simulation configuration was introduced in Sec-
tion 3. We consider the same set of the scenarios presented
there. As in Section 3, we employ Qiu et al’s [27] simula-
tion topology (Figure 1).

Figure 7 shows two examples, for Scenarios 4 and 6, of
the performance of our estimator. In these cases we can ac-
curately predict the impact on cross traffic as a function of
the parallelism level using only two probes, the same probes
we use to predict the throughput of the parallel flows as a
function of parallelism level.

We summarize our prediction results as a CDF of the rel-
ative error in predicting the impact on cross traffic across all
of our scenarios in Figure 8. We can see that 90% of predic-
tions have relative prediction error less than 0.25. The cross
traffic estimator is slightly biased. It conservatively predicts
a greater impact on the cross traffic on average.

To further evaluate our cross traffic estimation algorithm,
we designed a more complex topology with two groups of
cross traffic. The topology and the simulation configuration
is shown in Figure 9. Each simulation is 100 seconds long
with cross traffic starting randomly between 0 and 8 sec-
onds and all the parallel TCP flows starting at 10 seconds.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

relative prediction error

pr
ob

ab
ilit

y
(e

rr
or

 <
 x

)

Figure 8. Cumulative distribution function of
relative prediction error for cross traffic esti-
mation for all the simulations with 6 scenar-
ios as described in Figure 2.

N1

N2 N3 N4

N5

N8

Bottleneck Link

L1

L2
L3

L4

L7
N7

L6

N6
L5

Figure 9. More complex topology for further
evaluation of cross traffic estimation.

L1 and L4 have latency 3 ms, L2 and L5 have latency 6 ms,
L6 and L7 have latency 10 ms. L3 has latency 50m s and
bottleneck bandwidth 1000 Mbit/s. N3 is using the RED
queue management policy. Parallel TCP flows go from N2
to N6. Cross traffic group 1 goes from N7 to N8. Cross traf-
fic group 2 goes from N1 to N5. We applied our estimation
algorithm to these scenarios, resulting in Figure 10.

We also tested the cross traffic estimator for scenar-
ios in which different TCP flows have different RTTs, and
where RED is not used on the routers. Our estimator shows
the right trend of the cross traffic throughput change, al-
though accurate prediction cannot be guaranteed as flows
with longer RTT tend to have higher loss rate than paral-
lel TCP flows and vice versa. In essence, in situations in
which cross traffic RTT and loss rate is unknown, our esti-
mator is less accurate.

5.3. Outcome

We have demonstrated the feasibility of predicting the
impact on cross traffic of a parallel TCP transfer as a func-

0

2000000

4000000

6000000

8000000

10000000

12000000

0 5 10 15 20 25 30 35 40

number of parallel TCP f low s

th
ro

ug
hp

ut
 (

B
yt

es
/s

ec
on

d)

parallel TCP

cross traff ic g1

estimation of g1

cross traff ic g2

estimation of g2

Figure 10. Estimation results with 14 TCP
flows in cross traffic group 1 (g1) and 14 TCP
flows in cross traffic group 2 (g2).

tion of the degree of parallelism. Under the assumption that
all flows share the same loss rate, we can accurately pre-
dict the relative impact using the same two measurement
probes used to predict the throughput of the parallel TCP
transfer as a function of the degree of parallelism.

Combining these two predictions, we can implement the
TameparallelTCP()API call:

1. Execute two probes at different parallelism levels.

2. Using the probe results, estimate the parallel TCP throughput as a
function of the number of parallel TCP flows � using the techniques
of the previous section.

3. Using the probe results, estimate the relative impact on cross traffic
as a function of � using the techniques of this section.

4. Conduct a binary search on the cross traffic impact function, looking
for the degree of parallelism, �, that has the largest impact less than
that permitted in the API call.

5. Return �, and the impact and throughput predictions at parallelism �.

The cost of this implementation is dominated by executing
the two probes.

6. Conclusions and future work

We have shown how to predict both parallel TCP
throughput and its impact on cross traffic as a func-
tion of the degree of parallelism using only two probes
at different parallelism levels. Both predictions are mono-
tonically changing with parallelism levels. Hence, the
TameParallelTCP() function can be implemented us-
ing a simple binary search. To the best of our knowl-
edge, our work is the first to provide a practical parallel
TCP throughput prediction tool and to estimate the im-
pact on the cross traffic.

We have made a few simplifying assumptions about the
cross traffic in order to predict impact on it while having
no knowledge of the actual cross traffic. While these as-
sumptions are reasonable in many cases, we are now work-
ing on how to relax them. An implementation of a version
of our TameParallelTCP() function is available from
http://plab.cs.northwestern.edu/Clairvoyance/Tame.html.

Although the Internet paths show statistical stability, the
transient stability won’t hold over the long term. Either pe-
riodic resampling as in NWS [33] or the dynamic sampling
rate adjustment algorithm from our other work [20] can be
applied for the long term monitoring.

References
[1] http://dast.nlanr.net/projects/iperf/.
[2] http://www.isi.edu/nsnam/ns/.
[3] http://www.planet-lab.org.
[4] ALLCOCK, W., BESTER, J., BRESNAHAN, J., CERVENAK,

A., LIMING, L., AND TUECKE, S. GridFTP: Protocol ex-
tensions to ftp for the grid. Tech. rep., Argonne National
Laboratory, August 2001.

[5] ALLCOCK, W., BESTER, J., BRESNAHAN, J., CHERVE-
NAK, A., FOSTER, I., KESSELMAN, C., MEDER, S.,
NEFEDOVA, V., QUESNEL, D., AND TUECKE, S. Data
management and transfer in highperformance computational
grid environments. Parallel Computing 28 (2002).

[6] BALAKRISHNAN, H., SESHAN, S., STEMM, M., AND

KATZ, R. H. Analyzing Stability in Wide-Area Network
Performance. In ACM SIGMETRICS (June 1997).

[7] BOLLIGER, J., GROSS, T., AND HENGARTNER, U. Band-
width modeling for network-aware applications. In INFO-
COM (3) (1999), pp. 1300–1309.

[8] FALL, K., AND FLOYD, S. Simulation-based comparisons
of Tahoe, Reno and SACK TCP. Computer Communication
Review 26, 3 (July 1996), 5–21.

[9] FLOYD, S., AND JACOBSON, V. Random early detection
gateways for congestion avoidance. IEEE/ACM Transactions
on Networking 1, 4 (1993), 397–413.

[10] FOSTER, I. Globus web page. Tech. Rep.
http://www.mcs.anl.gov/globus, Argone National Lab.

[11] GOYAL, M., GUERIN, R., AND RAJAN, R. Predicting tcp
throughput from non-invasive network sampling. In IEEE
INFOCOM (2002).

[12] HACKER, T., ATHEY, B., AND NOBLE, B. The end-to-end
performance effects of parallel tcp sockets on a lossy wide-
area network. In 16th IEEE/ACM International Parallel and
Distributed Processing Symposium (IPDPS) (2002).

[13] HACKER, T. J., NOBLE, B. D., AND D.ATHEY, B. The
effects of systemic packet loss on aggregate tcp flows. In
IEEE/ACM Supercomputing (2002).

[14] HACKER, T. J., NOBLE, B. D., AND D.ATHEY, B. Improv-
ing throughput and maintaining fairness using parallel TCP.
In IEEE Infocom (2004).

[15] HU, N., AND STEENKISTE, P. Evaluation and characteriza-
tion of available bandwidth probing techniques. IEEE JSAC
Special Issue in Internet and WWW Measurement, Mapping,
and Modeling 21, 6 (August 2003).

[16] JAIN, M., AND DOVROLIS, C. End-to-end available band-
width: Measurement methodolody, dynamics, and relation
with tcp throughput. In ACM SIGCOMM (2002).

[17] LAI, K., AND BAKER, M. Nettimer: A tool for measuring
bottleneck link bandwidth. In USENIX Symposium on Inter-
net Technologies and Systems (2001), pp. 123–134.

[18] LOWEKAMP, B., MILLER, N., SUTHERLAND, D., GROSS,
T., STEENKISTE, P., AND SUBHLOK, J. A resource mon-
itoring system for network-aware applications. In Proceed-
ings of the 7th IEEE HPDC (July 1998), IEEE, pp. 189–196.

[19] LU, D., QIAO, Y., DINDA, P., AND BUSTAMENTE, F. Mod-
eling and taming parallel tcp on the wide area network. Tech.
Rep. NWU-CS-04-35, Northwestern University, Computer
Science Department, April 2004.

[20] LU, D., QIAO, Y., DINDA, P. A., AND BUSTAMANTE, F. E.
Characterizing and predicting tcp throughput on the wide
area network. Tech. Rep. NWU-CS-04-34, Northwestern
University, Department of Computer Science, April 2004.

[21] MATHIS, M., HEFFNER, J., AND REDDY, R. Web100: Ex-
tended tcp instrumentation for research, education and diag-
nosis. ACM Computer Communications Review 33, 3 (July
2003).

[22] MATHIS, M., SEMKE, J., AND MAHDAVI, J. The macro-
scopic behavior of the tcp congestionavoidance algorithm.
Computer Communication Review 27, 3 (1997).

[23] MOGUL, J., AND DEERING, S. A framework for defining
empirical bulk transfer capacity metrics, rfc3148, November
1990.

[24] MORRIS, R. TCP behavior with many flows. In ICNP
(1997), pp. 205–211.

[25] MYERS, A., DINDA, P. A., AND ZHANG, H. Performance
characteristics of mirror servers on the internet. In INFO-
COM (1) (1999), pp. 304–312.

[26] PADHYE, J., FIROIU, V., TOWSLEY, D., AND KUROSE, J.
Modeling tcp throughput: A simple model and its empirical
validation. In ACM SIGCOMM (1998).

[27] QIU, L., ZHANG, Y., AND KESHAV, S. On individual and
aggregate TCP performance. In ICNP (1999), pp. 203–212.

[28] QIU, L., ZHANG, Y., AND KESHAV, S. Understanding the
performance of many TCP flows. Computer Networks 37,
3–4 (2001), 277–306.

[29] SHENKER, S., ZHANG, L., AND CLARK, D. Some obser-
vations on the dynamics of a congestion control algorithm.
ACM Computer Communication Review (1990).

[30] SIVAKUMAR, H., BAILEY, S., AND GROSSMAN, R. L.
PSockets: The case for application-level network striping for
data intensive applications using high speed wide area net-
works. In Supercomputing (2000).

[31] SMITH, F. D., HERNANDEZ-CAMPOS, F., JEFFAY, K.,
AND OTT, D. What TCP/IP protocol headers can tell
us about the web. In SIGMETRICS/Performance (2001),
pp. 245–256.

[32] TIERNEY, B. Tcp tuning guide for distributed application on
wide area networks. USENIX & SAGE Login 26, 1 (2001).

[33] WOLSKI, R. Dynamically forecasting network performance
using the network weather service. Cluster Computing 1, 1
(1998), 119–132.

[34] ZHANG, Y., BRESLAU, L., PAXSON, V., AND SHENKER,
S. On the Characteristics and Origins of Internet flow rates.
In ACM SIGCOMM (2002).

[35] ZHANG, Y., DUFFIELD, N., PAXSON, V., AND SHENKER,
S. On the constancy of internet path properties. In ACM SIG-
COMM Internet Measurement Workshop (November 2001).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

