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Abstract 
 

Distributed applications use predictions of network traffic to sustain their performance by 
adapting their behavior. The timescale of interest is application-dependent and thus it is 
natural to ask how predictability depends on the resolution, or degree of smoothing, of 
the network traffic signal. To help answer this question we empirically study the one-
step-ahead predictability, measured by the ratio of mean squared error to signal variance, 
of network traffic at different resolutions. A one-step-ahead prediction at a coarse 
resolution is a prediction of the average behavior over a long interval. We apply a wide 
range of linear and nonlinear time series models to a large number of packet traces, 
generating different resolution views of the traces through two methods: the simple 
binning approach used by several extant network measurement tools, and by wavelet-
based approximations. The wavelet-based approach is a natural way to provide multiscale 
prediction to applications.  We find that predictability seems to be highly situational in 
practice—it varies widely from trace to trace. Unexpectedly, predictability does not 
always increase as the signal is smoothed. Half of the time there is a sweet spot at which 
the ratio is minimized and predictability is clearly the best. Also surprisingly, predictors 
that can capture nonstationarity and nonlinearity provide benefits only at very coarse 
resolutions. We conclude by describing plans for an online wavelet-based prediction 
system. 
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Abstract—Distributed applications use predictions of net-
work traffic to sustain their performance by adapting their
behavior. The timescale of interest is application-dependent
and thus it is natural to ask how predictability depends
on the resolution, or degree of smoothing, of the network
traffic signal. To help answer this question we empirically
study the one-step-ahead predictability, measured by the ra-
tio of mean squared error to signal variance, of network
traffic at different resolutions. A one-step-ahead prediction
at a coarse resolution is a prediction of the average behav-
ior over a long interval. We apply a wide range of lin-
ear and nonlinear time series models to a large number of
packet traces, generating different resolution views of the
traces through two methods: the simple binning approach
used by several extant network measurement tools, and by
wavelet-based approximations. The wavelet-based approach
is a natural way to provide multiscale prediction to appli-
cations. We find that predictability seems to be highly sit-
uational in practice—it varies widely from trace to trace.
Unexpectedly, predictability does not always increase as the
signal is smoothed. Half of the time there is a sweet spot
at which the ratio is minimized and predictability is clearly
the best. Also surprisingly, predictors that can capture non-
stationarity and nonlinearity provide benefits only at very
coarse resolutions. We conclude by describing plans for an
online wavelet-based prediction system.

I. INTRODUCTION

The predictability of network traffic is of significant
interest in many domains, including adaptive applica-
tions [6], [37], congestion control [23], [8], admission
control [24], [11], [10], wireless [25], and network man-
agement [9]. Our own focus is on providing application-
level performance queries to adaptive applications, rang-
ing from fine-grain interactive applications such as immer-
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0224449. The NLANR PMA traces are provided to the community by
the National Laboratory for Applied Network Research under NSF Co-
operative Agreement ANI-9807479. Any opinions, findings and con-
clusions or recommendations expressed in this material are those of the
author and do not necessarily reflect the views of the National Science
Foundation (NSF).

sive audio [27] in local environments to coarse-grain sci-
entific applications on computational grids [18]. For ex-
ample, an application can ask the Running Time Advisor
(RTA) system to predict, as a confidence interval, the run-
ning time of a given size task on a particular host [14].
We are trying to develop an analogous Message Transfer
Time Advisor (MTTA) that, given two endpoints on an IP
network, a message size, and a transport protocol, will re-
turn a confidence interval for the transfer time of the mes-
sage. A key component of such a system is predicting the
aggregate background traffic with which the message will
have to compete. We model this traffic as a discrete-time
resource signal representing bandwidth utilization. For
example, a router might periodically announce the band-
width utilization on a link.

The timescale for prediction that a tool like the MTTA
is interested in depends on the query posed to it. If the
application wants to send a small message, the MTTA re-
quires a short-range prediction of the signal, while for a
large message the prediction must be long-range (as is of-
ten the case with wide area data transfers [39], [29]). How-
ever, the appropriate resolution of the signal varies with the
query. A short-range query demands a fine grain resolution
while a long-range query can make do with a coarse res-
olution. Note that a one-step-ahead prediction of a coarse
grain resolution signal corresponds to a long-range predic-
tion in time.

To easily support this need for multi-resolution views of
resource signals, we have proposed disseminating them us-
ing a wavelet domain representation [36]. A sensor would
capture a one-dimensional signal at high resolution and ap-
ply an N -level streaming wavelet transform to it, gener-
ating N signals with exponentially decreasing resolutions
and sample rates. Tools like the MTTA would then recon-
struct the signal at the resolution they require by using a
subset of the signals, consuming a minimal amount of net-
work bandwidth to get an appropriate resolution view of
the resource signal. We call this view a wavelet approxi-
mation signal.
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In our scheme, the final signal an application receives
is in effect an appropriately low-pass filtered version of
the original signal. How close the filter is to an ideal
low-pass filter depends on the nature of the wavelet basis
function that is used. Interestingly, in currently available
network monitoring systems like Remos [13] and the Net-
work Weather Service [41] an analogous filtering step oc-
curs in the form of binning. The signal is smoothed by re-
ducing it to averages over non-overlapping bins, producing
what we refer to as a binning approximation signal. For
example, Remos’s SNMP collector periodically queries a
router about the number of bytes transfered on an inter-
face and uses the difference between consecutive queries
divided by the period as a measurement of the consumed
bandwidth.

It is important to understand that wavelet approxima-
tion signals include binning. A binning approximation sig-
nal is equivalent to a wavelet approximation signal con-
structed using a Haar wavelet. We study binning because
it is widely used in network monitoring systems, and we
study wavelets because they provide a generalization that
may prove to be more appropriate. Wavelet approximation
signals tend to be much smoother than binning approxima-
tion signals, avoiding abrupt artifacts that are not actually
a part of the data. Furthermore, the extent of smoothing
can be varied by the choice of the underlying wavelet.

Given the context of the MTTA and these two methods,
binning and wavelets, for producing approximations to re-
source signals that represent network traffic, what is the
nature of the predictability of the signals, how does it de-
pend on the degree of approximation, and what does this
imply for the MTTA? This paper reports on an empirical
study that provides answers to these questions. The study
is based on a large number of packet traces collected on
WANs and LANs. We studied the predictability of these
traces, which cover all of the classes with multiple traces
per class.

Our methodology is simple. We generate a very high
resolution view of a trace by binning the packets into very
small bins. Then we produce an approximation using ei-
ther the binning approach or the wavelet approach. We
fit a linear or nonlinear time series model to the first half
of the approximated trace and use it to produce one-step-
ahead predictions for the second half. The nonlinear mod-
els can refit themselves as they traverse the second half of
the trace. As we noted earlier, one-step-ahead predictions
are sufficient in the context of the MTTA because as the
timescale of prediction increases, the resolution can de-
crease. Our measure of predictability is the ratio of the
mean squared error for the predictions to the variance of
the second half of the signal. This is basically the “noise

to signal” ratio of the predictor. The smaller the ratio, the
better the predictability.

Our conclusions from this study and their implications
are listed below to aid the reader in judging what follows.

• Generalizations about the predictability of network traf-
fic are very difficult to make. Network behavior can
change considerably over time and space. Prediction
should ideally be adaptive and it must present confidence
information to the user.
• Aggregation appears to improve predictability. WAN
traffic is generally more predictable than LAN traffic. In
this we agree with the results of the earlier studies. The im-
plication is that wide area network prediction systems are
likely to be more successful than those in the local area.
Happily, they are also more necessary.
• Smoothing often does not monotonically increase pre-
dictability. About 50% of the long traces in our study ex-
hibit a sweet spot, a degree of smoothing at which pre-
dictability is maximized, contradicting earlier work. This
suggests that there is a “natural” timescale for prediction-
driven adaptation.
• There are some differences in the predictability of
wavelet-approximated and binning-approximated traces,
although they are not large. Both approximation ap-
proaches are effective. The implication is that concerns
other than predictability will drive the choice between
these approaches.
• There clearly are differences in the performance of dif-
ferent predictive models. An autoregressive component is
clearly indicated, although it is often also helpful to have a
moving average component and an integration. Fractional
models, which capture long-range dependence, are effec-
tive, but do not warrant their high cost for prediction. Hap-
pily, this implies that simple models that can be practically
deployed in an online system will be effective.
• The nonlinear models we evaluated generally do not
perform better than the linear models until the degree of
smoothing is considerable, and even then the performance
gain is small. This suggests that modeling the nonstation-
arity and nonlinear behavior of network traffic is only sig-
nificant for very coarse grain prediction.

In the following, we begin by summarizing related
work. Next, we describe the traces on which our study
is based. We then describe our results for predicting bin-
ning approximation signals. This is followed by a parallel
presentation of our results for predicting wavelet approx-
imation signals. Finally, we conclude by describing the
structure of a multi-resolution prediction system.
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II. RELATED WORK

We use a wide range of predictive models, including the
classical AR, MA, ARMA, and ARIMA models [7], frac-
tional ARIMAs [21], [19], [5], a variation of TAR nonlin-
ear models [38], and simple models such as LAST and a
windowed average. Our prediction tools, which are used
both for offline studies and in online resource signal pre-
diction systems, are currently publicly available as part
of our RPS Toolbox [15]. Our wavelet results use our
Tsunami wavelet toolbox, which is summarized in Sec-
tion V, with more detail elsewhere [35]. Tsunami will be
publicly available soon.

The earliest work in predicting network traffic of which
we are aware is that of Groschwitz and Polyzos who ap-
plied ARIMA models to predict the long-term (years)
growth of traffic on the NSFNET backbone [20]. Basu,
et al produced the first in-depth study of modeling FDDI,
Ethernet LAN, and NSFNET entry/exit point traffic using
ARIMA models [4]. As in our binning study, they binned
packet traces into non-overlapping bins in order to pro-
duce a periodic time series to study. Our trace sets overlap
slightly in that they also used the Bellcore LAN traces.
Leland, et al demonstrated that Ethernet traffic is self-
similar [26], while Willinger, et al suggested a mechanism
for this phenomenon [40]. The long-range dependence im-
plied by self-similarity suggests that fractional ARIMA
models might be appropriate. On the other hand, You
and Chandra found that traffic collected from a campus
site exhibited nonstationary and nonlinear properties and
studied modeling it using threshold autoregressive (TAR)
models [42].

In terms of network prediction, closest to the work de-
scribed in this paper is that of Sang and Li [34], who an-
alyzed the prospects for multi-step prediction of network
traffic using ARMA and MMPP models. Their analysis
is based on continuous time ARMA and MMPP models
driven by Gaussian noise sources. Making the assump-
tion that such models were appropriate, they then devel-
oped analytic expressions for how far into the future pre-
diction was possible before errors would exceed a bound,
and for how this limit was affected by traffic aggregation
and smoothing of measurements. They found that both
aggregation and smoothing monotonically increased pre-
dictability. They then fitted such models to several traces
and evaluated the resulting models’ parameters and noise
variances to determine the maximum prediction interval
for the traces. Only their WAN traces could be predicted
significantly into the future and then only after consider-
able smoothing. Our work differs in several ways. First,
we are approaching this problem from the context of a user

tool like the MTTA. Second, we use a much larger set of
traces. Third, we applied nonlinear models as well as lin-
ear models. Finally, we find that predictability often does
not increase monotonically with smoothing.

Researchers have applied wavelet-based techniques to
understand network traffic and packet traces for some time.
The self-similar nature of network traffic was an important
discovery in the early 90s. Abry, et al, have developed
wavelet-based techniques to estimate the Hurst parame-
ter, the degree of self-similarity [1]. Feldmann, et al have
extensively used wavelets to characterize network traffic
as multi-fractal [16] and to study the impact of this prop-
erty on control mechanisms such as TCP congestion con-
trol [17]. Riedi, et al have shown how to use wavelets
to synthesize network traffic [32], computing results in an
efficient manner that appear to match real Ethernet traces
visually and statistically. Our work is the first of which
we are aware that empirically studies the predictability
of wavelet approximations of real network traffic. Sev-
eral wavelet systems also exist. For example, WIND uses
wavelet-based scaling analysis to detect network perfor-
mance problems [22]. Another relevant system estimates
the Hurst parameter at the router to make adaptive changes
in congestion control, or to provide up to date information
about traffic dynamics without storing all of the data for
offline analysis [33].

III. TRACES

Our study is based on the three sets of traces shown in
Figure 1. The NLANR set consists of short period packet
header traces chosen at random from among those col-
lected by the Passive Measurement and Analysis (PMA)
project at the National Laboratory for Applied Network
Research (NLANR) [30]. The PMA project consists of a
growing number of monitors located at aggregation points
within high performance networks such as vBNS and Abi-
lene. Each of the traces is approximately 90 seconds long
and consists of WAN traffic packet headers from a par-
ticular interface at a particular PMA site. We randomly
chose 180 NLANR traces provided by 13 different PMA
sites. The traces were collected in the period April 02,
2002 to April 08, 2002. We have developed a hierarchi-
cal classification scheme for these traces. The scheme is
based largely on the autocorrelative behavior of the traces,
which is summarized below. A separate technical report
provides much more detail [31]. We identified 12 classes
for the NLANR set. For the present study, we worked with
39 of the traces, covering each of the classes we identified.

The AUCKLAND set, which we focus on in detail
in this paper, also comes from NLANR’s PMA project.
These traces are GPS-synchronized IP packet header



4

Number of Range of
Name Raw Traces Classes Studied Duration Resolutions
NLANR 180 12 39 90 s 1,2,4,...,1024 ms
AUCKLAND 34 8 34 1 d 0.125, 0.25, 0.5,..., 1024 s
BC 4 n/a 4 1 h, 1 d 7.8125 ms to 16 s
Totals 218 n/a 77 90 s to 1 d 1 ms to 1024 s

Fig. 1. Summary of the trace sets used in the study.
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Fig. 2. Signal variance as a function of bin size for the AUCK-
LAND traces.

traces captured with a DAG3 system at the University of
Auckland’s Internet uplink by the WAND research group
between February and April 2001. These also represent
aggregated WAN traffic, but here the durations for most of
the traces are on the order of a whole day (86400 seconds).
Our classification approach, also described in the techni-
cal report, netted 8 classes here. For the present study,
we chose 34 traces, collected from February 20, 2001 to
March 10, 2001, which cover the different classes.

The BC set consists of the widely used Bellcore packet
traces [26] which are available from the Internet Traffic
Archive [3]. There are four traces, which are detailed in
the technical report. In summary, two of them are hour-
long captures of packets on a LAN on August 29, 1989 and
October 5, 1989, while the other two are day-long captures
of WAN traffic to/from Bellcore on October 3, 1989 and
October 10, 1989.

While the packet traces represent “ground truth” for pre-
diction, the predictors that we study require discrete-time
signals. To produce such a signal, we bin the packets into
non-overlapping bins of a small size and average the sizes
of the packets in a particular bin by the bin size. This result
is an estimate of the instantaneous bandwidth usage that
becomes more accurate as the bin size declines. It is im-
portant to note that as the bin size decreases the variance of
the resulting signal increases. It is this variance that we are
trying to model with a predictor. Figure 2 shows this ef-
fect for the 34 AUCKLAND traces. Notice that the graph
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Fig. 3. Autocorrelation structure of an NLANR trace that is not
predictable using linear models.

is on a log-log scale. The linear relationship and gradual
slope we can see on the graph for bin sizes greater than 125
ms indicate that the traces are likely long-range dependent
with a Hurst parameter near one. The more abrupt slope
for smaller binsizes indicates that H declines in that region.

The linear time series models that we evaluate attempt
to model the autocorrelation function (ACF) of a discrete-
time signal in a small number of parameters. It is im-
portant to understand that the ACF has limited meaning
if the signal is nonstationary. However, the integration of
a stationary signal (modeled by ARIMA models), which
is one form of nonstationarity, does show up as an ACF
effect. Furthermore, piecewise stationarity (modeled by
TAR models), another form of nonstationarity, is very
likely to show up as an ACF effect.

The bottom line is that if there is no autocorrelation
function, there is nothing to model, a linear approach is
bound to fail, a nonlinear approach is likely to fail, and
the best predictor is probably the mean of the signal. For
this reason, we studied the autocorrelation functions of our
traces in considerable detail at different bin sizes. For
space reasons, we can not go into detail about this study
here. Instead, we shall show representative ACFs from our
three different trace sets to explain our choice of presenting
detailed results for the AUCKLAND set. We show ACFs
at a bin size of 125 ms for each trace.
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Fig. 4. Autocorrelation structure of an AUCKLAND trace that
is likely to be very predictable using linear models.

Figure 3 shows the ACF of a representative NLANR
trace. For any lag greater than zero, the ACF effectively
disappears. This signal is clearly white noise and the
prospects for predicting it using linear models are very
dim. Only 2% of the autocorrelation coefficients rise to
significance at a significance level (p-value) of 0.05. 80%
of our NLANR traces exhibit this sort of behavior. For
the other 20%, more than 5% of the autocorrelation coef-
ficients are significant, but none are very strong. In these
cases we can not claim that the signals are white noise, but
it is likely that linear models will not do very well.

Figure 4 shows the ACF of a typical AUCKLAND trace.
Obviously, the plot is quite different from what we have
seen in the previous figure. Over 97% of the autocorrela-
tion coefficients are not only significant, but quite strong.
We can also see a low frequency oscillation, which is likely
the diurnal pattern. We expect that such a trace will be
quite predictable using linear models. 80% of the AUCK-
LAND traces have similar strong ACFs.

Figure 5 shows the ACF of a BC LAN trace. It is clearly
not white noise, and yet it does not have the strong behav-
ior of the AUCKLAND traces. We would expect that such
a trace is predictable to some extent using linear models.
All of the BC traces have similar ACFs that are suggestive
of predictability.

IV. PREDICTABILITY OF BINNING APPROXIMATIONS

To create binning approximation signals in general, we
simply bin the packet traces according to the chosen bin
size. If we want to support a variety of bin sizes that are
integer multiples, we can simply start with the smallest bin
size and produce coarser approximations recursively.

Figure 6 illustrates our methodology for evaluating the
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Fig. 5. Autocorrelation structure of a BC LAN trace.
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Fig. 6. Methodology of binning prediction.

predictability of a given packet trace at a given bin size.
We slice the discrete-time signal produced from binning
(Xk) in half. We then fit a predictive model to the first
half and create a prediction filter from it. The data from
the second half of the trace is streamed through the pre-
diction filter to generate one-step-ahead predictions. Next,
we difference these predictions and the values they predict
to produce an error signal. We then compute the ratio of
the variance of this error signal (the MSE, σ2

e ) to the vari-
ance of the second half of the binning approximation sig-
nal (σ2). The smaller the ratio, the better the predictability.

We evaluated the performance of the following
models: MEAN, LAST, BM(32), MA(8), AR(8),
AR(32), ARMA(4,4), ARIMA(4,1,4), ARIMA(4,2,4),
ARFIMA(4,-1,4), and MANAGED AR(32). MEAN uses
the long-term mean of the signal as a prediction. Its pre-
dictability ratio is typically 1.0 for obvious reasons. LAST
simply uses the last observed value as the prediction for the
next value. BM(32) predicts that the next value will be the
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average of some window of up to the 32 previous values.
The size of the window is chosen to provide the best fit
to the first half of the signal. MA(8) is a moving average
model of order 8. AR(8) and AR(32) are autoregressive
models of orders 8 and 32, respectively. ARMA(4,4) is
a model with 4 autoregressive parameters and 4 moving
average parameters. ARIMA(4,1,4) and ARIMA(4,2,4)
are once and twice integrated ARMA(4,4) models. Unlike
the other models, they can capture a simple form of non-
stationarity. The ARFIMA(4,-1,4) model is a “fraction-
ally integrated” ARMA model that can capture the long-
range dependence of self-similar signals. The MANAGED
AR(32) model is an AR(32) whose predictor continuously
evaluates its prediction error and refits the model when er-
ror limits are exceeded. The error limits and the interval
of data which the model uses when it is refit are addi-
tional parameters. In our presentation, we typically show
the best performing MANAGED AR(32). Generally, the
sensitivity to the additional parameters is small. MAN-
AGED AR(32) models are variants of threshold autore-
gressive (TAR) models.

In choosing the number of parameters for our models,
we did not employ the Box-Jenkins methodology or AIC.
Box-Jenkins is unlikely to be deployable in an online pre-
diction system. AIC trades off between model parsimony
and fit, but disregards the computational cost of fitting and
using the model in an online system. Our choice of number
of parameters for these models was a-priori. We provided
a relatively large number of parameters, looking for little
sensitivity to a change in the number.

In the following, and for wavelet prediction (Section V),
we focus our presentation on AUCKLAND for three rea-
sons. First, many of the NLANR traces show minimal pre-
dictability. Second, the strength of the ACFs in the AUCK-
LAND traces allow us to focus on how predictability is
affected by the resolution of the signal. Third, unlike the
BC traces, the AUCKLAND traces are very long and we
have many of them. This lets us consider a wide range of
resolutions. It is important to note that our conclusions are
drawn from studying all of the traces noted in Figure 1.

A. AUCKLAND traces

For each of the 34 AUCKLAND traces, we performed
the analysis described above with each of the different pre-
dictors. We studied 14 different bin sizes: 0.125 s, 0.25 s,
0.5 s, 1 s, 2 s, 4 s, 8 s, 16 s, 32 s, 64 s, 128 s, 256 s, 512 s,
and 1024 seconds. In the discussion that follows, we plot
the predictability ratio versus bin size for all the predic-
tors except MEAN. We have elided MEAN since the other
predictors typically do much better and including MEAN
makes it difficult to see how the other predictors compare.
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Fig. 7. Predictability ratio versus bin size of AUCKLAND trace
31 (20010309-020000-0). 44% of traces.
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Fig. 8. Predictability ratio versus bin size of AUCKLAND trace
23 (20010305-020000-0). 42% of traces.

It is also important to note that some data points in the
graphs are missing. Given enough data it is always pos-
sible to fit a model to a trace and glean an estimate of its
predictive power from the quality of the fit. However, pro-
ducing a predictor from the model and sending new data
through it as we do often reveals that the model is not as
good as the fit might imply. We have elided points in two
cases. The first case is when the predictor became unsta-
ble as evidenced by a gigantic prediction error. This is
sometimes the case with the ARIMA models, which are
inherently unstable because they include integration. The
second case is when there are insufficient points available
to fit the model. This happens at large bin sizes for large
models like the AR(32) and the ARFIMA(4,-1,4). Fewer
than 5% of points have been elided and we have tried to
make it obvious where this happens.

The characteristics of prediction on the AUCKLAND
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traces fall into three classes, representatives of which are
shown in Figures 7 through 9.

The behavior of Figure 7 occurs in 15 of the 34 traces.
The most interesting feature here is that the graph shows
concavity for all predictors: we can clearly see a sweet
spot for the traffic prediction. In other words, there is an
optimal bin size around 32 seconds at which the trace is
most predictable. As we noted earlier, this contradicts the
conclusions of earlier papers. Because it occurs in half
of the AUCKLAND traces, we do not believe that it is a
coincidence. The location of the sweet spot varies from
trace to trace. In some traces it occurs at quite small bin
sizes, which suggests that it is not an artifact of the fact
that we are fitting and predicting on smaller amounts of
data as we increase bin size. It is clearly an artifact of the
data itself.

The behavior of Figure 8 occurs in 14 of the 34 AUCK-
LAND traces and is commensurate with conclusions from
earlier papers. There is no sweet spot here and it is clear
that predictability converges to a high level with increasing
bin size.

Both of these figures also show significant differences
between the performance of the predictors. In general, it
is important to have an autoregressive component to the
prediction. Fractional models do quite well, but the per-
formance of classical models such as large ARs is close
enough to suggest that the extra costs of the fractional
models are probably not warranted.

Figure 9 shows an uncommon behavior, as seen in 5 of
the 34 AUCKLAND traces. Unlike the two previous kinds
of traces, here we have a strong impression of disorder:
there are multiple peaks and valleys at different bin sizes.
The relative performance of the different predictive models
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Fig. 10. Predictability ratio versus bin size of a representative
NLANR trace (ANL-1018064471-1-1). 80% of traces.

remains much the same, however.

Our general conclusions about the 34 AUCKLAND
traces are the following:

• All of the traces are predictable in the sense that their
predictability ratio is less than one. Furthermore, 80% of
the traces show strong divergences from one, indicating
high predictability. Figures 7 and 8 are examples of traces
that are highly predictable. In each of these examples, the
predictability ratios are less than 0.4 for all of the predic-
tors at all of the bin sizes. In many cases the ratios are less
than 0.1, meaning that the predictor explains 90% of the
variation of the signal. This confirms our initial judgment
of the predictability of the AUCKLAND traces based on
the ACFs from Section III.
• There is considerable variation among the predictors. In
almost all cases, LAST, BM, and MA predictors will per-
form considerably worse. The other six predictors have
similar performance except with very large bin sizes where
LAST or MA often gives the best results. This is proba-
bly due to the fact that there are insufficient data points to
produce good fits for some of the predictors at such bin
sizes.
• The predictability of a trace varies considerably with bin
size. There is often a sweet spot at which predictabil-
ity is maximized. The location of the sweet spot varies
from trace to trace and so is most likely a property of the
data. We are trying to understand the origins of this phe-
nomenon. Equally often, predictability increases with bin
size, approaching a limit.
• The nonlinear MANAGED AR(32) model provides only
marginal benefits, and only at very coarse granularities.
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Fig. 11. Predictability ratio versus bin size of a representative
BC trace (BC-pOct89).

B. NLANR traces

Because the NLANR traces are only 90 seconds long,
we can not use the same range of bin sizes as we did for
the AUCKLAND traces. Instead, we chose the following
bin sizes: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024
ms. Figure 10 shows the predictability ratio for a repre-
sentative NLANR trace. As we might expect given the
ACF behavior described in Section III, this trace is basi-
cally unpredictable, turning in predictability ratios around
1.0 or worse for most of the predictors at all the different
bin sizes. About 80% of the NLANR traces display sim-
ilar unpredictability. For the 20% of the traces with non-
vanishing ACFs, we see some modicum of predictability,
but it is very weak. At coarser granularities, predictabil-
ity actually declines. The nonlinear MANAGED AR(32)
provides no benefits here.

C. BC traces

In Figure 11 we show the performance of the predic-
tors on a BC LAN trace. As the trace is only 1700 sec-
onds long, we have chosen 12 different bin sizes, rang-
ing from 0.0078125 second to 16 seconds, doubling at
each step. The predictability here is not as good as for
the AUCKLAND traces, although it is much better than
for the NLANR traces. All of the BC traces behave sim-
ilarly. ARIMA models are the clear winners for these
traces. Again, we do not necessarily see a monotonic in-
crease in predictability with increasing smoothing. The
nonlinear MANAGED AR(32) works much better than its
linear AR(32) counterpart at coarse granularities, but other
linear models do just as well.
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V. PREDICTABILITY OF WAVELET APPROXIMATIONS

Binning is an intuitive mechanism for producing multi-
resolution views of network behavior. Wavelet-based
mechanisms are a more powerful approach to providing
such views because they are parameterized by a wavelet
basis function which can be chosen appropriately to op-
timize for different properties. In fact, the wavelet ap-
proach we describe here, when parameterized with the
simplest wavelet basis function, the Haar wavelet, is equiv-
alent to the binning approach of the last section. Abry, et
al provide a very nice discussion of this equivalence [2].
In the following, we use a D8 wavelet [12], which pro-
vides a much smoother multi-resolution analysis than bin-
ning/Haar. Wavelet analysis is a rich and multifacetted
area of mathematics and signal processing. We will focus
our discussion of it on aspects relevant to this study. Inter-
ested readers can learn more via the work of Mallat [28],
Daubechies [12], Abry, et al [2], or our earlier work [36].

Intuitively, a wavelet transform, in our case a discrete
wavelet transform parameterized by a D8 wavelet, splits
a 1-dimensional time-domain signal into a 2-dimensional
signal representing time and scale (or frequency) informa-
tion. The output can be thought of as a tree, such that
as we move level-by-level toward the root, we see coarser
and coarser versions of the signal. Each level of the tree
provides both a low-pass filtered version of the signal (the
approximations) and a high-pass output (the details). The
original signal can be reconstructed using any approxima-
tion and the details of all the levels further from the root.
We can also recontruct any finer grain approximation by
choosing just the levels we need. In the following, we sim-
ply use successive approximations (i.e., low-passing with
increasingly lower cutoff frequencies) for successive lev-
els of smoothness, corresponding to larger bin sizes.

To evaluate the predictability of wavelet approximation
signals, we use the methodology shown in Figure 12. As
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Binsize Approximation Number of Bandlimit
in seconds scale points frequency

0.125 Input = 0.125 binsize n fs/2
0.25 0 n/2 fs/4
0.5 1 n/4 fs/8
1 2 n/8 fs/16
2 3 n/16 fs/32
4 4 n/32 fs/64
8 5 n/64 fs/128
16 6 n/128 fs/256
32 7 n/256 fs/512
64 8 n/512 fs/1024
128 9 n/1024 fs/2048
256 10 n/2048 fs/4096
512 11 n/4096 fs/8192
1024 12 n/8192 fs/16384

Fig. 13. Scale comparison between binning and multi-
resolution analysis based on the number of bins and scales
used in the AUCKLAND study (n = number of points at
0.125 second binning).

with the binning study, we begin with the packet header
trace. We perform a fine-grain binning that produces a
highly dynamic discrete time signal, which we denote Xk.
We can think of this signal as sampled at a rate fs and ban-
dlimited to a frequency of fs/2. This signal is sent through
a multi-resolution analysis using D8 wavelets and the suc-
cessive approximations (approxi) are only using the ap-
proximations for analysis. For each approximation we run
a prediction test identical to the one we used for each bin
size in the previous Section.

The D8-based analysis produces different, smoother ap-
proximations than the binning approach. For this rea-
son, we reasonably expect (and see) different predictability
from the traces. In most cases the behavior is similar, but
there are some clear distinctions that we will call out. In
our analysis, we have matched the time scale of binsize to
that of the approximation subspace. In other words, there
are the same number of points in a wavelet approximation
signal as in its corresponding binning approximation sig-
nal. This is shown in Figure 13. The figure also indicates
the bandlimited frequency at each scale. In addition, we
plot the predictability of the input signal to match with the
binning study. Our input signal is equivalent to the small-
est binsize from the binning study.

Our analysis is implemented using Tsunami, our toolkit
for wavelet analysis in distributed systems. Tsunami is a
C++ template library that can be used to instantiate many
different kinds of wavelet transforms (forward or reverse,
streaming or block, parameterizable data types, arbitrary
frequency decompositions, etc).
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Fig. 14. Predictability ratio versus approximation scale AUCK-
LAND trace 31 (20010309-020000-0). 38% of traces.

A. AUCKLAND traces

For each of the 34 AUCKLAND traces, we studied the
predictability of 13 scales of wavelet approximations. As
with the binning study we have elided the MEAN predic-
tor and data points that resulted from unstable predictors
or having insufficient data to fit a model. There are two
principle differences between the wavelet and binning re-
sults. The first is that we found four classes of behavior
instead of three. The second is that monotonically increas-
ing predictability with increasing approximation is much
less common with the wavelet-based approach. We are ex-
ploring reasons for this difference.

The behavior of Figure 14 occurs in 13 of the 34 AUCK-
LAND traces. The figure uses the same trace as Figure 7
from the binning study. As before, we can clearly see that
there is a sweet spot, the approximation scale at which pre-
dictability is maximized—there is concavity in the figure
for all predictors. As before, this behavior does not appear
to be a coincidence since it shows up in a number of traces
at different levels of approximation. As with binning, this
behavior contradicts earlier work.

Figure 15 shows behavior that occurs in 11 of the 34
AUCKLAND traces. It is similar to the behavior we saw
in five traces in the binning study and represented in Fig-
ure 9. However, here it is far more common. Again, there
is a non-monotonic relationship between the approxima-
tion scale and the predictability.

Figure 16 shows behavior that occurs in 7 of the 34
AUCKLAND traces. Except for the outliers, this shows
the monotonic relationship that was conjectured in earlier
work. Note that it is an uncommon behavior in our study.

Figure 17 shows the final class of behavior in the
AUCKLAND traces, which occurs in 3 of the 34. Here
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Fig. 15. Predictability ratio versus approximation scale for
AUCKLAND trace 11 (20010225-020000-0). 32% of
traces.
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Fig. 16. Predictability ratio versus approximation scale for
AUCKLAND trace 32 (20010309-020000-1). 21% of
traces.

the predictability ratio reaches a plateau and then becomes
even more predictable at the coarsest resolutions. Interest-
ingly, this is a kind of behavior that we did not see in the
binning study.

The generalizations we draw are much the same as for
the binning study:

• Most of the traces show a high degree of predictability,
which confirms what we concluded from the ACFs of Sec-
tion III. On a trace-by-trace basis, the predictability ratio
of the binning study is similar to that of the wavelet study
when we have similar classes of behavior.
• While there is considerable variation in the performance
of the predictors, it is clearly a good idea to have an autore-
gressive component to the prediction filter. An integrative
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Fig. 17. Predictability ratio versus approximation scale for
AUCKLAND trace 4 (20010221-020000-1). 9% of traces.
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Fig. 18. Predictability ratio versus approximation scale of a
representative NLANR trace (ANL-1018064471-1-1). 80%
of traces.

component is also useful.
• There is often a sweet spot, the approximation scale at
which predictability is maximized.
• There is an additional class of behavior with wavelets
compared to binning.
• The nonlinear MANAGED AR(32) model works
slightly better than its linear AR(32) counterpart at coarse
granularities, but its performance can usually be matched
by other linear models.

B. NLANR traces

As we noted earlier, most of the the NLANR traces typ-
ically have empty autocorrelation structures, which sug-
gests that there is little predictability. As we might expect,
wavelet approximations do not change this. Figure 18
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Fig. 19. Predictability ratio versus approximation scale of a
representative BC trace (BC-pOct89).

shows typical results using the same trace as Figure 10. As
before, the prediction error variance is essentially the same
as the signal variance. As with binning, we see that pre-
dictability does not increase monotonically with smooth-
ing, and that the nonlinear models provide little benefit.

C. BC traces

Figure 19 shows prediction results for wavelet approx-
imations of the same BC LAN trace studied using bin-
ning in Figure 11. We see very similar performance using
wavelet approximation signals and binning approximation
signals.

VI. CONCLUSIONS

We have presented an empirical study of the predictabil-
ity of network traffic at different resolutions using lin-
ear and nonlinear models. The goal was to assess the
prospects for a Message Transfer Time Advisor (MMTA),
a tool that could predict, for end-users, the transfer time of
application-level messages over an IP network. The feasi-
bility of an MTTA depends on the multiscale predictability
of network traffic.

Our results are similar for two methods of producing
different resolutions: binning and wavelet approximations.
We found that making generalizations about predictabil-
ity is very difficult in practice because networks tend to
vary in behavior considerably over time and space. The
behavior at many aggregation points appears to have little
predictability using linear models. On the other hand, in
situations where predictability exists, it is the case that in-
creased traffic aggregation is correlated with enhanced pre-
dictability. This agrees with earlier results. Our study con-
tradicts earlier work in that we find that predictability does

not necessarily monotonically increase with smoothing.
About half of the predictable traces we studied have de-
grees of smoothing at which predictability is maximized.
We found that having an autoregressive component to the
predictive models is important. Nonlinear models can pro-
vide a slight boost in performance over their purely lin-
ear analogs at high degrees of smoothing, but are typically
matched by other forms of linear models.

Our results imply several things. First, an online mul-
tiresolution prediction system to support the MTTA is fea-
sible, but will likely be more accurate on wide area and at
coarser timescales. Second, for many wide area environ-
ments, there is a natural timescale at which adaptation that
relies on network prediction would perform best. Third,
while simple predictive models work well, the prediction
system should itself be adaptive because network behavior
can change.

We are currently working on building online resource
signal dissemination and prediction systems based on the
Tsunami wavelet toolbox and the RPS system. Tsunami
will be incorporated into the next public release of RPS
and it will support the study of other techniques, such as
wavelet denoising, for further compression of the signal
could be applied before it is sent over the network. We
also hope to decouple sensor measurement rates and appli-
cation queries using Tsunami. Once we have a functioning
online prediction system, we expect to study the effects of
using adaptive prediction filters, such as Kalman filters,
in multi-resolution prediction. This work will be the next
step toward the Message Transfer Time Advisor.
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