
Online Prediction of the Running Time of Tasks: Summary
Peter A. Dinda

pdinda@cs.northwestern.edu
Department of Computer Science

Northwestern University

1. INTRODUCTION
This paperdescribesa system,theRunningTime Advisor (or RTA),
that can predict, at run-time, the running time of a compute-bound
taskon a sharedhostrunninga variantof theUnix operatingsystem.
Suchpredictionsarevaluablefor schedulingthe soft real-timetasks
of distributedinteractiveapplicationssuchasscientificvisualizations.
To characterizethevariability inherentto distributedsystemsandto
the processof prediction,the RTA predictsa task’s runningtime as
a confidenceinterval computedto the application’s requestedconfi-
dencelevel. Confidenceintervalsprovide a simpleabstractionto the
application,but still providesufficient informationto enablevalid sta-
tistical reasoningin theschedulingprocess.

Figure1 shows thestructureof theRunningTime Advisor (or RTA)
system,thebroadercontext of which it is a part,andthequeriesand
responsesat eachlevel. The RTA’s responseis computedfrom host
load predictions,a topic we have thoroughlystudiedin previous pa-
pers[1, 4]. We have found that host load, specifically the Digital
Unix 5 secondload averagesampledat 1 Hz, can be usefully pre-
dictedto a 30 secondhorizonusingsimpleAR(16) models.We have
implementedan extremelylow overheadonline hostload prediction
system,basedon a generalpurposetoolkit [3] that we have made
publicly available.1

Due to the limited spaceavailable,we give only a brief overview of
the RTA algorithmhere. A full discussionof theRTA (andthe real-
timeschedulernotedin thefigure)is availableelsewhere[2, Chapters
5 and6]. TheRTA’salgorithmsimply relatesthenominaltime (CPU
demand)of the taskandthe runningtime of the taskto the average
of the hostload signalover the task’s runningtime. We replacethe
signal in this relationshipwith the signalpredictionandusethe co-
variancematrix of the predictionerrors to estimatethe confidence
interval usinganormalityassumption.In additionto AR(16),wealso
exploredtheuseof LAST (lastvalueis predicted)andMEAN (long-
termaverageis predicted)predictors,computingcovariancematrices
for thesepredictorsappropriately. In addition,we discountthe pre-
dictedloadsignalto modelthepriority boostthatprocessesseewhen
they completeanI/O operation.

We evaluatedhow well theactualRTA systemworks in practiceus-
ing a randomizedapproach.Theevaluationuseda real environment
wherethebackgroundloadon a hostwassuppliedby hostloadtrace
playback[5]. Host loadtraceplaybacklets usreconstructa realistic
repeatableworkloadusinga host load tracecollectedon a real ma-
chine. We usedtracesfrom 39 different machines.The tracesare
describedin detail in a previous paper[1] andarerepresentative of
productionandresearchclusters,applicationservers, anddesktops.
We have madethetracesandtheplaybacktool publically available.2

For eachtrace,weranapproximately3000testcases,whichconsisted
of taskswith nominal times randomlyselectedfrom 0.1 to 10 sec-
ondsrandomlyarriving 5 to 15 secondsapart.We usedthefollowing
the following two metrics: (1) coverage,the fraction of taskswhich

�

http://www.cs.nwu.edu/� pdinda/RPS.html�

http://www.cs.nwu.edu/� pdinda/LoadTraces

Host Load Measurement System

Host Load Prediction System

Running Time Advisor

Real-time Scheduling Advisor

Application

Measurement Stream

Load Prediction 
Request

Load Prediction 
Response

Nominal time
confidence, host 

Running time estimate 
(confidence interval)

Nominal time, slack,
confidence, host list

Host, running time 
estimate

D
ae

m
on

L
ib

ra
ry

T
hi

s 
P

ap
er

Figure 1: Running Time Advisor (RTA) system and context.

completewith their predictedconfidenceintervals; and(2) span,the
averagewidth of theconfidenceinterval width in seconds.We useda
targetconfidencelevel of 95%. Themainconclusionis thattheRTA
and its algorithm can indeedpredict the running time of tasksin a
usefulandeffective way.

2. EVALUATION RESULTS
UsingtheAR(16)predictor, we foundthattherewereonly fivetraces
(out of 39) in which fewer than90% of the taskscompletedin their
computedconfidenceintervals andonly onehost wherefewer than
85%werewithin their intervals.Furthermore,wefoundthatit is gen-
erallybestto usethemostaggressive hostloadpredictor, AR(16). On
hostswith high load, AR(16) is ableto producesignificantlybetter
coverageby estimatingwider spans.On hostswith low load,AR(16)
can achieve the target coveragewith much smallerspans. Perfor-
mancegenerallyimprovesasnominaltime is increased.We saw five
differentclassesof behavior. In thefollowing, we’ll illustratethetwo
of thoseandthensummarizeour overall results.

Class I: This class,which we alsocall the “typical low load host”
classrepresentsthe mostcommonbehavior by far that we have en-
countered.The classconsistsof 29 of the 39 hosts(76%). A rep-
resentative of classI is plottedin Figure2. Themaincharacteristics
of the classarethe following. The coverageis only slightly depen-
denton thenominaltime, increasingslightly for all predictorsasthe
nominal time increases.The MEAN predictortypically hasalmost
100%coverageandis closelyfollowed by the AR(16) andthenthe
LAST predictor. TheLAST andAR(16)predictorshave significantly
narrower spansthan the MEAN predictor, with AR(16) producing
slightly wider spansthanLAST.

We believe that the AR(16) is the bestpredictorfor this mostcom-
mon classof host. The coverageis nearly as good as MEAN and
is typically nearthe target 95% point, while LAST tendsto lag be-
hind, especiallyfor smallertasks. Furthermore,the spanof AR(16)
is typically half thatof MEAN andonly slightly wider thanLAST. In
mosthosts,then,a betterpredictorproducesmuchnarrower accurate
confidenceintervals.



(a) Coverage

(b) Span

Figure 2: Coverage and Span on Class I hosts

(a) Coverage

(b) Span

Figure 3: Coverage and Span on Class V hosts

Class V: This class,which we alsoreferto asthe“high load3” class,
consistsof a singlehost (2.5%). Figure3 plots the performanceof
thepredictorson thathostusingthesamemethodologyasbefore.In
termsof coverage,AR(16) is clearly the winner here,especiallyfor
mediumsizedtasks. It achievesits reasonablecoverage(the goal is
95%)by computingslightly largerconfidenceintervals thanMEAN.

LAST computesconfidenceintervals thatarefar too small,resulting
in abysmalcoverage.

Generalized results: In the following, we summarizeour conclu-
sionsbasedon theclass-by-classandotheranalysis.
(1) The RTA works: with almostevery load tracein our study, the
coverageof eithertheAR(16) or LAST predictoris very closeto the
target95%coverage.
(2) LAST and AR(16) producebetter coverageon heavily loaded
hosts: The LAST and AR(16) predictorsare betterable to “under-
stand”suchhostsandcomputeappropriatelywider confidenceinter-
valscomparedto MEAN.
(3) LAST andAR(16) producebetterspanson lightly loadedhosts:
For thosehostswhich have lower loadandvariability, theLAST and
AR(16) predictorsproducesignificantly narrower confidenceinter-
valsthanMEAN while still capturinganappropriatenumberof tasks
within their computedconfidenceintervals.
(4) AR(16)performsbetterthanLAST: Theconfidenceintervalscom-
putedusingAR(16) generallyincludemoreof their tasksthanthose
computedusingLAST. Using the AR(16) predictor, only five of the
tracesareat lessthan90%andonly onelessthan85%.UsingLAST,
9 arelessthan90%, while four arelessthan85%. This gain is due
to AR(16) predictorsproducingwider confidenceintervals on heav-
ily loadedhosts.Thereis alsoa correspondingperformancegainon
lightly loadedhosts,whereAR(16)producesnarrower confidencein-
tervals thanLAST becauseit is ableto appropriatelyrelax its cover-
ageevenmorethanLAST.
(5) Performanceis slightly dependenton thenominaltime: For very
small tasks,especiallythoseon theorderof themeasurementperiod
(1 second)or smaller, coverageis worsethanfor largertasks.For very
longtasks,weseeadeclinein performanceonsomehosts.Generally,
then,asthenominaltime increases,coverageimprovesslightly. Not
surprisingly, spansgrow with nominaltimes.

3. CONCLUSION AND FUTURE WORK
Weprovidedhereahigh-level descriptionof theRunningTimeAdvi-
sor, asystemfor predictingtherunningtimeof compute-boundtasks,
andsummarizedits performanceevaluation.We arecurrentlywork-
ing on a similar systemto predict communicationtimes. The goal
is to be able to predict, againas a confidenceinterval, how long it
will take to transfera givennumberof bytesbetweentwo hosts.We
are currently exploring the useof wavelet-basedmethodsto repre-
sent,compress,andpredict resourcesignalssuchashost load. We
alsoplanto extendour predictionwork to theapplication,providing
predictionsof resourcedemandaswell asresourcesupply.

4. REFERENCES
[1] P. A. Dinda.Thestatisticalpropertiesof hostload.Scientific

Programming, 7(3,4),1999.A versionof this paperis alsoavailableas
CMU TechnicalReportCMU-CS-TR-98-175.A muchearlierversion
appearsin LCR ’98 andasCMU-CS-TR-98-143.

[2] P. A. Dinda.ResourceSignalPredictionandIts Applicationto Real-time
SchedulingAdvisors. PhDthesis,Schoolof ComputerScience,Carnegie
Mellon University, May 2000.AvailableasCarnegie Mellon University
ComputerScienceDepartmentTechnicalReportCMU-CS-00-131.

[3] P. A. DindaandD. R. O’Hallaron.An extensibletoolkit for resource
predictionin distributedsystems.TechnicalReportCMU-CS-99-138,
Schoolof ComputerScience,Carnegie Mellon University, July 1999.

[4] P. A. DindaandD. R. O’Hallaron.Hostloadpredictionusinglinear
models.ClusterComputing, 3(4),2000.

[5] P. A. DindaandD. R. O’Hallaron.RealisticCPUworkloadsthroughhost
loadtraceplayback.In Proc.of 5th Workshopon Languages,Compilers,
andRun-timeSystemsfor ScalableComputers (LCR2000), May 2000.
To appear.


