
Do-Review-Redo
A CRITIQUE-BASED ALTERNATIVE TO HOMEWORK, EXAMS AND
GRADES

Outline
Critique-Based Continuous Assessment

Examples

Pedagogical Connections
Observations
◦ Support Tools
◦ Materials
◦ Student responses
◦ Scaling

The Model

Critique-Driven Courses
Course focuses on challenge problems, not lectures and exams
Students research, design and submit solutions.
Mentors review solutions, note flaws, point to relevant learning
materials.
Students re-do and resubmit.
Students move to next challenge only when no serious critiques
remain.
Assessment based on what gets accomplished, quality of final
submissions.

Critiquing
It all started when I got bored
of us having to give people,
every year, to king Minos of
Crete. You might think that's
not too bad, and so did I until
my dad told me that they were
fed to a terrible beast called a
minotaur. I thought I could go
and kill it if I went with the
people

It all started when I got bored
of us having to give people,
every year, to king Minos of
Crete. You might think that's
not too bad, and so did I until
my dad told me that they were
fed to a terrible beast called a
minotaur. I thought I could go
and kill it if I went with the
people

Teacher applies a
library of common
critiques, asks for
resubmission if non-
trivial problems exist

Do

Review

Re-do

A Student …
Begins with a challenge problem

◦ I like to offer a pool of challenges

◦ Constructs solution, using resources as needed
◦ Submits solution for review
◦ Receives critiqued solution
◦ Fixes and resubmits.
◦ Repeat until no more critiques

Repeat until end of course

A Mentor …
Annotates submissions with critiques and returns to student

Assesses student based on submission and critique history
◦Number of tasks done
◦Range of challenges engaged
◦Quality of submissions, e.g., lack of repeated important critiques

Grading
It all started when I got bored of us
having to give people, every year, to
king Minos of Crete. You might think
that's not too bad, and so did I until
my dad told me that they were fed
to a terrible beast called a minotaur.
I thought I could go and kill it if I
went with the people

Critique submissions,
don’t grade

It all started when I got bored of us
having to give people, every year, to
king Minos of Crete. You might think
that's not too bad, and so did I until
my dad told me that they were fed
to a terrible beast called a minotaur.
I thought I could go and kill it if I
went with the people

It was the cold seemingly endless
winter of 1947 in Paris , Latin
Quarter. . Sheets of snow put the
rest of the district in almost
complete obscurity; all but steeples
and tall spires were invisible, on
such a bleak day as this. The railway
station was a vast cavity

Before my arrival I was thrilled to
discover that I was to become a
member of C company, led by my
school-time friend Captain
Stanhope. Contrary to my earlier
enthusiasm, the atmosphere within
the dugout is morbid, the silence
only broken by the ever-upbeat
Trotter.

It all started when I got bored of us
having to give people, every year, to
king Minos of Crete. You might think
that's not too bad, and so did I until
my dad told me that they were fed
to a terrible beast called a minotaur.
I thought I could go and kill it if I
went with the people

It all started when I got bored of us
having to give people, every year, to
king Minos of Crete. You might think
that's not too bad, and so did I until
my dad told me that they were fed
to a terrible beast called a minotaur.
I thought I could go and kill it if I
went with the people

It was the cold seemingly endless
winter of 1947 in Paris , Latin
Quarter. . Sheets of snow put the
rest of the district in almost
complete obscurity; all but steeples
and tall spires were invisible, on
such a bleak day as this. The railway
station was a vast cavity

It all started when I got bored of us
having to give people, every year, to
king Minos of Crete. You might think
that's not too bad, and so did I until
my dad told me that they were fed
to a terrible beast called a minotaur.
I thought I could go and kill it if I
went with the people

It was the cold seemingly endless
winter of 1947 in Paris , Latin
Quarter. . Sheets of snow put the
rest of the district in almost
complete obscurity; all but steeples
and tall spires were invisible, on
such a bleak day as this. The railway
station was a vast cavity

Before my arrival I was thrilled to
discover that I was to become a
member of C company, led by my
school-time friend Captain
Stanhope. Contrary to my earlier
enthusiasm, the atmosphere within
the dugout is morbid, the silence
only broken by the ever-upbeat
Trotter.

Before my arrival I was thrilled to
discover that I was to become a
member of C company, led by my
school-time friend Captain
Stanhope. Contrary to my earlier
enthusiasm, the atmosphere within
the dugout is morbid, the silence
only broken by the ever-upbeat
Trotter.

The only bad thing is that we do not
have a crown, because your father
committed suicide and took it with
him. We are now making a new
crown, but it will not be ready until
after your coronation, so if you can
come up with any ideas of what to
use as a crown let me know.

Paper 1

Paper 1

Paper 1

Paper 1

Paper 1 Paper 2

Paper 2

Paper 2 Paper 3 Paper 3 Paper 4

Paper 3

Grade progress: tasks completed +
effort (number of submissions) +
quality (number of serious critiques)

C B AD

Critique-based Assessment
Combination of
◦ Challenges completed, their difficulty and diversity
◦ Effort displayed
◦ Quality of later initial submissions (absence of critiques)
◦ Critique history
◦ Which critiques repeatedly appear, which don’t
◦ Content and seriousness of repeated critiques

Critique Process

Exercises Submissions Critiques

Submit Critique

Assessment

Assessment based
on:
◦ Exercise history

◦ Content
◦ Difficulty
◦ Quality of first

drafts
◦ Critique history

◦ Content
◦ Seriousness
◦ Recurrence

Exercises

Submissions

Critiques

History of Development and Application
1997? – EECS 325 (AI Programming)
◦ Emailed submissions, freeware Windows clip

management tool for comments

2001 – EA-1 (Matlab, linear algebra)
◦ Dean Birge (McCormick)

2002 – EECS 325
◦ Browser-based critiquer replaces Windows clip

tool

2002 – Intro Java, Business ESL
◦ Cognitive Arts online courses for Columbia

University
◦ Proprietary web-based critiquer with

submission database

2006 – EECS 325, EECS 110 (intro
programming)
◦ Submissions database, student interface,

assessment interface added

2012 – Intro Web Development, and
Software Engineering
◦ Socratic Arts / XTOL online MS for Touro

University

2013 – MPD 405 (Software Project
Management), EECS 394 (Agile Software
Development)
◦ Case study critiquing

2013, 2015 – Intro Java
◦ Cascadia College

Browser front-end (no plug-
ins)
Access from Canvas via LTI
Role-aware access
• Faculty, TA see queue of

items to critique, history of
past submissions

• Students see list of
exercises, form to submit,
history of personal
submissions

Critiquing Tool

Critique
DB

Submission
DB

Critiquing
Tool

Submission Critiqued
Submission

Assessment
Tool

Assessment
Reports

Lessons Learned

Prompting matters

Data from Murphy paper

Winter
2006

Winter
2007

Winter
2008

Fall
2014

2007 vs
2006

2008 vs
2006

System Arch. Email Web site Web +
email

Class size 32 30 26 76

Submissions 1245 929 1371 2912

Critiques ? 2218 2906 8038

Avg # Subs / Student 39 31 53 38 20% ⬇ 35% ⬆
Avg # Exs / Student 21 15 28 20 26% ⬇ 37% ⬆

Critiquing informs pedagogy
From an email to a TA in 1999:
Important things I learned from the critiquing process:
◦ The unpredictability of novice mistakes
◦ The commonness of some mistakes
◦ The number of micro-skills implied by these mistakes

Critiquing informs pedagogy
Example: in C++, to change the sign of a number, e.g., -3 to 3, or 4 to
-4
◦ Correct, expected: – x
◦ Many students, not surprising: 0 – x
◦ Very common, unexpected: x – 2*x
◦ I’ve yet to find another CS professor who is aware that this occurs
◦ No code testing would uncover this. It works, it’s just silly.

Making Critiquing Feasible
Use structured submissions (forms can help)

Use standard problems (use many if copying is an issue)

Require automated learner-side critiquing tools (lint, Lisp critic, …,
spell / grammar / readability checkers, ..)
Sample – don’t critique everything, just the diagnostic parts

Refine and standardize critiques

Short is good
Shorter more focussed submission are easier to critique, easier to
have a dialog on

Students only resubmit those parts needing work, so later
submissions get shorter and shorter

Tool provides link to version trail, if needed

Focus on details
Broad thematic critiques are hard to apply, often debatable, and become
frustrating and ineffective when reapplied to resubmissions
◦ “Be more modular.” “Use clear names.”

Highly specific critiques are easy to apply, more objective, more easily
fixed. Big themes emerge from them.
◦ “Refactor code more than 6 lines or so into subfunctions.”
◦ “Refactor repeated code into common utility functions.”
◦ “Check-xxx” is an unhelpful name. Doesn’t say what happens after checking occurs”
◦ “This name is too generic. What kind of data does it contain?”
◦ [on a function name like “max-recursive”] “A function name should only need to say

what it does, not how it does it.”

Separate critiquing from helping
Move questions and objections to email or other channels

Reserve critique channel for “I think this is done”
◦ Supports use in assessment review
◦ Encourages repeated student self-evaluation and commitment

Critiques as transferrable pedagogy
EECS 325 Fall 2013, I was on leave

We hired an advanced PhD student from another school to teach the
course.

He voluntarily used the Code Critic throughout the course.
He used a printout of all my critiques for the year before to get a
baseline.

He got better CTECs than I do.

Critiquing with TAs
When EECS 325 reached 100 students in Fall 2014, I used a two-tier
critiquing approach:
◦ I critiqued initial submissions from each student for each exercise.
◦ TAs handled all follow-up submissions
◦ TAs referred problematic submissions to me

Challenges

Deadlines vs Progress
Do-Review-Redo enables, encourages learner-centered progress.

BUT

Other classes have due dates.
Due dates dominate. “Urgent vs important”

Every year, a few students come to my office in the last week of the
quarter, asking if it’s too late to start submitting exercises.

Student status report
Anonymous

Not a grade but a relative indication

Personal position highlighted

Always up to date

Being critiqued is no fun
One student for another course on modeling emotion in simulated
characters used EECS 325 as his storyline:
◦ Frustration Why doesn’t this #$@%@ code work!
◦ Joy Yay! It passes all the tests!
◦ Anticipation waiting to hear from professor
◦ Depression code comes back loaded with critiques

Class attendance plummets
Learning and progress are tracked individually.

Most of the real learning occurs during
◦ coding and problem solving
◦ review and resubmission

Lectures cover particularly tricky or broad topics but are clearly
optional, too soon for some, too late for others

A Tale of Two Courses

3
0

EECS 325: Intro AI
Programming

EECS 394: Agile Software
Development

Learn by doing

Software development

Teach by critiquing

Lectures? If I must

Both

How The Courses Work

3
1

EECS 325: Intro AI
Programming

EECS 394: Agile Software
Development

Individual submit solutions to
dozens of Lisp and AI coding
challenges

I critique their code and they re-
work and resubmit until the code is
free of serious issues

Teams iteratively develop 2 mobile
web apps, one for themselves, one
for a client

I meet weekly with and critique
each team's product and team
development processes

Individual submit coaching advice
to several case studies

I critique the coaching advice

EECS 325 Programming Sample Critiques

32

(defun horner (x &rest coeff)
(reduce #'(lambda (a &optional b)

0
(if (null b)

a
(+ b (* a x))))

coeff))

Variable names should say what a
variable contains. coeff does not
contain just one coefficient.

What do you
think that 0
does?

Can you avoid doing
an IF every iteration?

EECS 325 Programming Sample Critiques

33

(DEFUN BIN-SEARCH (OBJ VEC &KEY KEY (START 0) (END NIL) (MID NIL))
(COND ((ZEROP (LENGTH VEC)) NIL)

((OR (NULL END) (NULL MID))
(SETQ END (SET-END-VAL VEC END))
(BIN-SEARCH OBJ VEC :KEY KEY :START START :END END :MID (INIT-MID-VAL START END)))
((OR (> START END) (> MID END)) NIL)
((AND (NOT (NULL KEY)) (EQL OBJ (FUNCALL KEY (SVREF VEC MID)))) OBJ)
((AND (NOT (NULL KEY)) (< OBJ (FUNCALL KEY (SVREF VEC MID))))
(BIN-SEARCH OBJ VEC :KEY KEY :START START :END (1- MID) :MID (INIT-MID-VAL START (1- MID))))
((AND (NOT (NULL KEY)) (< OBJ (FUNCALL KEY (SVREF VEC MID))))
(BIN-SEARCH OBJ VEC :KEY KEY :START (1+ MID) :END END :MID (INIT-MID-VAL (1+ MID) END)))
((EQL OBJ (SVREF VEC MID)) OBJ)
((< OBJ (SVREF VEC MID))
(BIN-SEARCH OBJ VEC :KEY KEY :START START :END (1- MID) :MID (INIT-MID-VAL START (1- MID))))
(T (BIN-SEARCH OBJ VEC :KEY KEY :START (1+ MID) :END END :MID (INIT-MID-VAL (1+ MID) END)))))

(DEFUN SET-END-VAL (V E) (IF (NULL E) (1- (LENGTH V)) (1- E)))
(DEFUN INIT-MID-VAL (START END) (TRUNCATE (/ (+ START END) 2)))

You're passing
an argument
you don't
need.

See the table on page 64 for
standard keyword defaults. Note
especially the default for KEY.

The function passed in should
only need to be called at most
once per element. It might be
expensive.

Try to avoid
repeating
tests.

This is way more complicated
than necessary. Binary search
is a very simple algorithm.

The "usual
default" for :end is
NOT length - 1.

You don't need the subfunctions. A rule of
thumb is: define a function if its name is
clearer than the code it replaces. That
doesn't seem to apply here.

There's no need to
divide before calling
FLOOR, CEILING etc.

EECS 394 Agile Development Sample
Critiques

34

For how to start, first of all, you three should invest one hour
or two to get to know each other and share your strengths,
technical skills, preferences, values and expectations.
Knowing each other well, trust and respect for each other is
the first step to form a "jelled" team and a "jelled" team is
the key to success. After that, you should decide the
meeting time every week together based on each member's
schedule and preference, and create a team communication
platform to make everyone reachable and well informed of
everything. Also, your team should establish a shared
backlog document that you will keep working on through
the whole process of project development.

This is a laundry list of things to
do, not tailored advice.

What problems is this advice
trying to solve? Before someone
will listen to advice, they have
to believe there's a problem.

EECS 394 Agile Development Sample
Critiques

35

Dear Chet,
Your team is rightly demanding a single MVP for the
project. It is expensive for both you and your client, in
terms of money, effort and time, to constantly keep
changing the requirements of the app. It is also possible
that the client actually has one vision for the app - and
its MVP - and is simply not able to articulate that in a
correct manner to the developers. Have your client sit
down with your developers and yourself and clearly
identify the MVP of her product. Clearly define priorities
for user stories and maintain one shared version of truth
on the backlog. Good luck. I hope things change for the
better.

What agile principle supports
this advice?

This is aspirational not
operational. You give a goal but
not how to achieve it.

What do you see that suggests
this is the case?

What works, what’s a struggle

36

EECS 325: Intro AI
Programming

EECS 394: Agile Software
Development

Critiquing much of the code is
(relatively) easy to automate, using
classic pattern matching
techniques

This requires analyzing free-form
text and group conversations to
detect and causally explain team
development issues, then
persuading the teams to try
alternative behaviors.

Why this has worked fine Why this remains a struggle

Much of the learning comes just
from the effort involved in writing
working code

Most of the learning comes from
pointing out that everything teams
think they know is wrong

Pedagogical
Connections
CRITIQUING AND THE LEARNING SCIENCES

Themes
competency and mastery

continuous situated assessment

test-driven learning
grades vs critiques

critiques vs rubrics

Critiques and Learning
Critiques aren’t grades.

Critiques say what’s wrong and why.

Critiques tie principles to practice.
Critiques are just-in-time links to lessons.

Critiques support many right answers.

Critiques support detailed assessment.

Student Advantages
In-depth, personalized, private feedback (“No one ever looked at my
code before!”)

Effort focused on weakest areas

Stronger students get advanced feedback

Rubrics Critiques

Performance descriptions are combinations of
contradictory ambiguously defined issues

Critiques are specific, separate, and consistent

Reviewer must make repeated borderline
judgment calls, combined with a simple
weighted sum

Reviewer decide if submission needs re-work

Final grade based on weighted average of the
subjective submission scores

Final grade based on visible objective metrics:
number of tasks done, submissions sent, and
history of critiques

Criteria, performance descriptions, and scoring
must be fully defined and published in advance

Criteria and progress metrics must be defined
and published in advance but specific critiques
can be added and refined over time

New instructors must learn how to interpret
criteria such as “a strong sense of both
authorship and audience”

New instructors can review in-context examples
of critiques given for multiple submissions for
each task

Rubrics vs Critiques

	Do-Review-Redo
	Outline
	The Model
	Critique-Driven Courses
	Critiquing
	A Student …
	A Mentor …
	Grading
	Critique-based Assessment
	Critique Process
	Assessment
	History of Development and Application
	Critiquing Tool
	Slide Number 14
	Lessons Learned
	Prompting matters
	Critiquing informs pedagogy
	Critiquing informs pedagogy
	Making Critiquing Feasible
	Short is good
	Focus on details
	Separate critiquing from helping
	Critiques as transferrable pedagogy
	Critiquing with TAs
	Challenges
	Deadlines vs Progress
	Student status report
	Being critiqued is no fun
	Class attendance plummets
	A Tale of Two Courses
	How The Courses Work
	EECS 325 Programming Sample Critiques
	EECS 325 Programming Sample Critiques
	EECS 394 Agile Development Sample Critiques
	EECS 394 Agile Development Sample Critiques
	What works, what’s a struggle
	Pedagogical Connections
	Themes
	Critiques and Learning
	Student Advantages
	Rubrics vs Critiques

