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Abstract 

This paper introduces a technique for participation in 
certain kinds of social interactions. By modeling their 
temporal structure explicitly using a hierarchy of concurrent 
Markov processes, we can track the development of the 
interaction robustly, and drive it forward in a coherent 
fashion. The approach is computationally inexpensive, and 
exhibits desirable performance.  

Introduction 
Multiplayer games are filled with social engagement � 
players treat each other not merely as abstract game 
characters, but as living, social, emotional human beings. 
They converse and deal with each other just as they would 
in real life. But in trying to replicate these engagements in 
computer-controlled characters, we immediately run into 
numerous problems: conversations that guide human 
interactions rely on tacit social conventions and 
assumptions about the participants. This makes social 
interaction notoriously complex, ambiguous, and noisy. 
 
In this work we will focus on a mechanism that attempts a 
range of such engagements believably, efficiently, and in 
spite of the lack of complex language processing skills. 
We accomplish this by focusing in particular on well-
structured interactions. Certain kinds of interactions 
exhibit coherent temporal structure, though manifested 
through ambiguous language; we expect modeling this 
structure explicitly will provide background knowledge to 
the system that will be sufficient to disambiguate the 
language, and drive the interaction coherently forward.  
 
In the following discussion we introduce hierarchical 
interaction protocols, a technique for modeling some of 
these more constrained social interactions. Under this 
approach, explicit models of interaction produce behavior 
that is both robust and very inexpensive computationally. 
This approach is currently being used to implement a 
language-based social interaction game, detailed below. 
The system follows structured conversation, exhibits 
desirable performance characteristics, and consumes a 
trivial number of CPU cycles. 

Motivating Example 
The Breakup Conversation is a simulation �game� 
currently being developed using hierarchical interaction 
protocols. We will use it to illustrate the interaction 
technique detailed in this paper. 
 
The Conversation is an exploration of the dialogue that 
signals the end of a romantic relationship. The player 
connects with the simulated significant other over internet 
messenger, and the goal is to perform a successful 
breakup. Figure 1 presents an example.  

 
Alice: can we talk? 
Bob:   :) 
Bob:   ok 
Alice: it's kinda important 
Bob:  okay 
Alice: it's about us 
Bob:  well 
Bob:  i've got to go back to work 
Alice: i don't know how to break this to you 
Bob:  no! 
Alice: but i don't think this is working out 
Bob:  no we're not talking about this right now 
Alice: please 
Bob:  why are you doing it like this 
Alice: i'm sorry 
Bob:  what does that even mean? 
Bob:  it's because i got no job huh? 
Alice: i didn't mean to do it like this 
Bob:  you dislike that i'm unemployed 
Bob:  isn't it true 
Bob:  but anyway 
Alice: no that's not true 
... 
Bob:  please, honey, can you give me  
      another chance? 
Alice: no i don't think so 
Bob:  you're just being cruel 
Alice: i didn't mean to 
Bob:  well then 
Alice: look  
Bob:  you think i'm not what you were looking for 
Alice: i'm sorry 
Bob:  i don't believe it 
Bob:  can you give me another chance? 
Alice: that's not working out 
Bob:  that was such a mean-spirited thing  
      to say to me 

 
 

Figure 1.  Conversation excerpt from a game prototype.  
Computer character �Bob� shows movement from initial 

problem intimation, through panic and refusal, to attempting 
to guess what the problem is; a little later it engages several 
emotional maneuvers. The Breakup Conversation, version 

from May 2004. 



The player begins by selecting parameters for the computer 
character: name, gender, caricatured personality type, and 
one of the possible relationship contexts. Then a chat 
window opens, and the player tries to successfully get 
through the breakup conversation. The interaction takes 
place entirely via typed English text, in real time, and takes 
the player on an exploration of breakup space.  
 
The computer will have the knowledge of some patterns 
typical of a breakup conversation and the ways of getting 
through them, inspired by Berne (1968) as well as informal 
observation; these include the �it�s not you it�s me� ritual, 
the �why are you doing this to me� blame, the refusals to 
discuss issues, and other ways in which people panic, 
reason, plead, lay guilt, and so on. The character�s settings 
determine which patterns and transitions are preferred. The 
conversation ends once the computer character is 
successfully persuaded that the relationship is over.  
 
The overall interaction is modeled by decomposing 
breakup conversations into a hierarchy of simpler 
protocols, corresponding to the individual components. 
This composite representation tracks conversation 
progression on multiple levels simultaneously. The 
highest-level protocols coordinate general �stages� of a 
breakup � e.g. reasoning with the player about the breakup, 
making them feel guilty about it, and so on. Below them 
are protocols for getting through particular stages � for 
example, the guilt-laying stage will decompose into a 
number of strategies involving emotional blackmail and 
pleading for pity. At the bottom of the hierarchy we finally 
have very specific, low-level protocols: reacting to the 
player�s evaluations, reacting to an apology, offering 
apology, making a particular emotional blackmail 
maneuver, recognizing a rationalization, recognizing a 
breakup reason, trivializing the reason, rejecting the 
reason, and so on. 

Implementation 
The technique works by modeling the interaction as a 
hierarchy of partially observable Markov decision 
processes (POMDPs) that continually evaluate the 
situation and drive it forward.  
 
The overall system works as follows. Because we can 
never observe directly where the conversation is at any 
given moment, we have to maintain multiple guesses about 
the ongoing situation, represented as a collection of 
POMDPs. A single partially-observable Markov decision 
process is a probabilistic state space that estimates the 
position of a particular protocol, and suggests actions 
(illustrated in figure 2).  
 
Each state is annotated with communicative expectations �
for example, specifying that at the beginning of a greeting 

one person should say a familiar greeting phrase, the other 
should respond, then one of them can ask about the health 
of the other, and so on. 

 
At every iteration of the control loop, incoming text is 
treated as communication evidence, and categorized using 
shallow parsing and pattern matching. Then the history of 
observed evidence is taken into account, and the current 
state of each process is reassessed. The result is an updated 
belief of where we are in the overall situation. Finally, the 
processes suggest what actions should be performed based 
on their new beliefs.  
 
In this manner, even though the state of the interaction 
cannot be observed directly, it can be estimated based on 
the history of communication. Unfortunately, our 
observations will be uncertain, because language is noisy 
and ambiguous. In practice, however, this turns out to be 
quite satisfactory � the hierarchical, probabilistic 
representations helps us cope with that. 

victim panics 0.04 victim panics

bt :     0.04

evidence :
provided-breakup-reason

action:
exclamation-action

victim calms down 0.14

victim explains 0.12

victim continues 0.68

player answers 0.02

PANIC PROTOCOL

 
Figure 2. State space example. bt is a variable that holds 

position belief for each state. Each state includes evidence 
and action expectations. 
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The system architecture is roughly as presented in figure 3. 
Of course, the diagram is simplified; the major point is that 
data flows through the system in a simple, single pass, and 
a single iteration of the control loop is therefore quite 
straightforward. 

Control Loop 
The system continually recomputes the position belief of 
all processes, reassessing the overall situation and 
suggesting actions to be performed.  
 
A single iteration performs the following three steps: 
 
1. Communicative act categorization. This first step 
categorizes the incoming utterance into a number of 
possible communicative acts: assistance operations (such 
as request, or help), social standing operations (insult, 
praise), speech acts, particular conversational moves, and 
others as necessary for given situation. 
 
Categorization is done mainly with shallow parsing and 
pattern matching, in order to guarantee fast performance. 
Simple parsing suffices thus far, thanks to the rich context 
model provided by the probabilistic hierarchy; if this turns 
out to be insufficient, a more robust recognition 
mechanism can always be brought in to replace it. This 
leads to reasonable speed and robustness of the system, 
although more subtle expressions are, of course, 
completely lost.  
 
Categorization produces a value at, specifying what 
communicative act or acts were observed at the given time. 
 
2. Each POMDP tracks situation progress. After 
categorization, the system tries to estimate the participants� 
current position in each process. The state spaces are 
probabilistic, therefore position in the state space is really a 
probability of position. We call this a position belief, 
designated as bt, distributed over all states. 
 
Computing position belief is discuss briefly here, and 
covered in greater detail in the appendix. 
 
The interaction designer specifies the state space for the 
given POMDP, including the probabilistic space transition 
function denoted as τ (s, s�) for a transition from s to s�.1 
The designer also specifies communication expectations 
for each state, as a probabilistic relation between states and 
communicative acts, denoted as e (s, a). 
                                                 
1 Quick note on notation: probability distributions are written in 
the mathematical functional notation � for example, the belief 
probability for a given state s at time t would be denoted bt(s). Of 
course, this is not to imply they should be implemented as actual 
function calls. An efficient implementation represents all those 
distributions as matrices or vectors: bt (s) in C++ ends up as an 
array b[s], τ (s,s�) becomes t[s,s�], etc. 

Finding the new position means recalculating the position 
belief distribution over all states: bt(s) for every state s in 
state space S. Given that we have bt-1(s), the belief from 
last iteration, current belief is calculated as follows: 
 )(sbt  ∑

∈
−=

Ss
ititt

i

sbssasec )(),(),( 1τ  

This can be understood as follows. The probability of 
being at some particular state s is: the probability of having 
been at some neighboring state (bt-1) in the previous clock 
tick, times the probability of having transitioned (τ), added 
together over all neighboring states, summed and 
multiplied by the evidence (e) for being at the current state 
given what we�ve observed. ct is merely a normalization 
constant, to make sure belief over all states adds up to one. 
Details of this formula are provided in the appendix. 
 
All of these elements are very easily computed. Transition 
function τ and previous belief distribution bt-1 are a matter 
of lookup, and e is specified at design time, although 
finding the value of one of its inputs requires simple 
language processing. So the computation above can be 
represented as a sequence of vector operations (potentially 
using sparse representations), rendering the position belief 
calculations extremely fast.  
 
3. Each POMDP suggests action production. Having 
found present location, action production then becomes 
very simple � in this case, implemented as template-based 
text generation. Based on the current belief distribution, 
each process suggests an action. All the actions are 
aggregated and arbitrated, using a mechanism such as a 
winner-take-all rule. 

Performance 
The simulation game has been in development since 
January, and is not yet complete. More details will be 
presented at the workshop; however, even just the 
intermediate results should prove interesting. 
 
The engine itself is written in C++. Processes are defined 
in a custom definition language, which a Lisp-based 
engine converts into highly efficient C++ code for the 
interaction processes. This code gets compiled, along with 
the engine, into a stand-alone DLL. Separately, a third-
party parser (the Link Parser, see Sleator and Temperly, 
1991) is used for utterance processing, also as a separate 
DLL. Finally, the game itself is a GUI wrapper around 
both libraries.  
 
Processing time for the engine is shown in figure 4, based 
on a number of tests on a 1.8GHz Pentium 4. The figures 
include parsing, processing, and text generation, but 
exclude user interface and game-specific elements. Input 
parsing and preprocessing takes roughly 0.01 second plus 
0.003 second per word (with some variation). The rest of 
the system (state estimation and action generation, which 



are performed independently of input processing) take less 
than 0.001 second per iteration on average, and therefore 
do not even figure in performance calculations.  

System Behavior 
The hierarchical model introduces multiple levels of 
representation of the same phenomenon, and therefore 
increases redundancy � even if some particular process 
loses track of the interaction, its parents retain broad 
understanding of what goes on, and can cope with the 
situation. This allows for gentle performance degradation 
at edge of competence, and steering the conversation back 
to familiar grounds.  
 
The concurrent activation of multiple protocols means that, 
if we can decompose an interaction into independent 
components, those can be implemented cheaply as separate 
processes. In practice, we find that this decomposition is 
possible for a number of desirable interactions. 
 
Stochastic modeling of these processes allows the system 
to deal robustly with noisy and ambiguous inputs. 
Informally speaking, communicative act categorization 
present the system with multiple guesses about the player�s 
utterance, and stochastic processes maintain numerous 
concurrent hypotheses about what goes on in the 
interaction. Communicative acts then help collapse the 
processes into �correct� positions, and do so even if the 
significance of player�s input wasn�t completely 
understood. This aids in graceful recovery from confusing 
situations. 
 

The result is an interaction that is significantly more 
complex than standard deterministic finite-state (or 
pattern-matching) techniques, without a significant 
increase in processing cost. The game manifests long-term 
consistency, including coherence within a particular 
breakup �stage�, and coherence in transitioning between 
stages.  
 
Finally, modeling the hierarchy as a network of concurrent 
POMDPs allows for very efficient implementation. 

Related Work 
This project is closely related to work on probabilistic 
finite-state dialogs. These techniques avoid complex 
processing by collapsing both the conversation and the 
task at hand into a unified finite state space, usually 
represented as POMDPs (for example, Singh, Litman, 
Kearns, and Walker, 2002). Hierarchical POMDPs are a 
great extension to this approach (for example, Roy, Pineau 
and Thrun, 2000), and subject of active research.  
 
The approach is also indebted to the believable agents 
research, such as by the Oz group (for an overview, see 
Bates et al., 1991) or, more recently, Mateas and Stern 
(2002).  
 
Chatterbots with minimal state representation should also 
be mentioned, such as Alice (Wallace, 2004) and 
MegaHAL (Hutchens and Alder, 1998). They occupy a 
similar niche but, unlike this project, do not model long-
term structure of conversation. 

Appendix: POMDP Details 
POMDP Description. Let },,{ 1 maaA K=  be the set of 
discrete actions that can be performed by participants, and 
let each probabilistic interaction be a finite-state process 
description consisting of:  

• },,{ 1 nssS K= , the set of discrete states,  
• ]1,0[: →× SSτ , the state transition probability, 

where )|'()',( sspss =τ , 
• ]1,0[: →× ASe , the probability of observing 

some expected action a at the state s, or: 
)|(),( sapase = , and 

• ]1,0[: →× ASπ , the probability of performing 
the action a at state s. 

• ]1,0[: →×Ζ Sb , the position belief, allowing for 
the shorthand: ),()( stbsbt = . 
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Figure 4. System processing time per iteration. Performance 
is roughly linear with input size, with acceptable variation. 
Current system runs one iteration per second. The Breakup 

Conversation, version from May 2004. 



We require of the transition probability that 

∑
∈

=∈∀
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State Estimation. To find the agent�s position in the state 
space, bt is calculated using popular state estimation 
techniques for hidden Markov models (Jelinek 1997, Fox 
et al. 2001).  
 
Probability of being in a given state at time t is dependent 
solely on the sequence of actions leading up to t: 
 )(sbt  ),,,,|( 001 saaasp tt K−=   
This probability is unknown, but assuming independence 
of observed actions, we can explore the Bayes rule to 
transform the above equation: 
 ),,...,|(),,...,,|()( 001001 saaspsaasapcsb ttttt −−=  
Here tc  is our denominator of Bayes� rule, and a 

normalization factor to ensure that ∑
∈

=
Ss

t sb 1)( . 

Markov assumption is then used to simplify the result. 
Details are omitted due to space constraints (see Jelinek, 
1997), but using the Markov assumption and total 
probability theorem we arrive at the following: 
 )(sbt  ∑

∈
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Or, in previously defined notation: 
 )(sbt  ∑

∈
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Given probabilistic state estimation, recognizing which 
processes are engaged becomes trivial. It simply requires a 
special state to represent disengagement. Let each 
interaction include a unique initial state s0, and 
corresponding transitions. The state space will be treated 
as disengaged when p (s0) = 1. Creating rules for engaging 
or disengaging the entire state space then becomes a matter 
of specifying appropriate values of e (s0, A), τ (s0, S), and τ 
(S, s0).  
 
Action Production. Each state is annotated with actions to 
be performed, including communication and self-
adjustment. State-based policy π determines which action 
will be produced. For many states and actions it can be the 
case that π (s, a) = e (s, a). However, due to the complex 
nature of these interactions, as well as complex aesthetic 
requirements of entertainment products, we do not intend 
for the policy to be learned automatically. 
 
Deictic Representation. One element had not been 
mentioned before. The system uses a semantic network to 
store additional knowledge about the setting, and deictic 
markers (Agre and Chapman, 1987) to coordinate between 

probabilistic processes and the network. Deictic markers 
extend the essentially propositional POMDPs, allowing for 
limited relational representation. Unfortunately, due to 
space constraints, this is as much as we�re going to say 
about the semantic network or deixis here. 
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