
Random Testing in 321

1

Test Cases So Far

Each test relates a particular input to a particular
output.

(test (bound-ids
(with 'x (id 'y) (id 'x)))
'(x))

(test (binding-ids
(with 'x (id 'y) (id 'x)))
'(x))

2

Property-based Testing

But we can only write so many tests by hand.

To find additional bugs, we can automate testing.

We start with what we hope is a fact about our
program.

For example,

“If bound-ids says 'x is bound,
then binding-ids says 'x is binding.”

3

Property Violation

If we can find some WAE for which the property
doesn’t hold ...

(define a-WAE ...)
(bound-ids a-WAE) ; ⇒ '(x)
(binding-ids a-WAE) ; ⇒ '()

... we’ve found a bug.

4

Property Testing

We can test this property in the usual style.

; bound=>binding? : WAE -> boolean
; checks if bound ids are also binding
(define (bound=>binding? e) ...)

(test (bound=>binding? (id 'x))
true)

(test (bound=>binding?
(with 'x (num 0) (id 'x)))
true)

Expected result is always true, so if we had lots of
WAEs, then we’d have lots of tests.

5

Automated Property Testing

Write a program to generate test inputs!

6

Random WAEs

; random-WAE: -> WAE
(define (random-WAE)
 (case (random 5)
 [(0) (num (random-nat))]
 [(1) (id (random-symbol))]
 [(2) (add (random-WAE) (random-WAE))]
 [(3) (sub (random-WAE) (random-WAE))]
 [(4) (with (random-symbol)

(random-WAE)
(random-WAE))]))

Watch out – that code is buggy.... (read on for why)

7

Random WAEs

; random-nat: -> nat
(define (random-nat)
 (case (random 2)
 [(0) 0]
 [(1) (add1 (random-nat))]))

; random-symbol: -> symbol
(define (random-symbol)
 (random-elem '(x y z a b c)))

; random-elem: (listof X) -> X
(define (random-elem xs)
 (list-ref xs (random (length xs))))

8

Generation Strategy

To build a WAE,

1/5 of the time, build a number

1/5 of the time, build a symbol

3/5 of the time, first build two more WAEs

9

Expected Progress

On average, we “reduce” the problem from

Generate 1 WAE.

to

Generate 1.2 WAEs.

since 1.2 = (2/5)*0 + (3/5)*2

10

Height Bound

Limit WAE size by bounding tree height.

; random-WAE/b: nat -> WAE
(define (random-WAE/b h)
 (case (random (if (zero? h) 2 5))
 [(0) (num (random-nat))]
 [(1) (id (random-symbol))]
 [(2) (add (random-WAE/b (sub1 h))

(random-WAE/b (sub1 h)))]
 [(3) (sub (random-WAE/b (sub1 h))

(random-WAE/b (sub1 h)))]
 [(4) (with (random-symbol)

(random-WAE/b (sub1 h))
(random-WAE/b (sub1 h)))]))

(Alternatively, tweak weights.) 11

Property Implementation

; bound=>binding: WAE -> boolean
(define (bound=>binding e)
 (sublist? (bound-ids e) (binding-ids e)))

; sublist?: (listof X) (listof X) -> boolean
; Expects xs and ys to be sorted and have no dups.
(define (sublist? xs ys)
 (cond [(null? xs) #t]

[(null? ys) #f]
[(equal? (car xs) (car ys))
(sublist? (cdr xs) (cdr ys))]
[else (sublist? xs (cdr ys))]))

12

Running Tests

; test-bound=>binding: nat nat -> (or 'passed WAE)
(define (test-bound=>binding size attempts)
 (if (zero? attempts)

'passed
(let ([test-input (random-WAE/b size)])
 (if (bound=>binding test-input)

(test-bound=>binding
size
(sub1 attempts))
test-input))))

(test-bound=>binding 5 1000)

13

HW2 Test Results

We ran random tests on last year’s HW2 submissions.

Received 99 submissions

Tested 6 properties

Found a bug in 53 out of those 99 submissions

14

Interpreter Properties

• Interpreter does not crash

• Produces same result as another implementation (e.g.,
DrRacket)

• Type checker accurately predicts result (later)

• Program equivalences hold

15

With Elimination Example

For example, we should be able to replace a with with
a new function.

{with {x {+ 7 2}}
 {+ x x}}

{deffun {f x}
 {+ x x}}
{f {+ 7 2}}

16

With Elimination Rule, an Attempt

In general,

{...
{with {an-id a-wae}

another-wae}
...}

17

With Elimination Rule, an Attempt

In general,

{...
{with {an-id a-wae}

another-wae}
...}

{deffun {new-id an-id}
 another-wae}
{...
{new-id a-wae}
...}

18

With Elimination Rule, an Attempt

In general,
Different free variables!

{...
{with {an-id a-wae}

another-wae}
...}

{deffun {new-id an-id}
 another-wae}
{...
{new-id a-wae}
...}

19

Rule Example

{with {x {+ 2 7}}
 {with {y {+ x x}}
 {+ x y}}}

{deffun {f y}
 {+ x y}}
{with {x {+ 2 7}}
 {f {+ x x}}}

20

Rule Example

{with {x {+ 2 7}}
 {with {y {+ x x}}
 {+ x y}}}

{deffun {f y}
 {+ x y}}
{with {x {+ 2 7}}
 {f {+ x x}}}

bound

free

21

With Elimination, Fixed

Pass free variables of another-wae as arguments.

{...
{with {an-id a-wae}
 another-wae}
...}

{deffun {new-id an-id
id1 ...}

 another-wae}
{...
{new-id a-wae

id1 ...}
...}

where

(equal?
(free-ids another-wae)
(list id1 ...))

22

Rule Example

x becomes a parameter of f

{with {x {+ 2 7}}
 {with {y {+ x x}}
 {+ x y}}}

{deffun {f y x}
 {+ x y}}
{with {x {+ 2 7}}
 {f {+ x x} x}}

23

