
What are type rules?

Γ e1 : num Γ e2 : num

Γ {+ e1 e2} : num

An example - the rule for +

1

What are type rules?

Γ e1 : num Γ e2 : num

Γ {+ e1 e2} : num

An example - the rule for +

• This is just one of a set of inference rules.

• Together the set of rules define the type judgment,
which is a relation that assigns types to expressions.

2

What are type rules?

Γ e1 : num Γ e2 : num

Γ {+ e1 e2} : num

An example - the rule for +

• This is just one of a set of inference rules.

• Together the set of rules define the type judgment,
which is a relation that assigns types to expressions.

• Fine, but what does that mean...

3

Inference rules

A B

C

The general form of a inference rule

4

Inference rules

A B

C

The general form of a inference rule

• A and B are premises (not necessarily two of them)

• C is the conclusion

5

Inference rules

A B

C

The general form of a inference rule

• A and B are premises (not necessarily two of them)

• C is the conclusion

• This is a rule, which says:

• If I know A and B, then I can conclude C

6

Inference rules

A B

A ∧ B

An example — logical “and”

7

Inference rules

A B

A ∧ B

An example — logical “and”

• If I know A, and I know B, then I can conclude A ∧ B

8

Inference rules

A B

A ∧ B

An example — logical “and”

• If I know A, and I know B, then I can conclude A ∧ B

• How would I know A and B?

9

Inference rules

A B

A ∧ B

An example — logical “and”

• If I know A, and I know B, then I can conclude A ∧ B

• How would I know A and B?

• I used some rule to conclude they were true

10

Inference rules

A B

A ∧ B

An example — logical “and”

• If I know A, and I know B, then I can conclude A ∧ B

• Some other ∧ rules:

A ∧ B

A

A ∧ B

B

11

Inference rules

A B

A ∧ B

An example — logical “and”

• If I know A, and I know B, then I can conclude A ∧ B

A ∧ B

A

A ∧ B

B

• Add some more rules and you have a system for
deciding the truth of logical sentences

12

A TFAE Rule

Γ e1 : num Γ e2 : num

Γ {+ e1 e2} : num

13

A TFAE Rule

Γ e1 : num Γ e2 : num

Γ {+ e1 e2} : num

One of a set of rules that define the type judgment

Γ e : τ

14

A TFAE Rule

Γ e1 : num Γ e2 : num

Γ {+ e1 e2} : num

One of a set of rules that define the type judgment

Γ e : τ

• Which means...

• With the type bindings in Γ, I can conclude that e has
the type τ

15

A TFAE Rule

Γ e1 : num Γ e2 : num

Γ {+ e1 e2} : num

One of a set of rules that define the type judgment

Γ e : τ

• Which means...

• With the type bindings in Γ, I can conclude that e has
the type τ

• Γ is the type environment and is just a map from <id>
to τ (type)

16

TFAE Rules

Γ <num> : num [... <id>←τ ...] <id> : τ

Γ true : bool Γ false : bool

Γ e1 : num Γ e2 : num

Γ {+ e1 e2} : num

Γ e1 : bool Γ e2 : τ0 Γ e3 : τ0

Γ {if e1 e2 e3} : τ0

Γ[<id>←τ1] e : τ0

Γ {fun {<id> : τ1} e} : (τ1 → τ0)

Γ e0 : (τ1 → τ0) Γ e1 : τ1

Γ {e0 e1} : τ0

17

Type derivations

1 : num 2 : num

{+ 1 2} : num 3 : num

{+ {+ 1 2} 3} : num

• We can conclude that an expression has some type if
we can come up with a derivation using the type rules.

18

Type derivations

1 : num 2 : num

{+ 1 2} : num 3 : num

{+ {+ 1 2} 3} : num

• We can conclude that an expression has some type if
we can come up with a derivation using the type rules.

• Great, but given some expression, how can we find the
right derivation, and its type

19

Type derivations

1 : num 2 : num

{+ 1 2} : num 3 : num

{+ {+ 1 2} 3} : num

• We can conclude that an expression has some type if
we can come up with a derivation using the type rules.

• Great, but given some expression, how can we find the
right derivation, and its type

• And what if it doesn’t have a type...

20

Finding a type

Γ e : τ

Let’s try to find a type for this expression

[] {if true {+ 1 2} 3} : τ ?

21

Finding a type

Γ e : τ

Let’s try to find a type for this expression

[] {if true {+ 1 2} 3} : τ ?

• What is the type of {if true {+ 1 2} 3}?

• Is there some τ that will satisfy the type judgment?

22

Finding a type

Γ e : τ

Let’s try to find a type for this expression

[] {if true {+ 1 2} 3} : τ ?

Let’s try a rule:

Γ e1 : num Γ e2 : num

Γ {+ e1 e2} : num

23

Finding a type

Γ e : τ

Let’s try to find a type for this expression

[] {if true {+ 1 2} 3} : τ ?

Let’s try a rule:

Γ e1 : num Γ e2 : num

Γ {+ e1 e2} : num

This one won’t work (the expressions don’t match)...

24

Finding a type

Γ e : τ

Let’s try to find a type for this expression

[] {if true {+ 1 2} 3} : τ ?

Try again:

Γ e1 : bool Γ e2 : τ0 Γ e3 : τ0

Γ {if e1 e2 e3} : τ0

25

Finding a type

Γ e : τ

Let’s try to find a type for this expression

[] {if true {+ 1 2} 3} : τ ?

Try again:

Γ e1 : bool Γ e2 : τ0 Γ e3 : τ0

Γ {if e1 e2 e3} : τ0

This works, but we still don’t have a full derivation...

26

Finding a type

Γ e : τ

Let’s try to find a type for this expression

[] {if true {+ 1 2} 3} : τ ?

Try again:

Γ e1 : bool Γ e2 : τ0 Γ e3 : τ0

Γ {if e1 e2 e3} : τ0

So we have to try again...

27

Finding a type

Γ e : τ

Let’s try to find a type for this expression

[] {if true {+ 1 2} 3} : τ ?

Γ e1 : bool Γ e2 : τ0 Γ e3 : τ0

Γ {if e1 e2 e3} : τ0

• In general, we are stuck doing an expensive search
where we try every rule for every expression (with
backtracking).

28

Finding a type

Γ e : τ

Let’s try to find a type for this expression

[] {if true {+ 1 2} 3} : τ ?

Γ e1 : bool Γ e2 : τ0 Γ e3 : τ0

Γ {if e1 e2 e3} : τ0

• In general, we are stuck doing an expensive search
where we try every rule for every expression (with
backtracking).

• But actually the type rules have some nice properties,
so things aren’t really that difficult...

29

TFAE Rules

Γ <num> : num [... <id>←τ ...] <id> : τ

Γ true : bool Γ false : bool

Γ e1 : num Γ e2 : num

Γ {+ e1 e2} : num

Γ e1 : bool Γ e2 : τ0 Γ e3 : τ0

Γ {if e1 e2 e3} : τ0

Γ[<id>←τ1] e : τ0

Γ {fun {<id> : τ1} e} : (τ1 → τ0)

Γ e0 : (τ1 → τ0) Γ e1 : τ1

Γ {e0 e1} : τ0

30

Properties of TFAE types

Γ e : τ

• There is only one rule that applies to any TFAE
expression

31

Properties of TFAE types

Γ e : τ

• There is only one rule that applies to any TFAE
expression

• So there is only one (possible) type derivation for any
expression

32

Properties of TFAE types

Γ e : τ

• For any rule, Γ and e always determine τ

33

Properties of TFAE types

Γ e : τ

• For any rule, Γ and e always determine τ

• Think of Γ and e as inputs — they give us the
necessary information for recursive calls (premises).

• Think of τ as an output — the premises give us what
we need to know to construct the result type

34

Properties of TFAE types

Γ e : τ

• For any rule, Γ and e always determine τ

• Think of Γ and e as inputs — they give us the
necessary information for recursive calls (premises).

• Think of τ as an output — the premises give us what
we need to know to construct the result type

• So we can easily turn the type judgment into a function:

;
;

type-check Γ e -> τ

35

