322 Compilers: Assignment 1af
Test Cases for a Tiger Parser

Design (at least) 25 passing and 5 failing test cases for parsing Tiger expressions. For each passing test
case, hand in two files, one called file.tig containing a tiger program that should parse along with file.sxp
showing how it parses (according to the left-hand column below). For each failing test case, hand in one
file called file. tig containing input the parser should reject and a file. sxp file containing #illegal.

Submit a single zip file containing your test cases in a directory called 1a.

Parsed Tiger expressions:
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(record id ---)
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relop / +/ -/ *//
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a series of digits

a string, in any valid PLT
Scheme string notation; see
http://docs.plt-scheme.org
for details, e.g., "abc" or

) "two\nlines"
id «— a series of letters, numbers, and

underscores that begins with a
letter
Use (call-with-input-file "file.sxp" read) in
PLT Scheme to be sure your exps are well-formed.
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Changes to Tiger from the text:
e Omit function declarations.
e Omit function calls from expressions.
e Change the two-arm’d if to: when exp do exp

e Add a new keyword before record creation and
array creation, e.g.,
let type t = {int,int} in new t {1,2} end

e Ignore the \"c escapes in strings

e The “f” escapes in strings should only contain
newlines, tab characters, return characters and
spaces, i.e., ASCII codes 9, 10, 13, and 32.

e let expressions with no expressions in the body
should be parsed as if they had () in the body;
with two or more expressions should be parsed
with a begin expression in the body.

e The expression

if 1 then 2 else 3 + if 4 then 5 else 6
is illegal, but adding parens should make it
parse, i.e:

if 1 then 2 else 3+(if 4 then 5 else 6)

(if 1 then 2 else 3)+(if 4 then 5 else 6)
Also, other expression forms that do not have a
closing token (i.e., while, when, etc) followed by
an infix operator (i.e., +, =, : =, etc) require paren-
theses.

e Similar to the above, expression forms that do
not have a closing token (i.e., if, etc) must be
parenthesized if they follow an infix operator
(i.e., +, = := etc)

e Record declarations no longer have field names,
instead they are just a series of types, separated
by commas, e.g.,
let type intlist = {int,intlist} ...
e Record creation expressions no longer have
identifiers, e.g.,
new intlist {0,nil}
o Field selection now uses numbers, not labels, eg:
let var x := new intlist {0,nil} in x.0 end


http://docs.plt-scheme.org

