322 Compilers: Assignment 1af
Test Cases for a Tiger Parser

Design (at least) 25 passing and 5 failing test cases for parsing Tiger expressions. For each passing test
case, hand in two files, one called file.tig containing a tiger program that should parse along with file.sxp
showing how it parses (according to the left-hand column below). For each failing test case, hand in one
file called file. tig containing input the parser should reject and a file. sxp file containing #illegal.

Submit a single zip file containing your test cases in a directory called 1a.

Parsed Tiger expressions:

(biop exp exp)
(:= lvalue exp)
lvalue

num

str

nil

()

(new id exp ---)
(new-array id exp exp)
(let (dec ---) exp)
(begin exp exp exp ---)
(when exp exp)
(
(
(
(
(
(

exp

while exp exp)

if exp exp exp)

for (id exp exp) exp)

break)

var id exp)

var id id exp)

(type id ty)

id

(dot lvalue num)

(aref lvalue exp)

id

(record id ---)

(array id)

relop / +/ -/ *//

eqop / <=/ >= [/ </ >

=/ <

a series of digits

a string, in any valid PLT
Scheme string notation; see
http://docs.plt-scheme.org
for details, e.g., "abc" or

) "two\nlines"
id «— a series of letters, numbers, and

underscores that begins with a
letter
Use (call-with-input-file "file.sxp" read) in
PLT Scheme to be sure your exps are well-formed.

dec

lvalue

ty

biop

relop
eqop
num
str

Changes to Tiger from the text:
e Omit function declarations.
e Omit function calls from expressions.
e Change the two-arm’d if to: when exp do exp

e Add a new keyword before record creation and
array creation, e.g.,
let type t = {int,int} in new t {1,2} end

e Ignore the \"c escapes in strings

e The “f” escapes in strings should only contain
newlines, tab characters, return characters and
spaces, i.e., ASCII codes 9, 10, 13, and 32.

e let expressions with no expressions in the body
should be parsed as if they had () in the body;
with two or more expressions should be parsed
with a begin expression in the body.

e The expression

if 1 then 2 else 3 + if 4 then 5 else 6
is illegal, but adding parens should make it
parse, i.e:

if 1 then 2 else 3+(if 4 then 5 else 6)

(if 1 then 2 else 3)+(if 4 then 5 else 6)
Also, other expression forms that do not have a
closing token (i.e., while, when, etc) followed by
an infix operator (i.e., +, =, : =, etc) require paren-
theses.

e Similar to the above, expression forms that do
not have a closing token (i.e., if, etc) must be
parenthesized if they follow an infix operator
(i.e., +, = := etc)

e Record declarations no longer have field names,
instead they are just a series of types, separated
by commas, e.g.,
let type intlist = {int,intlist} ...
e Record creation expressions no longer have
identifiers, e.g.,
new intlist {0,nil}
o Field selection now uses numbers, not labels, eg:
let var x := new intlist {0,nil} in x.0 end


http://docs.plt-scheme.org

