322 Compilers:

Assignment 4

Linearization

Your Job

Design a series of transformations that linearize
tree-stm and tree-exp expressions, build basic
blocks, and then schedule the basic blocks. Break up
your transformations into (at least) these functions:

linearize-stm : tree-stm —— lin-stm list
linearize-exp : tree-exp —— lin-stm list and a pure-exp

basic-blocks : lin-stm list — bb list and a label

:bb list and a label — lin-stm list
:lin-stm list —— lin-stm list

trace-sch
clean-sch

Linearized Statments & Expresions

Linearized statements are a special form of the tree-
stm that do not contain nested statements and basic
blocks are a special form of a list of linearized state-
ments that begin with a label and end with a jump
(and have no jumps or labels in between).

me-stm / jump-stm / label
temp pure-exp)

temp (call fn pure-exp))
(mem pure-exp) pure-exp)
(call fn pure-exp ---))
pure-exp label ---)

(cjump relop pure-exp pure-exp
label label)

num

label

temp

(biop pure-exp pure-exp)

(mem pure-exp)
(label mc-stm

Advice

lin-stm
mc-stm

jump-stm

pure-exp

T\\\\T

bb -+ jump-stm)

Even thought the test fests will run with Tiger input
programs, it is best to test each of these functions di-
rectly on tree expressions. Build test suites for each
one of them, using evalil to make sure that the out-
put of each function behaves like the input does.

Submission Instructions

Submit a single zip file containing your test cases
in a directory called 4a and your code in a directory
called 4b. The 4b directory should contain a script
called 1in that accepts a filename on the command-
line and then prints out a sequence of lin-stms
(wrapped with parentheses) corresponding to the
Tiger program in the file.

For example, if the input file contains
if 1<2 then 3 else 4
the output might look like this

((cjump < 1 2 l:if-false0 l:if-true0)
l:if-false0

(move r:if-result0 4)

(jump l:if-afterwards0 l:if-afterwardsO)
l:if-truel

(move r:if-result0 3)

l:if-afterwards0

(move r:linearize-calll

(call "printint" r:if-result0))

l:end-of-basic-blocks0)

The filenames must follow the same conventions as
in assignment 3.

Your zip file should also contain subdirectories 1a,
1b, 2a, 2b, 3a, and 3b containing either your sub-
missions from last time, or fixed versions of them.
The revised implementations (but not the revised
test cases) will be used when we re-run the parsing
and typechecking test fests.

1t does not have to look like this exactly and, in fact, my compiler only produces something vaguely similar. It does, however,

have to behave like this one does.



