
322 Compilers: Assignment 5
Code Generation

Your Job

Write a code generator that accepts a series of state-
ments, as produced in assignment 4 and produces a
standalone a.out that runs on the T-lab machines.

Runtime System

The runtime system (code that the compiled code
uses) consists of one function for each of the func-
tions that can be called, i.e., printint, printstr,
printant, and allocate. Here is the implementation
of printstr that matches the version from evalil.

void pc(int i,int pos) {
printf("%c",(i >> (pos*8)) & 0xFF);

}

void printstr(int *p) {
int size = *p;
p++;
int c=0;
while (1) {

if (c==size) break; pc(*p,3); c++;
if (c==size) break; pc(*p,2); c++;
if (c==size) break; pc(*p,1); c++;
if (c==size) break; pc(*p,0); c++;
p++;

}
printf("\n");

}

Submission Instructions

Submit a single zip file containign your test cases
in directory called 5a and your code in a directory
called 5b. The 5b directory should contain a script
called tc that accepts the filename of a tiger pro-
gram on the commandline and produces a file (in
the current directory) called a.out that runs the tiger
program. The Tiger filenames must follow the same
conventions as in assignment 4.

Your zip file should also contain subdirectories 1a,
1b, 2a, 2b, 3a, 3b, 4a, and 4b containing either your
submissions from last time, or fixed versions of
them. The revised implementations (but not the re-
vised test cases) will be used when we re-run the test
fests.

Tips

• Assign each temporary variable a location on
the stack; for each operation, bring the values
into a register, do the operation and stick them
back into the temporary location on the stack.

• Write a runtime system as a single file
runtime.c containing one function for each of
the functions that can be called, plus a main
function that calls a function generated by
your compiler.
gcc -O2 -c -o runtime.o runtime.c

• Generate assembly code and use as to assem-
ble it. If you generate assembly in the file
prog.S, issue this command:

as -o prog.o prog.S

• Use gcc to link it with your runtime system to
build an executable.

gcc -o a.out prog.o runtime.o

• Use gcc -S to see example assembly code
(specifically to build a skeleton for your gen-
erated assembly files).

• Beware: Mac OS X machines have to have the
stack always aligned on 16 word boundaries.

Speed contest

Submit one test file called intspeed.tig that will
be run in all implementations to test the speed of
their compiled code. Your compiler must produce
a binary that runs in less than 5 seconds for your
intspeed.tig (on the t-lab machines) in order for
your intspeed.tig to be considered in the contest.


