
A Tiger Language Specification

May 5, 2009

exp ::= (biop exp exp)

 | (:= lvalue exp)

 | lvalue

 | num

 | str

 | nil

 | ()

 | (new id exp ...)

 | (new-array id exp exp)

 | (let (dec ...) exp)

 | (begin exp exp exp ...)

 | (when exp exp)

 | (while exp exp)

 | (if exp exp exp)

 | (for (id exp exp) exp)

 | (break)

dec ::= (var id exp)

 | (var id id exp)

 | (type id ty)

lvalue ::= id

 | (dot lvalue num)

 | (aref lvalue exp)

biop ::= relop | + | - | * | /

relop ::= eqop
 | <= | >= | < | >

eqop ::= = | <>

Figure 1: The Tiger language

(S E[(biop v1 v2)]) [δ]
(S E[δ[[biop, v1, v2]]])

Figure 2: Delta rule

1 Overview

This document describes an operational semantics
for the Tiger language. The grammar of the language
is shown in figure 1.

The semantics is described by a simplification rules
that operate on a pair of an expression and a store.
The store represents the memory of the machine and
the expression represents the program. As the pro-
gram is simplified, its evaluation may change the
state of the machine. When it does, the store changes
to reflect those changes.

E ::= []

 | (biop E exp)

 | (biop v E)

 | (new id v ... E exp ...)

 | (new-array id E e)

 | (new-array id v E)

 | (let ([var id E] dec ...) exp)

 | (begin E exp exp ...)

 | (if E exp exp)

 | lval-E

 | (:= lval-E exp)

 | (:= lval-v E)

 | (loop E)

lval-v ::= id

 | (aref id num)

 | (dot id num)

lval-E ::= (aref E exp)

 | (aref v E)

 | (dot E exp)

 | (dot v E)

S ::= (fr ...)

fr ::= (id v)

 | (h:id (record v ...))

 | (h:id (array v ...))

v ::= num | str | nil | () | h:id

Figure 3: Evaluation contexts

The order in which an expression is evaluated is con-
trolled by the evaluation contexts (figure 3). For ex-
ample, arithmetic expressions are simplified leftmost,
innermost first:

(* (+ 1 2) (+ 3 4))→ (* 3 (+ 3 4))
→ (* 3 7)
→ 21

Unlike exp, which specifies the shape of an expres-
sion in an outside-in fashion, E specifies the surround-
ings of some expression, in a kind of inside-out fash-
ion. That is, an E describes an expression with a hole
in the middle of it. The hole in the expression is writ-

1

ten []. So, the first clause tells us that the context
might just be a hole. In other words, we’ve reached
the middle point. The second clause says that the
hole might be in the first subexpression of a biop ex-
pression. The second clause says that the hole might
be in the second subexpression of a biop expression,
but only if the first subexpression is a value (v). A
value represents a fully simplified expression, and
includes numbers, strings, nil, void (written ()), and
references into the store (ie, memory locations).

Consider specifically the first step in the reduction
sequence above. It shows the simplification of (+
1 2) to 3. An equally good expression to simplify,
however, would have been (+ 3 4) to 7, but the re-
duction system will not allow that simplification, be-
cause the context of the reduction would have had to
have been (+ (+ 1 2) []), but that is not a valid E.

2 Delta

The first rule to consider is the δ rule, in figure 2
and it simply defers to a δ function that covers arith-
metic and comparison operators. The δ function is
intended to mimic the behavior of the machine’s arith-
metic operations on 32-bit signed numbers, i.e., mod-
ular arithmetic. The comparison operators return 1
if the comparison holds and 0 if it does not.

3 Control

The rules in figure 4 govern the control operators in
Tiger. The first two rules cover begin expressions.
From the definition of E in figure 3, we know that
the only place where evaluation occurs is in the first
position of a begin expression so these rules kick in
once that has been fully simplified. If the begin ex-
pression only has two subexpressions, the begin is
just dropped by [begin0]. Otherwise, the first value is
dropped by [beginN].

The if rules both drop the entire if expression, re-
placing it by the “then” or “else” portion, as appro-
priate, and when is treated as a shorthand for if.

The [for] rule replace a for expression by a while loop.
This loop is a little more complex than you might ex-

(S E[(begin v exp)]) [begin2]
(S E[exp])

(S E[(begin v exp1 exp2 exp3 ...)]) [beginN]
(S E[(begin exp1 exp2 exp3 ...)])

(S E[(if 0 exp1 exp2)]) [if0]
(S E[exp2])

(S E[(if num exp1 exp2)]) [ifN]
(S E[exp1])

 where non-zero?[[num]]

(S E[(when exp1 exp2)]) [when]
(S E[(if exp1 exp2 ())])

(S E[(for (id exp1 exp2) exp3)]) [for]
(S E[(let ([var id exp1]

[var idtop exp2])

(when (< id idtop)

(begin

exp3

(while (< id idtop)

(begin

(:= id (+ id 1))

exp3)))))])

 where idtop fresh

(S E[(while exp1 exp2)]) [while]
(S E[(if exp1 (loop (begin exp2 (while exp1 exp2))) ())])

(S E1[(loop E2[(break)])]) [break]
(S E1[()])

 where no-loop[[E2[(break)]]]

(S E[(loop v)]) [loop]
(S E[v])

Figure 4: Control operator rules

pect in order to cope with the case where the value
of upper bound of the loop is the maximum integer.

The last three rules cover while loops and breaking
out of them. The basic idea is that loop is wrapped
around the body of the loop as a marker to indi-
cate where break should break to. Then, the [break]
rule splits the context into two pieces and the side-
condition ensures that there are no loop markers in
the inner portion, so the entire inner portion is erased.
Here is how an infinite while loop reduces1

(while 1 ())
→ (if 1 (loop (begin () (while 1 ()))) ())
→ (loop (begin () (while 1 ())))
→ (loop (while 1 ()))
→ ...

1This is not an optimal reduction sequence because the terms
grow forever. Challenge: develop an alternative rewriting strat-
egy that avoids this infinite growth.

2

((fr ...) E[(let ([var idold v1] dec ...) exp2)]) [letN]
(((idnew v1) fr ...) E[subst[[idold, idnew, (let (dec ...) exp2)]]])

 where idnew fresh

(S E[(let () exp)]) [let0]
(S E[exp])

(S E[(let ([type id ty] dec ...) exp)]) [let-ty]
(S E[(let (dec ...) exp)])

(S E[(let ([var id idty expr] dec ...) exp)]) [let-idty]
(S E[(let ([var id expr] dec ...) exp)])

((frbefore ... (id v) frafter ...)

E[id])

 [get]

((frbefore ... (id v) frafter ...)

E[v])

((frbefore ... (id vold) frafter ...)

E[(:= id vnew)])

 [set]

((frbefore ... (id vnew) frafter ...)

E[()])

Figure 5: Let rules

With a break inside, however, we get this reduction
sequence (where the ellipses elide a copy of the orig-
inal loop):

(while 1 (break))
→ (if 1 (loop (begin (break) ...) ())
→ (loop (begin (break) ...))
→ ()

4 Let

The rules for let expressions manipulate the store.
Each var binding in a let creates a new location in the
store and saves its value there, as shown in the [letN]
rule. The next three rules, [let0], [let-ty], and [let-idty]
just clean up the other possible let expressions. The
[get] rule looks up a value in the store when evalua-
tion hits a variable reference. The [set] rule changes
the value in the store when evaluation hits an assign-
ment.

5 Arrays and records

The last group of rules cover how fields and arrays
work. The rules for fields are very close to the rules

((fr ...)

E[(new id v ...)])

 [new]

(((h:id (record v ...)) fr ...)

E[h:id])

 where h:id fresh

((frbefore ... (h:id (record v1 ... v v2 ...)) frafter ...)

E[(dot h:id num)])

 [dot]

((frbefore ... (h:id (record v1 ... v v2 ...)) frafter ...)

E[v])

 where num = #(v1 ...)

((frbefore ... (h:id (record v1 ... vold v2 ...)) frafter ...)

E[(:= (dot h:id num) vnew)])

 [dot-set]

((frbefore ... (h:id (record v1 ... vnew v2 ...)) frafter ...)

E[()])

 where num = #(v1 ...)

((fr ...)

E[(new-array id num v)])

 [new-array]

(((h:id (array n-of[[num, v]]) fr ...))

E[h:id])

 where h:id fresh

((frbefore ... (h:id (array v1 ... v v2 ...)) frafter ...)

E[(aref h:id num)])

 [aref]

((frbefore ... (h:id (array v1 ... v v2 ...)) frafter ...)

E[v])

 where num = #(v1 ...)

((frbefore ... (h:id (array v1 ... vold v2 ...)) frafter ...)

E[(:= (aref h:id num) vnew)])

 [aset]

((frbefore ... (h:id (array v1 ... vnew v2 ...)) frafter ...)

E[()])

 where num = #(v1 ...)

Figure 6: Array and record rules

for arrays; the only difference being how the two
constructs are allocated. A new expression reduces
by creating a new location in the store and putting
a record value there. The [dot] rule simplifies dot
expressions by extracting the appropriate field from
the record and the [dot-set] rule updates the store with
a new binding for a field.

Like the [new] rule, the [new-array] rule creates a new
location in the store, but this time binds it to an array
and uses the n-of to fill in n copies of the initial value.
The [aref] rule and the [aset] rules are identical to the
[dot] and [dot-set] rules, except that they operate on
records, not arrays.

3

	Overview
	Delta
	Control
	Let
	Arrays and records

