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tree-exp ::= num

 | label

 | temp

 | (biop tree-exp tree-exp)

 | (mem tree-exp)

 | (call fn tree-exp)

 | (eseq tree-stm tree-exp)

tree-stm ::= (move (mem tree-exp) tree-exp)

 | (move temp tree-exp)

 | (texp tree-exp)

 | (jump tree-exp label ...)

 | (cjump relop tree-exp tree-exp label label)

 | (seq tree-stm tree-stm tree-stm ...)

 | label

relop ::= eqop
 | <= | >= | < | >

eqop ::= = | <>

fn ::= “allocate”
 | “printstr”
 | “printint”
 | “printant”

Figure 1: The Tiger intermediate language

1 Overview

This document describes the intermediate language
for the Tiger compiler. It is a language that contains
both statements (the tree-stm non-terminal) and ex-
pressions (the tree-exp non-terminal), show in fig-
ure 1.

The semantics for the language is given as a rewrit-
ing system that rewrites a store plus a sequence of
expressions, moving a program counter (represented
by pc) through the sequence of statements. In gen-
eral, program evaluation proceeds by advancing the
program counter through the series of statements,
performing the effects of the statements as they pass
by. If a jump statement is encountered, the program
counter is moved to just after the corresponding la-

pure-exp ::= num

 | label

 | temp

 | (biop pure-exp pure-exp)

 | (mem pure-exp)

Eval[[S, num ]]  = num

Eval[[S, label ]]  = label

Eval[[S, temp ]]  = lookup[[S, temp ]]

Eval[[S, (mem

pure-exp) ]]

 = lookup[[S, Eval[[S,

pure-exp ]]  ]]

Eval[[S, (biop

pure-exp1

pure-exp2) ]]

 = δ[[biop,

Eval[[S, pure-exp1 ]]  ,

Eval[[S, pure-exp2 ]]  ]]

Figure 2: Pure tree expressions

bel. In order for this to work, however, the state-
ments must have be sanitized so that they do not
contain embedded statements, since those embed-
ded statements might have labels that could be the
target of a jump. Thus, there are a number of rules
that simplify tree-exps into pure-tree-exp. Figure 2 con-
tains the definition of pure-tree-exp. They are just like
tree-exps, except they do not contain statements or
function calls. Figure 2 also shows the evaluator for
pure expressions.

2 Move rules

Before seeing how arbitrary expressions can be turned
into pure expressions, first consider the rules that
handle the case where the expressions are already
pure. The first of these are the move rules, shown in
figure 3. The first rule shows what happens when
a move expression encounters a label and its argu-
ment is a pure expression. It advances the program
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(S

tree-stmbefore ...
pc

(move temp pure-exp1)

tree-stmafter ...)

(update[[S, temp, Eval[[S, pure-exp1 ]]  ]]

tree-stmbefore ...

(move temp pure-exp1)
pc

tree-stmafter ...)

 [move-temp-exp]

(S

tree-stmbefore ...
pc

(move (mem pure-exp1)

pure-exp2)

tree-stmafter ...)

(update[[S,

Eval[[S, pure-exp1 ]]  ,

Eval[[S, pure-exp2 ]]  ]]

tree-stmbefore ...

(move (mem pure-exp1)

pure-exp2)
pc

tree-stmafter ...)

 [move-mem-exp]

(S

tree-stmbefore ...
pc

(move (mem pure-exp1)

(call fn pure-exp2))

tree-stmafter ...)

(S

tree-stmbefore ...
pc

(move r:temp (call fn pure-exp2))

(move (mem pure-exp1) r:temp)

tree-stmafter ...)

 [move-mem-call]

 where r:temp fresh

(S

tree-stmbefore ...
pc

(move temp (call “allocate” pure-exp))

tree-stmafter ...)

(alloc[[S, temp, Eval[[S, pure-exp ]]  ]]

tree-stmbefore ...

(move temp (call “allocate” pure-exp))
pc

tree-stmafter ...)

 [move-temp-alloc]

(S

tree-stmbefore ...
pc

(move temp (call fn pure-exp))

tree-stmafter ...)

(update[[S, temp, 0 ]]

tree-stmbefore ...

(move temp (call fn pure-exp))
pc

tree-stmafter ...)

 [move-temp-fn]

 where fn ≠ “allocate”

Figure 3: Move reductions

counter past the move expression and then updates
the store with the value of the argument to move.

The second rule covers a similar case: when a move
expression updates a memory location. The differ-
ence between it and the previous rule is that the eval-
uator must be invoked twice, once on the argument
to mem (to find the memory location), and once for
the value to be saved.

The next two rules cover the case where the move ex-
pression moves the result of a call to a function. If
the result of the function call is to be stored in mem-
ory, the [move-mem-call] rule simply rewrites it into
a move to a register and the moves the value of the
register into the memory location (without advanc-
ing the program counter).

The [move-temp-alloc] covers the case where the al-
location function is called. It moves the program
counter is moved past the allocation and updates
the store via the alloc function. Its definition is not
shown, but it returns a number that refers to a mem-
ory address in the store and initializes the appropri-
ate number of words. Note that allocate’s argument
is a number of words (not bytes), and it returns a
pointer to a space that is initialized (to zero).

The [move-temp-fn] function covers the other builtin
functions, but the model does not explicitly cover
IO, so they are just skipped.
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(S

tree-stmbefore ...
pc

(jump pure-exp label ...)

tree-stmafter ...)

MovePC[[Eval[[S, pure-exp ]]  ,

(S

tree-stmbefore ...

(jump pure-exp label ...)

tree-stmafter ...) ]]

 [jump]

(S

tree-stmbefore ...
pc

(cjump biop

pure-exp1 pure-exp2

labeln label0)

tree-stmafter ...)

MovePC[[labeln,

(S

tree-stmbefore ...

(cjump biop

pure-exp1 pure-exp2

labeln label0)

tree-stmafter ...) ]]

 [cjump-true]

 where Nonzero?[[Eval[[S, (biop pure-exp1 pure-exp2) ]]  ]]

(S

tree-stmbefore ...
pc

(cjump biop

pure-exp1 pure-exp2

labeln label0)

tree-stmafter ...)

MovePC[[label0,

(S

tree-stmbefore ...

(cjump biop

pure-exp1 pure-exp2

labeln label0)

tree-stmafter ...) ]]

 [cjump-false]

 where Zero?[[Eval[[S, (biop pure-exp1 pure-exp2) ]]  ]]

MovePC[[label, (S tree-stmbefore ... label tree-stmafter ...) ]]  = (S tree-stmbefore ... label pc tree-stmafter ...)

Figure 4: Jump reductions

3 Jump rules

The jump rules are shown in figure 4. They hinge
on the MovePC function. For [jump], it evaluates the
argument to jump, and then calls MovePC, supplying
the value of jump’s argument, as well as the machine
state – but without a program counter. Then, the
MovePC function simply inserts the program counter
right before the target of the jump (as shown in the
bottom of the figure).

Similarly, the cjump rules evaluate the arguments to
cjump and then jump to one or the other target (the
two side-conditions ensure that only rule fires).

4 Boring rules

The rules in figure 5 simply advance the program
counter past labels and pure expressions.

(S

tree-stmbefore ...
pc

label

tree-stmafter ...)

(S

tree-stmbefore ...

label
pc

tree-stmafter ...)

 [label]

(S

tree-stmbefore ...
pc

(texp pure-exp)

tree-stmafter ...)

(S

tree-stmbefore ...

(texp pure-exp)
pc

tree-stmafter ...)

 [texp]

Figure 5: Expression and label reductions

5 Flattening rules

The rules in figure 6 cover the flattening operation.
The first flattening rule is straightforward; if the state-
ment following the program counter is a sequence,
simply flatten out the sequence. The second and
third rules involve the flatten-S and flatten-E contexts.
Without looking at those contexts yet, the intuition
for these rules is that they simply pull out the first
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(S

tree-stmbefore ...
pc

(seq tree-stm1 ...)

tree-stmafter ...)

(S

tree-stmbefore ...
pc

tree-stm1 ...

tree-stmafter ...)

 [flatten-seq]

(S

tree-stmbefore ...
pc

flatten-S[(eseq tree-stm tree-exp)]

tree-stmafter ...)

(S

tree-stmbefore ...
pc

tree-stm

flatten-S[tree-exp]

tree-stmafter ...)

 [flatten-eseq]

(S

tree-stmbefore ...
pc

flatten-S[flatten-E1[(call fn pure-exp)]]

tree-stmafter ...)

(S

tree-stmbefore ...
pc

(move r:temp (call fn pure-exp))

flatten-S[flatten-E1[r:temp]]

tree-stmafter ...)

 [flatten-call]

 where r:temp fresh

Figure 6: Flattening reductions

flatten-S ::= (move (mem flatten-E) tree-exp)

 | (move (mem pure-exp) flatten-E)

 | (move temp flatten-E)

 | (texp flatten-E)

 | (jump flatten-E label ...)

 | (cjump relop flatten-E tree-exp

label label)

 | (cjump relop pure-exp flatten-E

label label)

flatten-E ::= []

 | flatten-E1[flatten-E]

flatten-E1 ::= (eseq flatten-S tree-exp)

 | (biop [] tree-exp)

 | (biop pure-exp [])

 | (mem [])

 | (call fn [])

Figure 7: Contexts for lifting embedded statements

statement in a non-pure expression and put it right
after the program counter, thus making the original
statement a little bit closer to being able to use one of
the earlier rules. In the first case, if there is an eseq,
the statement is lifted out and the eseq is replaced
with just the expression portion. In the second case,
when there is a call, the call is put into its own state-
ment and the call is replaced by a register.

Figure 7 shows the context in which a flattening re-
duction can occur. The first case of flatten-S says that

flattening can always occur in the first argument to
a move mem expression. The second case says that a
flattening reduction can occur inside the second ar-
gument to a move mem expression, but only if the first
argument is a pure expression. This enforces a left-
to-right evaluation order. That is the statements in
the first argument will all have to be lifted out before
the second case lets statements in the second argu-
ment be lifted out. Similarly for cjump. Otherwise,
the grammar just allows statements to be lifted out
anywhere an expression might occur.

The flatten-E1 context deserve special note. They de-
fine a single layer of a context where statments can
be lifted out of expressions. Then, flatten-E is defined
to either be a hole (i.e., a lifting can occur right at
the top), or a single later context with another flatten-
E inside it. Thus, flatten-E allows lifting arbitrarily
deep in an expression. The flatten-E1 is needed in or-
der to lift out call expressions. The [flatten-call] rule
only lifts out a call when it is at least one layer deep
(since if it is at the top already, then one of the earlier
call rules should apply instead).
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