
Compiling L1 to x86-64

1

High-level overview:

• Generate some small number of x86-64 instructions
for each L2 instruction, save in prog.S file,
generating calls into C-defined runtime system to
implement print, allocate, and array-error

• Compile prog.S like this:

 as -o prog.o prog.S

• Compile the runtime system like this:

 gcc -O2 -c -g -o runtime.o runtime.c

• Combine them into an executable like this:

 gcc -o a.out prog.o runtime.o

Use linux to avoid Mac OS X stack alignment issues
2

Compiling the main function; generate this code:

.text

.globl go
go:
 # save callee-saved registers
 pushq %rbx
 pushq %rbp
 pushq %r12
 pushq %r13
 pushq %r14
 pushq %r15

call «main label»

 # restore callee-saved registers and return
 popq %r15
 popq %r14
 popq %r13
 popq %r12
 popq %rbp
 popq %rbx
 retq

It matches runtime.c’s main(), which calls go()
3

Compiling simple assignments: prefix registers with %
and constants and labels with $; note the destination is
on the right

(rax <- 1) ⇒ movq $1, %rax

(rax <- rbx) ⇒ movq %rbx, %rax

(rax <- :f) ⇒ movq $_f, %rax

4

For memory references, put parens around the register
and prefix it with the offset

((mem rsp 0) <- rdi)

⇒
movq %rdi, 0(%rsp)

(rdi <- (mem rsp 8))

⇒
movq 8(%rsp), %rdi

5

Each of the aop= operations correspond to their own
assembly instruction

(rdi += rax) ⇒ addq %rax, %rdi

(rdi -= rax) ⇒ subq %rax, %rdi

(r10 *= r12) ⇒ imulq %r12, %r10

(r14 &= r15) ⇒ andq %r15, %r14

6

Saving the result of a comparison requires a few extra
instructions

(rdi <- rax <= rbx) ⇒
cmpq %rbx, %rax
setle %dil
movzbq %dil, %rdi

the cmpq instruction updates a condition code in some
hidden place and then we need to use setle to extract
the condition code from the hidden place. The setle
instruction, however, needs an 8 bit register as its
destination. So we use %dil here because that’s an 8 bit
register that overlaps with the lowest 8 bits of %rdi.
That updates only those 8 bits, however so we need
movzbq to zero out the rest

7

Saving the result of a comparison requires a few extra
instructions

(rdi <- rax <= rbx) ⇒
cmpq %rbx, %rax
setle %dil
movzbq %dil, %rdi

Here’s the table mapping regular register names to their
8-bit variants

r10 → r10b r11 → r11b r12 → r12b
r13 → r13b r14 → r14b r15 → r15b
r8 → r8b r9 → r9b rax → al
rbp → bpl rbx → bl rcx → cl
rdi → dil rdx → dl rsi → sil

8

Saving the result of a comparison requires a few extra
instructions

(rdi <- rax <= rbx) ⇒
cmpq %rbx, %rax
setle %dil
movzbq %dil, %rdi

And if we had < we’d need to use setg or setl (for
less than or greater than) and if we had = then we
would use sete

9

The shifting, sop=, operations also use the 8-bit
registers, this time for their sources

(rdi <<= rcx) ⇒ salq %cl, %rdi

(rdi >>= 3) ⇒ sarq $3, %rdi

The l is for “left shift” and the r stands for “right shift”.

10

The same three instructions also work great when there
is a constant on the left

(rdi <- rax <= 10) ⇒
cmpq $10, %rax
setle %dil
movzbq %dil, %rdi

11

But when the constant is on the right, we need to flip
things around

(rdi <- 10 <= rax) ⇒
cmpq $10, %rax
setge %dil
movzbq %dil, %rdi

Why? Because cmpq needs a register “destination” for
reasons that make little sense to me

12

So when we don’t have any registers at all, we need to
compute the answer at compile time and just use that

(rdi <- 10 <= 11) ⇒ movq $1, %rdi

(rax <- 12 <= 11) ⇒ movq $0, %rax

13

Labels and gotos are what you might guess; just replace
the leading colon with an underscore and add a colon
suffix when you define the label

:a_label ⇒ _a_label:

(goto :a_label) ⇒ jmp _a_label

14

For conditional jumps, we have the three same cases as
we did for conditional comparisons, but we use two
jumps instead of storing the result in a register

(cjump rax <= rdi :yes :no)

⇒

cmpq %rdi, %rax
jle _yes
jmp _no

For less than or equal to, <=, use jge (jump greater
than or equal) or jle (jump less than or equal). For
strictly less than, <, use jg (jump greater than) or jl
(jump less than) and for equality, =, use je

15

Finally, compiling the instructions that modify rsp:

• Function header (entry to a function)

• The call, tail-call, and return instructions

16

Allocating local storage is the function header’s job; for
each stack variable, push 8 bytes, e.g.

(:myfunction 0 3stuff...)

⇒

_myfunction:
 subq $24, %rsp # allocate spill
...compiled stuff...

17

The (return) instruction frees local storage, pops the
return address from the stack and jumps to it, e.g.,

(:myfunction 0 3 (return))

⇒

_myfunction:
 subq $24, %rsp # allocate spill
 addq $24, %rsp # free spill & args
 ret

18

The (call) instruction moves rsp based on the
number of arguments and the return address and then
jumps to the new function, e.g.

(call :anotherfunction 11)

⇒

subq $48, %rsp # call L1 function
jmp _anotherfunction

Argument storage allocation is (* (- 11 6) 8) =
40 bytes, plus 8 more to move past the return address

19

The (call) also calls funtions defined in runtime.c.
In that case, we can just use the call assembly
instruction.

(call array-error 2)

⇒

call array_error # runtime system call

20

The (tail-call) instruction moves rsp back to
free the local storage and then jumps, e.g.

(:f 11 3 (tail-call :g 5))

⇒

_f:
 subq $24, %rsp # allocate spill
 addq $64, %rsp # free spill & args
 jmp _g # tail call

Free (* (- 11 6) 8) = 40 bytes for :f’s args,
plus 24 more for :f’s spill. Functions can only be called
in tail position when they have six or fewer args, so we
don’t have to move the arguments around on the stack
(since there aren’t any).

21

