
DART: Directed Automated Random Testing

Patrice Godefroid Nils Klarlund
Bell Laboratories, Lucent Technologies
{god,klarlund}@bell-labs.com

Koushik Sen
Computer Science Department

University of Illinois at Urbana-Champaign
ksen@cs.uiuc.edu

Abstract
We present a new tool, named DART, for automatically testing soft-
ware that combines three main techniques: (1) automated extrac-
tion of the interface of a program with its external environment
using static source-code parsing; (2) automatic generation of a test
driver for this interface that performs random testing to simulate
the most general environment the program can operate in; and (3)
dynamic analysis of how the program behaves under random test-
ing and automatic generation of new test inputs to direct systemati-
cally the execution along alternative program paths. Together, these
three techniques constitute Directed Automated Random Testing, or
DART for short. The main strength of DART is thus that testing can
be performed completely automatically on any program that com-
piles – there is no need to write any test driver or harness code. Dur-
ing testing, DART detects standard errors such as program crashes,
assertion violations, and non-termination. Preliminary experiments
to unit test several examples of C programs are very encouraging.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs

General Terms Verification, Algorithms, Reliability

Keywords Software Testing, Random Testing, Automated Test
Generation, Interfaces, Program Verification

1. Introduction
Today, testing is the primary way to check the correctness of soft-
ware. Billions of dollars are spent on testing in the software indus-
try, as testing usually accounts for about 50% of the cost of software
development [27]. It was recently estimated that software failures
currently cost the US economy alone about $60 billion every year,
and that improvements in software testing infrastructure might save
one-third of this cost [31].

Among the various kinds of testing usually performed during
the software development cycle, unit testing applies to the indi-
vidual components of a software system. In principle, unit testing
plays an important role in ensuring overall software quality since
its role is precisely to detect errors in the component’s logic, check
all corner cases, and provide 100% code coverage. Yet, in practice,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’05 June 12–15, 2005, Chicago, Illinois, USA.
Copyright c© 2005 ACM 1-59593-080-9/05/0006 . . . $5.00.

unit testing is so hard and expensive to perform that it is rarely done
properly. Indeed, in order to be able to execute and test a component
in isolation, one needs to write test driver/harness code to simulate
the environment of the component. More code is needed to test
functional correctness, for instance using assertions checking the
component’s outputs. Since writing all this testing code manually
is expensive, unit testing is often either performed very poorly or
skipped altogether. Moreover, subsequent phases of testing, such as
feature, integration and system testing, are meant to test the overall
correctness of the entire system viewed as a black-box, not to check
the corner cases where bugs causing reliability issues are typically
hidden. As a consequence, many software bugs that should have
been caught during unit testing remain undetected until field de-
ployment.

In this paper, we propose a new approach that addresses the
main limitation hampering unit testing, namely the need to write
test driver and harness code to simulate the external environment
of a software application. We describe our tool DART, which com-
bines three main techniques in order to automate unit testing of
software:

1. automated extraction of the interface of a program with its
external environment using static source-code parsing;

2. automatic generation of a test driver for this interface that per-
forms random testing to simulate the most general environment
the program can operate in; and

3. dynamic analysis of how the program behaves under random
testing and automatic generation of new test inputs to direct
systematically the execution along alternative program paths.

Together, these three techniques constitute Directed Automated
Random Testing, or DART for short. Thus, the main strength of
DART is that testing can be performed completely automatically on
any program that compiles – there is no need to write any test driver
or harness code. During testing, DART detects standard errors such
as program crashes, assertion violations, and non-termination.

We have implemented DART for programs written in the C pro-
gramming language. Preliminary experiments to unit test several
examples of C programs are very encouraging. For instance, DART
was able to find automatically attacks in various C implementations
of a well-known flawed security protocol (Needham-Schroeder’s).
Also, DART found hundreds of ways to crash 65% of the about 600
externally visible functions provided in the oSIP library, an open-
source implementation of the SIP protocol. These experimental re-
sults are discussed in detail in Section 4.

The idea of extracting automatically interfaces of software com-
ponents via static analysis has been discussed before, for model-
checking purposes (e.g., [8]), reverse engineering (e.g., [37]), and
compositional verification (e.g., [1]). However, we are not aware of
any tool like DART which combines automatic interface extraction
with random testing and dynamic test generation. DART is comple-
mentary to test-management tools that take advantage of interface

definitions as part of programming languages, such as JUnit [20]
for Java, but do not perform automatic test generation.

Random testing is a simple and well-known technique (e.g., [4]),
which can be remarkably effective at finding software bugs [11].
Yet, it is also well-known that random testing usually provides
low code coverage (e.g., [32]). For instance, the then branch of
the conditional statement “if (x==10) then . . . ” has only one
chance to be exercised out of 232 if x is a 32-bit integer program
input that is randomly initialized. The contributions of DART com-
pared to random testing are twofold: DART makes random testing
automatic by combining it with automatic interface extraction (in
contrast with prior work which is API-specific, e.g., [11]), and also
makes it much more effective in finding errors thanks to the use of
dynamic test generation to drive the program along alternative con-
ditional branches. For instance, the probability of taking the then
branch of the statement “if (x==10) then . . . ” can be viewed
as 0.5 with DART. The novel dynamic test-generation techniques
used in DART are presented in Section 2.

Besides testing, the other main way to check correctness during
the software development cycle is code inspection. Over the last
few years, there has been a renewed interest in static source-code
analysis for building automatic code-inspection tools that are more
practical and usable by the average software developer. Examples
of such tools are Prefix/Prefast [6], MC [16], Klocwork [22], and
Polyspace [33]. Earlier program static checkers like lint [19] usu-
ally generate an overly large number of warnings and false alarms,
and are therefore rarely used by programmers on a regular basis.
The main challenge faced by the new generation of static analyz-
ers is thus to do a better job in dealing with false alarms (warn-
ings that do not actually correspond to programming errors), which
arise from the inherent imprecision of static analysis. There are es-
sentially two main approaches to this problem: either report only
high-confidence warnings (at the risk of missing some actual bugs),
or report all of them (at the risk of overwhelming the user). Despite
significant recent progress on techniques to separate false alarms
from real errors (for instance, by using more precise analysis tech-
niques to eliminate false alarms, or by using statistical classification
techniques to rank warnings by their severity more accurately), an-
alyzing the results of static analysis to determine whether a warning
actually corresponds to an error still involves significant human in-
tervention.

We believe DART provides an attractive alternative approach
to static analyzers, because it is based on high-precision dynamic
analysis instead, while being fully automated as static analysis. The
main advantage of DART over static analysis is that every execu-
tion leading to an error that is found by DART is guaranteed to be
sound. Two areas where we expect DART to compete especially
well against static analyzers are the detection of interprocedural
bugs and of bugs that arise through the use of library functions
(which are usually hard to reason about statically), as will be dis-
cussed later in the paper. Of course, DART is overall complemen-
tary to static analysis since it has its own limitations, namely the
computational expense of running tests and the sometimes limited
effectiveness of dynamic test generation to improve over random
testing. In any case, DART offers a new trade-off among existing
static and dynamic analysis techniques.

The paper is organized as follows. Section 2 presents an
overview of DART. Section 3 discusses implementation issues
when dealing with programs written in the C programming lan-
guage. In Section 4, experimental results are discussed. We com-
pare DART with other related work in Section 5 and conclude with
Section 6.

2. DART Overview
DART’s integration of random testing and dynamic test generation
using symbolic reasoning is best intuitively explained with an ex-
ample.

2.1 An Introduction to DART

Consider the function h in the file below:

int f(int x) { return 2 * x; }
int h(int x, int y) {

if (x != y)
if (f(x) == x + 10)

abort(); /* error */
return 0;

}

The function h is defective because it may lead to an abort state-
ment for some value of its input vector, which consists of the input
parameters x and y. Running the program with random values of
x and y is unlikely to discover the bug. The problem is typical of
random testing: it is difficult to generate input values that will drive
the program through all its different execution paths.

In contrast, DART is able to dynamically gather knowledge
about the execution of the program in what we call a directed
search. Starting with a random input, a DART-instrumented pro-
gram calculates during each execution an input vector for the next
execution. This vector contains values that are the solution of sym-
bolic constraints gathered from predicates in branch statements dur-
ing the previous execution. The new input vector attempts to force
the execution of the program through a new path. By repeating this
process, a directed search attempts to force the program to sweep
through all its feasible execution paths.

For the example above, the DART-instrumented h initially
guesses the value 269167349 for x and 889801541 for y. As a
result, h executes the then-branch of the first if-statement, but fails
to execute the then-branch of the second if-statement; thus, no
error is encountered. Intertwined with the normal execution, the
predicates x0 6= y0 and 2 · x0 6= x0 + 10 are formed on-the-fly
according to how the conditionals evaluate; x0 and y0 are symbolic
variables that represent the values of the memory locations of vari-
ables x and y. Note the expression 2 · x0, representing f(x): it is
defined through an interprocedural, dynamic tracing of symbolic
expressions.

The predicate sequence 〈x0 6= y0, 2 · x0 6= x0 + 10〉, called
a path constraint, represents an equivalence class of input vectors,
namely all the input vectors that drive the program through the path
that was just executed. To force the program through a different
equivalence class, the DART-instrumented h calculates a solution
to the path constraint 〈x0 6= y0, 2 · x0 = x0 + 10〉 obtained by
negating the last predicate of the current path constraint.

A solution to this path constraint is (x0 = 10, y0 = 889801541)
and it is recorded to a file. When the instrumented h runs again, it
reads the values of the symbolic variables that have been solved
from the file. In this case, the second execution then reveals the er-
ror by driving the program into the abort() statement as expected.

2.2 Execution Model

DART runs the program P under test both concretely, executing
the actual program with random inputs, and symbolically, calculat-
ing constraints on values at memory locations expressed in terms
of input parameters. These side-by-side executions require the pro-
gram P to be instrumented at the level of a RAM (Random Access
Memory) machine.

The memory M is a mapping from memory addresses m to,
say, 32-bit words. The notation + for mappings denotes updating;

for example, M′ := M + [m 7→ v] is the same map asM, ex-
cept that M′(m) = v. We identify symbolic variables by their
addresses. Thus in an expression, m denotes either a memory ad-
dress or the symbolic variable identified by address m, depending
on the context. A symbolic expression, or just expression, e can be
of the form m, c (a constant), ∗(e′, e′′) (a dyadic term denoting
multiplication), ≤ (e′, e′′) (a term denoting comparison), ¬(e′) (a
monadic term denoting negation), ∗e′ (a monadic term denoting
pointer dereference), etc. Thus, the symbolic variables of an ex-
pression e are the set of addresses m that occur in it. Expressions
have no side-effects.

The program P manipulates the memory through statements
that are specially tailored abstractions of the machine instructions
actually executed. There is a set of numbers that denote instruction
addresses, that is, statement labels. If ` is the address of a statement
(other than abort or halt), then ` + 1 is guaranteed to also be an
address of a statement. The initial address is `0. A statement can be
a conditional statement c of the form if (e) then goto `′ (where
e is an expression over symbolic variables and `′ is a statement
label), an assignment statement a of the form m ← e (where m
is a memory address), abort, corresponding to a program error, or
halt, corresponding to normal termination.

The concrete semantics of the RAM machine instructions of P
is reflected in evaluate concrete(e,M), which evaluates expres-
sion e in context M and returns a 32-bit value for e. Addition-
ally, the function statement at(`, M) specifies the next statement
to be executed. For an assignment statement, this function calcu-
lates, possibly involving address arithmetic, the address m of the
left-hand side, where the result is to be stored; in particular, indirect
addressing, e.g., stemming from pointers, is resolved at runtime to
a corresponding absolute address.1

A program P defines a sequence of input addresses ~M0, the
addresses of the input parameters of P . An input vector ~I , which
associates a value to each input parameter, defines the initial value
of ~M0 and henceM.2

Let C be the set of conditional statements and A the set of
assignment statements in P . A program execution w is a finite3

sequence in Execs := (A ∪ C)∗(abort | halt). We prefer to view
w as being of the form α1c1α2c2 . . . ckαk+1s, where αi ∈ A

∗ (for
1 ≤ i ≤ k + 1), ci ∈ C (for 1 ≤ i ≤ k), and s ∈ {abort, halt}.

The concrete semantics of P at the RAM machine level allows
us to define for each input vector ~I an execution sequence: the result
of executing P on ~I (the details of this semantics is not relevant
for our purposes). Let Execs(P) be the set of such executions
generated by all possible ~I . By viewing each statement as a node,
Execs(P) forms a tree, called the execution tree. Its assignment
nodes have one successor; its conditional nodes have one or two
successors; and its leaves are labeled abort or halt.

2.3 Test Driver and Instrumented Program

The goal of DART is to explore all paths in the execution tree
Execs(P). To simplify the following discussion, we assume that
we are given a theorem prover that decides, say, the theory of
integer linear constraints. This will allow us to explain how we
handle the transition from constraints within the theory to those
that are outside.

DART maintains a symbolic memory S that maps memory ad-
dresses to expressions. Initially, S is a mapping that maps each

1 We do this to simplify the exposition; left-hand sides could be made
symbolic as well.
2 To simplify the presentation, we assume that ~M0 is the same for all
executions of P .
3 We thus assume that all program executions terminate; in practice, this can
be enforced by limiting the number of execution steps.

evaluate symbolic (e,M, S) =
match e:

case m: //the symbolic variable named m
if m ∈ domainS then return S(m)
else returnM(m)

case ∗(e′, e′′): //multiplication
let f’= evaluate symbolic(e′,M,S);
let f”= evaluate symbolic(e′′,M,S);
if not one of f ′ or f ′′ is a constant c then

all linear = 0
return evaluate concrete(e,M)

if both f ′ and f ′′ are constants then
return evaluate concrete(e,M)

if f ′ is a constant c then
return ∗(f ′, c)

else return ∗(c, f ′′)
case ∗e′: //pointer dereference

let f’= evaluate symbolic(e′,M,S);
if f ′ is a constant c then

if ∗c ∈ domainS then return S(∗c)
else returnM(∗c)

else all locs definite = 0
return evaluate concrete(e,M)

etc.

Figure 1. Symbolic evaluation

m ∈ ~M0 to itself. Expressions are evaluated symbolically as de-
scribed in Figure 1. When an expression falls outside the theory, as
in the multiplication of two non-constant sub-expressions, DART
simply falls back on the concrete value of the expression, which is
used as the result. In such a case, we also set a flag all linear to 0,
which we use to track completeness. Another case where DART’s
directed search is typically incomplete is when the program deref-
erences a pointer whose value depends on some input parameter; in
this case, the flag all locs definite is set to 0 and the evaluation falls
back again to the concrete value of the expression. With this eval-
uation strategy, symbolic variables of expressions in S are always
contained in ~M0.

To carry out a search through the execution tree, our instru-
mented program is run repeatedly. Each run (except the first) is
executed with the help of a record of the conditional statements
executed in the previous run. For each conditional, we record a
branch value, which is either 1 (the then branch is taken) or 0
(the else branch is taken), as well as a done value, which is 0
when only one branch of the conditional has executed in prior
runs (with the same history up to the branch point) and is 1 oth-
erwise. This information associated with each conditional state-
ment of the last execution path is stored in a list variable called
stack, kept in a file between executions. For i, 0 ≤ i < |stack|,
stack[i] = (stack[i].branch, stack[i].done) is thus the record corre-
sponding to the i + 1th conditional executed.

More precisely, our test driver run DART is shown in Figure 2.
This driver combines random testing (the repeat loop) with directed
search (the while loop). If the instrumented program throws an
exception, then a bug has been found. The two completeness flags,
namely all linear and all locs definite, each holds unless a “bad”
situation possibly leading to incompleteness has occurred. Thus, if
the directed search terminates—that is, if directed of the inner loop
no longer holds—then the outer loop also terminates provided all of
the completeness flags still hold. In this case, DART terminates and
safely reports that all feasible program paths have been explored.
But if just one of the completeness flags have been turned off at
some point, then the outer loop continues forever (modulo resource
constraints not shown here).

run DART () =
all linear, all locs definite, forcing ok = 1, 1, 1
repeat

stack = 〈〉; ~I = [] ; directed = 1
while (directed) do

try (directed, stack, ~I) =
instrumented program(stack, ~I)

catch any exception→
if (forcing ok)

print “Bug found”
exit()

else forcing ok = 1
until all linear ∧ all locs definite

Figure 2. Test driver

instrumented program(stack, ~I) =
// Random initialization of uninitialized input parameters in ~M0

for each input x with ~I[x] undefined do
~I[x] = random()

Initialize memoryM from ~M0 and ~I
// Set up symbolic memory and prepare execution
S = [m 7→ m | m ∈ ~M0].
` = `0 // Initial program counter in P
k = 0 // Number of conditionals executed
// Now invoke P intertwined with symbolic calculations
s = statement at(`,M)
while (s /∈ {abort, halt}) do

match (s)
case (m← e):
S= S + [m 7→ evaluate symbolic(e,M,S)]
v = evaluate concrete(e,M)
M =M+ [m 7→ v]; ` = ` + 1

case (if (e) then goto `′):
b = evaluate concrete(e,M)
c = evaluate symbolic(e,M,S)
if b then

path constraint = path constraint ^ 〈c〉
stack = compare and update stack(1, k,stack)
` = `′

else
path constraint = path constraint ^ 〈neg(c)〉
stack = compare and update stack(0, k,stack)
` = ` + 1

k= k + 1
s =statement at(`,M) // End of while loop

if (s==abort) then
raise an exception

else // s==halt
return solve path constraint(k,path constraint,stack)

Figure 3. Instrumented program

The instrumented program itself is described in Figure 3 (where
^ denotes list concatenation). It executes as the original pro-
gram, but with interleaved gathering of symbolic constraints.
At each conditional statement, it also checks by calling com-
pare and update stack, shown in Figure 4, whether the current
execution path matches the one predicted at the end of the pre-
vious execution and represented in stack passed between runs.
Specifically, our algorithm maintains the invariant that when in-
strumented program is called, stack[|stack| − 1].done = 0 holds.

compare and update stack(branch,k,stack) =
if k < |stack| then

if stack[k].branch 6= branch then
forcing ok = 0
raise an exception

else if k = |stack| − 1 then
stack[k].branch = branch
stack[k].done = 1

else stack = stack ^ 〈(branch, 0)〉
return stack

Figure 4. Compare and update stack

solve path constraint(ktry ,path constraint,stack) =
let j be the smallest number such that

for all h with −1 ≤ j < h < ktry, stack[h].done = 1
if j = −1 then

return (0, ,) // This directed search is over
else

path constraint[j] = neg(path constraint[j])
stack[j].branch= ¬stack[j].branch
if (path constraint[0, . . . , j] has a solution ~I ′) then

return (1, stack[0..j], ~I + ~I ′)
else

solve path constraint(j,path constraint,stack)

Figure 5. Solve path constraint

This value is changed to 1 if the execution proceeds according to
all the branches in stack as checked by compare and update stack.
If it ever happens that a prediction of the outcome of a conditional
is not fulfilled, then the flag forcing ok is set to 0 and an exception
is raised to restart run DART with a fresh random input vector.
Note that setting forcing ok to 0 can only be due to a previous
incompleteness in DART’s directed search, which was then (con-
servatively) detected and resulted in setting (at least) one of the
completeness flags to 0. In other words, the following invariant
always holds: all linear ∧ all locs definite⇒ forcing ok.

When the original program halts, new input values are generated
in solve path constraint, shown in Figure 5, to attempt to force the
next run to execute the last4 unexplored branch of a conditional
along the stack. If such a branch exists and if the path constraint
that may lead to its execution has a solution ~I ′, this solution is used
to update the mapping ~I to be used for the next run; values corre-
sponding to input parameters not involved in the path constraint are
preserved (this update is denoted ~I + ~I ′).

The main property of DART is stated in the following theorem,
which formulates (a) soundness (of error founds) and (b) a form of
completeness.

THEOREM 1. Consider a program P as defined in Section 2.2. (a)
If run DART prints out “Bug found” for P , then there is some input
to P that leads to an abort. (b) If run DART terminates without
printing “Bug found,” then there is no input that leads to an abort
statement in P , and all paths in Execs(P) have been exercised. (c)
Otherwise, run DART will run forever.

Proofs of (a) and (c) are immediate. The proof of (b) rests on the
assumption that any potential incompleteness in DART’s directed
search is (conservatively) detected and recorded by setting at least
one of the two flags all linear and all locs definite to 0.

4 A depth-first search is used for exposition, but the next branch to be forced
could be selected using a different strategy, e.g., randomly or in a breadth-
first manner.

Since DART performs (typically partial) symbolic executions
only as generalizations of concrete executions, a key difference be-
tween DART and static-analysis-based approaches to software ver-
ification is that any error found by DART is guaranteed to be sound
(case (a) above) even when using an incomplete or wrong theory. In
order to maximize the chances of termination in case (b) above, set-
ting off completeness flags as described in evaluate symbolic could
be done less conservatively (i.e., more accurately) using various op-
timization techniques, for instance by distinguishing incomplete-
ness in expressions used in assignments from those used in condi-
tional statements, by refining after each conditional statement the
constraints stored in S that are associated with symbolic variables
involved in the conditional, by dealing with pointer dereferences in
a more sophisticated way, etc.

2.4 Example

Consider the C program:

int f(int x, int y) {
int z;
z = y;
if (x == z)

if (y == x + 10)
abort();

return 0;
}

The input address vector is ~M0 = 〈mx, my〉 (where mx 6= my

are some memory addresses) for f’s input parameters 〈x, y〉. Let
us assume that the first value for x is 123456 and that of y is
654321, that is, ~I = 〈123456, 654321〉. Then, the initial concrete
memory becomes M = [mx 7→ 123456, my 7→ 654321], and
the initial symbolic memory becomes S = [mx 7→ mx, my 7→
my]. During execution from this configuration, the else branch
of the outer if statement is taken and, at the time halt is encoun-
tered, the path constraint is 〈¬(mx = my)〉. We have k = 1,
stack = 〈(0, 0)〉, S = [mx 7→ mx, my 7→ my, mz 7→ my],
M = [mx 7→ 123456, my 7→ 654321, mz 7→ 654321]. The sub-
sequent call to solve path constraint results in an attempt to solve
〈mx = my〉, which leads to a solution 〈mx 7→ 0, my 7→ 0〉.
The updated input vector ~I + ~I ′ is then 〈0, 0〉, the branch bit in
stack has been flipped, and the assignment (directed, stack, ~I)=(1,
〈(1, 0)〉, 〈0, 0〉) is executed in run DART. During the second call of
instrumented program, the compare and update stack will check
that the actually executed branch of the outer if statement is now
the then branch (which it is!). Next, the else branch of the inner
if statement is executed. Consequently, the path constraint that is
now to be solved is 〈mx = my, my = mx + 10〉. The run DART
driver then calls solve path constraint with (ktry,path constraint,
stack)=(2, 〈mx = my, my = mx+10〉, 〈(1, 1), (0, 0)〉). Since this
path constraint has no solution, and since the first conditional has
already been covered (stack[0].done = 1), solve path constraint
returns (0, ,). In turn, run DART terminates since all complete-
ness flags are still set.

2.5 Advantages of the DART approach

Despite the limited completeness of DART when based on linear
integer constraints, dynamic analysis often has an advantage over
static analysis when reasoning about dynamic data. For example,
to determine if two pointers point to the same memory location,
DART simply checks whether their values are equal and does not
require alias analysis. Consider the C program:

struct foo { int i; char c; }
bar (struct foo *a) {

if (a->c == 0) {
*((char *)a + sizeof(int)) = 1;
if (a->c != 0)

abort();
}

}

DART here treats the pointer input parameter by randomly initial-
izing it to NULL or to a single heap-allocated cell of the appropri-
ate type (see Section 3.2). For this example, a static analysis will
typically not be able to report with high certainty that abort() is
reachable. Sound static analysis tools will report “the abort might
be reachable”, and unsound ones (like BLAST [18] or SLAM [2])
will simply report “no bug found”, because standard alias analysis
is not able to guarantee that a->c has been overwritten. In contrast,
DART finds a precise execution leading to the abort very easily
by simply generating an input satisfying the linear constraint a->c
== 0. This kind of code is often found in implementations of net-
work protocols, where a buffer of type char * (e.g., representing a
message) is occasionally cast into a struct (e.g., representing the
different fields of the protocol encoded in the message) and vice
versa.

The DART approach of intertwined concrete and symbolic ex-
ecution has two important advantages. First, any execution lead-
ing to an error detected by DART is trivially sound. Second, it al-
lows us to alleviate the limitations of the constraint solver/theorem
prover. In particular, whenever we generate a symbolic condition
at a branching statement while executing the program under test,
and the theorem prover cannot decide whether that symbolic con-
dition is true or false, we simply replace this symbolic condition
by its concrete value, i.e., either true or false. This allows us to
continue both the concrete and symbolic execution in spite of the
limitation of the theorem prover. Note that static analysis tools us-
ing predicate abstraction [2, 18] will simply consider both branches
from that branching point, which may result in unsound behaviors.
A test-generation tool using symbolic execution [36], on the other
hand, will stop its symbolic execution at that point and may miss
bugs appearing down the branch. To illustrate this point, consider
the following C program:

1 foobar(int x, int y){
2 if (x*x*x > 0){
3 if (x>0 && y==10)
4 abort();
5 } else {
6 if (x>0 && y==20)
7 abort();
8 }
9 }

Given a theorem prover that cannot reason about non-linear arith-
metic constraints, a static analysis tool using predicate abstrac-
tion [2, 18] will report that both aborts in the above code may be
reachable, hence one false alarm since the abort in line 7 is un-
reachable. This would be true as well if the test (x*x*x > 0) is
replaced by a library call or if it was dependent on a configuration
parameter read from a file. On the other hand, a test-generation tool
based on symbolic execution [36] will not be able to generate an in-
put vector to detect any abort because its symbolic execution will
be stuck at the branching point in line 2. In contrast, DART can
generate randomly an input vector where x>0 and y!=10 with al-
most 0.5 probability; after the first execution with such an input, the
directed search of DART will generate another input with the same
positive value of x but with y==10, which will lead the program in
its second run to the abort at line 4. Note that, if DART randomly

generates a negative value for x in the first run, then DART will
generate in the next run inputs where x>0 and y==20 to satisfy the
other branch at line 7 (it will do so because no constraint is gen-
erated for the branching statement in line 2 since it is non-linear);
however, due to the concrete execution, DART will then not take
the else branch at line 6 in such a second run. In summary, our
mixed strategy of random and directed search along with simulta-
neous concrete and symbolic execution of the program will allow
us to find the only reachable abort statement in the above example
with high probability.

3. DART for C
We now discuss how to implement the algorithms presented in the
previous section for testing programs written in the C programming
language.

3.1 Interface Extraction

Given a program to test, DART first identifies the external inter-
faces through which the program can obtain inputs via uninitialized
memory locations ~M0. In the context of C, we define the external
interfaces of a C program as

• its external variables and external functions (reported as “un-
defined reference” at the time of compilation of the program),
and

• the arguments of a user-specified toplevel function, which is a
function of the program called to start its execution.

The main advantage of this definition is that the external interfaces
of a C program can be easily determined and instrumented by a
light-weight static parsing of the program’s source code. Inputs to
a C program are defined as memory locations which are dynami-
cally initialized at runtime through the static external interface. This
allows us to handle inputs which are dynamic in nature, such as
lists and trees, in a uniform way. Considering inputs as uninitialized
runtime memory locations, instead of syntactic objects exclusively
such as program variables, also allows us to avoid expensive or im-
precise alias analyses, which form the basis of many static analysis
tools.

Note that the (simplified) formalization of Section 2.2 assumed
that the input addresses ~M0 are the same for all executions of
program P . However, our implementation of DART supports a
more general model where multiple inputs can be mapped to a
same address m when these are obtained by successively reading
m during different successive calls to the toplevel function, as
will be discussed later, as well as the possibility of a same input
being mapped to different addresses in different executions, for
instance when the input is provided through an address dynamically
allocated with malloc().

For each external interface, we determine the type of the input
that can be passed to the program via that interface. In C, a type
is defined recursively as either a basic type (int, float, char, enum,
etc.), a struct type composed of one or more fields of other types,
an array of another type, or a pointer to another type.

Figure 6 shows a simple example of C program simulating a
controller for an air-conditioning (AC) system. The toplevel func-
tion is ac controller, and the external interface is simply its ar-
gument message, of basic type int.

It is worth emphasizing that we distinguish three kinds of C
functions in this work.

• Program functions are functions defined in the program.
• External functions are functions controlled by the environment

and hence part of the external interface of the program; they can
nondeterministically return any value of their specified return
type.

/* initially, */
int is_room_hot=0; /* room is not hot */
int is_door_closed=0; /* and door is open */
int ac=0; /* so, ac is off */

void ac_controller(int message) {
if (message == 0) is_room_hot=1;
if (message == 1) is_room_hot=0;
if (message == 2) {

is_door_closed=0;
ac=0;

}
if (message == 3) {

is_door_closed=1;
if (is_room_hot) ac=1;

}
if (is_room_hot && is_door_closed && !ac)

abort(); /* check correctness */
}

Figure 6. AC-controller example (C code)

• Library functions are functions not defined in the program but
controlled by the program, and hence considered as part of it.
Examples of such functions are operating-system functions and
functions defined in the standard C library. These functions are
treated as unknown but deterministic “black-boxes” which we
cannot instrument or analyze.

The ability of DART to handle deterministic but unknown (and
arbitrarily complex) library functions by simply executing these
makes it unique compared to standard symbolic-execution based
frameworks, as discussed in Section 2.4. In practice, the user can
adjust the boundary between library and external functions to sim-
ulate desired effects. For instance, errors in system calls can easily
be simulated by considering the corresponding system functions as
external functions instead of library functions.

3.2 Generation of Random Test Driver

Once the external interfaces of the C program are identified, we
generate a nondeterministic/random test driver simulating the most
general environment visible to the program at its interfaces. This
test driver is itself a C program, which performs the random initial-
ization abstractly described at the beginning of the function instru-
mented program() in Section 2, and which is defined as follows:

• The test driver consists of a function main which initializes all
external variables and all arguments of the toplevel function
with random values by calling the function random init de-
fined below, and then calls the application’s toplevel function.
The user of DART specifies (using the parameter depth) the
number of times the toplevel function is to be called iteratively
in a single run.

• The test driver also contains code simulating each external
function in such a way that, whenever an external function is
called during the program execution, a random value of the
function’s return type is returned by the simulated function.

For example, Figure 7 shows the test driver generated for the
AC-controller example of Figure 6.

The initialization of memory locations controlled by the exter-
nal interface is performed using the procedure random init shown
in Figure 8. This procedure takes as arguments a memory location
m and the type of the value to be stored at m, and initializes ran-
domly the location m depending on its type. If m stores a value of

void main() {
for (i=0; i < depth ; i++) {

int tmp;
random_init(&tmp,int);
ac_controller(tmp);

}
}

Figure 7. Test driver generated for the AC-controller example (C
code)

random_init(m,type) {
if (type == pointer to type2) {

if (fair coin toss == head) {
*m = NULL;

} else {
*m = malloc(sizeof(type));
random_init(*m,type2);

}
} else if (type == struct) {

for all fields f in struct
random_init(&(m->f),typeof(f));

} else if (type == array[n] of type3){
for (int i=0;i<n;i++)

random_init((m+i),type3);
} else if (type == basic type) {

*m = random_bits(sizeof(type));
}

}

Figure 8. Procedure for randomly initializing C variables of any
type (in pseudo-C)

basic type, its value *m5 is initialized with the auxiliary procedure
random bits which returns n random bits where n is its argument.
If its type is a pointer, the value of location m is randomly initial-
ized with either the value NULL (with a 0.5 probability) or with
the address of newly allocated memory location, whose value is in
turn initialized according to its type following the same recursive
rules. If type is a struct or an array, every sub-element is initial-
ized recursively in the same way. Note that, when inputs are data
structures defined with a recursive type (such as lists), this general
procedure can thus generate data structures of unbounded sizes.

For each external variable or argument to the toplevel function,
say v, DART generates a call to random init(&v,typeof(v))
in the function main of the test driver before calling the toplevel
function. For instance, in the case of the AC-controller pro-
gram, the variable message forming the external interface is
of type int, and therefore the corresponding initialization code
random init(&tmp,int)6 is generated (see Figure 7).

Similarly, if the C program being tested can call an external
function, say return type some fun(), then the test driver gen-
erated by DART will include a definition for this function, which is
as follows:

return_type some fun(){
return_type tmp;
random init(&tmp,return type);
return tmp;

}

5 In C, *m denotes the value stored at m.
6 In C, &v gives the memory location of the variable v.

Once the test driver has been generated, it can be combined with the
C program being tested to form a self-executable program, which
can be compiled and executed automatically.

3.3 Implementation of Directed Search

A directed search can be implemented using a dynamic instrumen-
tation as explained in Section 2. The main challenge when deal-
ing with C is to handle all the possible types that C allows, as
well as generate and manipulate symbolic constraints, especially
across function boundaries (i.e., tracking inputs through function
calls when a variable whose value depends on an input is passed as
argument to another program function). This is tedious (because of
the complexity of C) but conceptually not very hard.

In our implementation of DART for C, the code instrumentation
needed to intertwine the concrete execution of the program P
with the symbolic calculations performed by DART as described
in function instrumented program() (see Section 2) is performed
using CIL [28], an OCAML application for parsing and analyzing
C code. The constraint solver used by default in our implementation
is lp solve [26], which can solve efficiently any linear constraint
using real and integer programming techniques.

3.4 Additional Remarks

For the sake of modeling “realistic” external environments, we have
assumed in this work that the execution of external functions do
not have any side effects on (i.e., do not change the value of) any
previously-defined stack or heap allocated program variable, in-
cluding those passed as arguments to the function. For instance,
an external function returning a pointer to an int can only return
NULL or a pointer to a newly allocated int, not a pointer to a pre-
viously allocated int. Note that this assumption does not restrict
generality: external functions with side effects or returning previ-
ously defined heap-allocated objects can be simulated by adding
interface code between the program and its environment.

Another assumption we made is that all program variables (i.e.,
all those not controlled by the environment) are properly initialized.
Detecting uninitialized program variables can be done using other
analyzes and tools, either statically (e.g., with lint [19]) or dy-
namically (e.g., with Purify [17]) or both (e.g., with CCured [29]).

Instead of using a static definition of interface for C programs
as done above in this section, we could have used a dynamic defi-
nition, such as considering any uninitialized variable (memory lo-
cation) read by the program as an input. In general, detecting in-
puts with such a loose definition can only be done dynamically,
using a dynamic program instrumentation similar to one for de-
tecting uninitialized variables. Such instrumentations require a pre-
cise, hence expensive, tracking of memory accesses. Discovering
and simulating external functions on-the-fly is also challenging. It
would be worth exploring further how to deal with dynamic inter-
face definitions.

4. Experimental Evaluation
In this section, we present the results of several experiments per-
formed with DART. We first compare the efficiency of a purely
random search with a directed search using two program examples.
We then discuss the application of DART on a larger application.
All experiments were performed on a Pentium III 800Mhz proces-
sor running Linux. Runtime is user+system time as reported by the
Unix time command and is always roughly equal to elapsed time.

4.1 AC-controller Example

Our first benchmark is the AC-controller program of Figure 6. If
we set the depth to 1, the program does not have any execution
leading to an assertion violation. For this example, a directed search

explores all execution paths upto that depth in 6 iterations and less
than a second. In contrast, a random search would thus runs forever
without detecting any errors. If we set the depth to 2, there is an
assertion violation if the first input value is 3 and the second input
value is 0. This scenario is found by the directed search in DART
in 7 iterations and less than a second. In contrast, a random search
does not find the assertion violation after hours of search. Indeed,
if message is a 32-bit integer, the probability for a random search
to find the specific combination of inputs leading to this assertion
violation is one out of 232 × 232 = 264, i.e., virtually zero in
practice!

This explains why a directed search usually provides much
better code coverage than a simple random search. Indeed, most
applications contain input-filtering code that performs basic sanity
checks on the inputs and discards the bad or irrelevant ones. Only
inputs that satisfy these filtering tests are then passed to the core
application and can influence its behavior. For instance, in the
AC-controller program, only values 0 to 3 are meaningful inputs
while all others are ignored; the directed mode is crucial to identify
(iteratively) those meaningful input values.

It is worth observing how a directed search can learn through
trial and error how to generate inputs that satisfy such filtering
tests. Each way to pass these tests corresponds to an execution path
through the input-filtering code that leads to the core application
code. Every such path will eventually be discovered by the directed
search provided it can reason about all the constraints along the
path. When this happens, the directed search will reach and start
exercizing (in the same smart way) the core application code. In
contrast, a purely random search will typically be stuck forever in
the input-filtering code and will never exercize the code of the core
application.

4.2 Needham-Schroeder Protocol

Our second benchmark example is a C implementation of the
Needham-Schroeder public key authentication protocol [30]. This
protocol aims at providing mutual authentication, so that two par-
ties can verify each other’s identity before engaging in a transac-
tion. The protocol involves a sequence of message exchanges be-
tween an initiator, a responder, and a mutually-trusted key server.
The exact details of the protocol are not necessary for the dis-
cussion that follows and are omitted here. An attack against the
original protocol involving six message exchanges was reported by
Lowe in [24]: an intruder I is able to impersonate an initiator A
to set up a false session with responder B, while B thinks he is
talking to A. The steps of Lowe’s attack are as follows:

1. A → I : {Na, A}Ki
(A starts a normal session with I by

sending it a nonce Na and its name A, both encrypted with I’s
public key Ki)

2. I(A) → B : {Na, A}Kb
(the intruder I impersonates A to

try to establish a false session with B)
3. B → I(A) : {Na, Nb}Ka

(B responds by selecting a new
nonce Nb and trying to return it with Na to A)

4. I → A : {Na, Nb}Ka
(I simply forwards B’s last message

to A; note that I does not know how to decrypt B’s message to
A since it is encrypted with A’s key Ka)

5. A → I : {Nb}Ki
(A decrypts the last message to obtain Nb

and returns it to I)
6. I(A) → B : {Nb}Kb

(I can then decrypt this message to
obtain Nb and returns it to B; after receiving this message, B
believes that A has correctly established a session with it)

The C implementation of the Needham-Schroeder protocol we
considered7 is described by about 400 lines of C code and is more

7 We thank John Havlicek for providing us this implementation.

depth error? Random search Directed search
1 no - 69 runs (<1 second)
2 yes - 664 runs (2 seconds)

Figure 9. Results for Needham-Schroeder protocol with a possi-
bilistic intruder model

depth error? Iterations (runtime)
1 no 5 runs (<1 second)
2 no 85 runs (<1 seconds)
3 no 6,260 runs (22 seconds)
4 yes 328,459 runs (18 minutes)

Figure 10. Results for Needham-Schroeder protocol with a Dolev-
Yao intruder model

detailed than the protocol description analyzed in [24]. The C pro-
gram simulates the behavior of both the initiator A and responder
B according to the protocol rules. It can be executed as a single
Unix process simulating the interleaved behavior of both protocol
entities. It also contains an assertion that is violated whenever an
attack to the protocol occurs.8. In the C program, agent identifiers,
keys, addresses and nounces are all represented by integers. The
program takes as inputs tuples of integer values representing in-
coming messages.

Results of experiments are presented in Figure 9. When at most
one (depth is 1) message is sent to the initiator or responder,
there is no program execution leading to an assertion violation.
The table indicates how many iterations (runs) of the program are
needed by DART’s directed search to reach this conclusion. This
number thus represents all possible execution paths of this protocol
implementation when executed once. When two input messages
are allowed, DART finds an assertion violation in 664 iterations
or about two seconds of search. In contrast, a random search is not
able to find any assertion violations after many hours of search.

An examination of the program execution leading to this asser-
tion violation reveals that DART only finds part of Lowe’s attack: it
finds the projection of the attack from B’s point of view, i.e., steps
2 and 6 above. In other words, DART finds that, when placed in
its most general environment, there exists a sequence of two input
messages that drives this code to an assertion violation. However,
the most general environment, which can generate any valid input
at any time, is too powerful to model a realistic intruder I: for in-
stance, given a conditional statement of the form if (input ==
my secret) then . . . , DART can set the value of this input to
my secret to direct its testing, which is as powerful as being able
to guess encryption keys hard-coded in the program. (Such a most
powerful intruder model is sometimes called a possibilistic attacker
model in the literature.)

To find the complete Lowe’s attack, it is necessary to use a more
constrained model of the environment that models more precisely
the capabilities of the intruder I , namely I’s ability to only decrypt
messages encrypted with its own key Ki, to compose messages
with only nonces it already knows, and to forward only messages it
has previously seen. (Such a model is called a Dolev-Yao attacker
model in the security literature.) We then augmented the original
code with such a model of I . We quickly discovered that there are
many ways to model I and that each variant can have a significant
impact on the size of the resulting search space.

Figure 10 presents the results obtained with one of these models,
which is at least as unconstrained as the original intruder model
of [24] yet results in the smallest state space we could get. In this

8 A C assertion violation (as defined in <assert.h>) triggers an abort().

version, the intruder model acts as an input filter for entities A and
B. As shown in the Figure, the shortest sequence of inputs leading
to an assertion violation is of length 4 and DART takes about 18
minutes of search to find it. This time, the corresponding execution
trace corresponds to the full Lowe’s attack:

• (After no specific input) A sends its first message as in Step 1
(depth 1).

• B receives an input and sends an output as in Step 3 (depth 2).
• A receives an input and sends an output as in Step 5 (depth 3).
• B receives an input as in Step 6, which then triggers an assertion

violation (depth 4).

Note that, since the initiator I is modeled as an input filter, Steps 2
and 4 are not represented explicitly by additional messages.

The original code we started with contains a flag which, if
turned on, implements Lowe’s fix to the Needham-Schroeder pro-
tocol [25]. By curiosity, we also tested this version with DART and,
to our surprise, DART found again an assertion violation after about
22 minutes of search! After examining the error trace produced by
DART, we discovered that the implementation of Lowe’s fix was
incomplete. We contacted the author of the original code and he
confirmed this was a bug he was not aware of. After fixing the code,
DART was no longer able to find any assertion violation.

It is interesting to compare these results with the ones re-
ported in [13] where the same C implementation of the Needham-
Schroeder protocol was analyzed using state-space exploration
techniques. Specifically, [13] studied the exploration of the (very
large) state space formed by the product of this C implementation
in conjunction with a nondeterministic C model of the intruder.
The tool VeriSoft [12] was used to explore the product of these
two interacting Unix processes. Several search techniques were
experimented with. To summarize the results of [13], neither a sys-
tematic search nor a random search through that state space were
able to detect the attack (within 8 hours of search). But a random
search guided using application-independent heuristics (essentially
maximizing the number of messages exchanged between the two
processes) was able to find the attack after 50 minutes of search on
average, on a comparable machine. So far, we have not explored
the use of heuristics in the context of DART.

Because the intruder model in the implementations of the
Needham-Schroeder protocol considered here and in [13] are dif-
ferent, a direct comparison between our results and the results
of [13] is not possible. Yet, DART was able to find Lowe’s attack
using a systematic search (and to discover a previously-unknown
bug in the implementation of Lowe’s fix), while the experimental
setup of [13] was not. This performance difference can perhaps be
explained intuitively as follows. A standard model checking ap-
proach as taken in [13] (at a protocol implementation level) and
also in [24] (at a more abstract protocol specification level) repre-
sents the program’s environment (here the intruder) by a nondeter-
ministic process that blindly guesses possible sequences of inputs
(attacks), and then checks the effect of these on the program by
performing state-space exploration. In contrast, a directed search
as implemented in DART does not treat the program under test
as a black-box. Instead, the directed search attempts to partition
iteratively the program’s input space into equivalence classes, and
generate new inputs in order to exhibit new program responses – in-
puts that trigger a previously considered program behavior are not
generated and re-tested over and over again. In this sense, a directed
search can be viewed as a more white-box approach than traditional
model checking since the observation of how the program reacts
to specific inputs is used to generate the next test inputs. Since a
directed search exploits more information about the program being
tested, it is not surprising that it can (and should) be more effective.

4.3 A Larger Application: oSIP

In order to evaluate further the effectiveness and scalability of
DART, we applied it to test a large application of industrial rele-
vance: oSIP, an open-source implementation of the Session Initia-
tion Protocol. SIP is a telephony protocol for call-establishment of
multi-media sessions over IP networks (including Voice-over-IP).
oSIP is a C library available at

http://www.gnu.org/software/osip/osip.html.

The oSIP library (version 2.0.9) consists of about 30,000 lines of
C code describing about 600 externally visible functions which can
be used by higher-level applications. Two typical such applications
are SIP clients (such as softphones to make calls over the internet
from a PC) and servers (to route internet calls).

Our experimental setup was as follows. Since there is very little
documentation on the API provided by the oSIP library other than
the code itself, we considered one-by-one each of the about 600
externally visible functions as the toplevel function that DART
calls. These function names were automatically extracted from
the library using scripts. For each toplevel function, the inputs
controlled by DART were the arguments of the function, and the
search was limited to a maximum of 1,000 iterations (runs). In other
words, if DART did not find any errors after 1,000 runs, the script
would then move on to the next toplevel function, and so on. Since
the oSIP code does not contain assertions, the search was limited
to finding segmentation faults (crashes) and non-termination.9

The results obtained with DART were surprising to us: DART
found hundreds of ways to crash externally visible oSIP functions.
In fact, DART found a way to crash 65% of the oSIP functions
within 1,000 attempts for each function. A closer analysis of the
results revealed that most of these crashes share the same basic
pattern: an oSIP function takes as argument a pointer to a data
structure and then de-references later that pointer without checking
first whether the pointer is non-NULL. It is worth noticing that
some oSIP functions do contain code to test for NULL pointers, but
most do not perform such tests consistently (i.e., for all execution
paths), and the the documentation does not distinguish the former
category of functions from the latter. Also note that a simple visual
code inspection would have revealed most of these problems.

Because DART reported so many errors and because of the
lack of a specification for the oSIP API, it is hard to evaluate how
severe these problems really are. Perhaps the implicit assumption
for higher-level applications is that they must always pass non-
NULL pointers to the oSIP library, but then it is troubling to see
that some of the oSIP functions do check their arguments for NULL
pointers. All we can conclude with good certainty is that, from
the point of view of a higher-level application developer, there
are many ways to misuse the API, and that programming errors
in higher-level code (such as mistakenly passing a NULL pointer
to some unguarded oSIP function) could result in dramatic failures
(crashes).

Overwhelmed by the large number of potential problems re-
ported by DART, we decided to focus on the oSIP functions called
in a test driver provided with the oSIP library, and to analyze in
detail the results obtained for these functions. In the process, we
discovered what appears to be a significant security vulnerability
in oSIP: we found an externally controllable way to crash the oSIP
parser. Specifically, the attack is as follows:

• Build an (ASCII) SIP message containing no NULL (zero) or
“|” characters, and of more than 2.5 Megabytes (for a cygwin
environment – the size may vary on other platforms).

9 Non-termination is reported by DART after a timer expiration triggered
when the program under test does not call any DART instrumentation within
a specific time delay.

• Pass it to oSIP parser using the oSIP function
“osip message parse”.

• One of the first thing this function does is to copy this packet in
stack space using the system call alloca(size). This system
call returns a pointer to size bytes of uninitialized local stack
space, or NULL if the allocation failed. Since 2.5 Megabytes
is larger than the standard stack space available for cygwin
processes, an error is reported and NULL is returned.

• The oSIP code does not check success/failure of the call to
alloca, and pass the pointer blindly to another oSIP function,
which does not check this input argument and then crashes
because of the NULL pointer value.

By modifying the test driver that comes with oSIP and generat-
ing an input SIP message that satisfies these constraints, we were
able to confirm this attack. This is a potentially very serious flaw
in oSIP: it could be possible to kill remotely any SIP client or
server relying on the oSIP library for parsing SIP messages by sim-
ply sending it a message satisfying the simple properties described
above! However, we do not know whether existing SIP clients or
servers (i.e., higher-level applications) built using oSIP are vulner-
able to this attack. Note that, as of version 2.2.0 of the oSIP library
(December 2004), this code has been fixed (see comments in the
ChangeLog file).

5. Other Related Work
Automatically closing an open reactive program with its most gen-
eral environment to make it self-executable and to systematically
explore all its possible behaviors was already proposed in [8]. How-
ever, the approach taken there is to use static analysis and code
transformation in order to eliminate the external interface of the
open program and to replace with nondeterministic statements all
conditional statements whose outcome may depend on an input
value. The resulting closed program is a simplified version (abstrac-
tion) of the original open program that is guaranteed to simulate all
its possible behaviors. In comparison, DART is more precise both
because it does not abstract the program under test and because
it does not suffer from the inherent imprecision of static analysis.
The article [35] explores how to achieve the same goal as [8] by
partitioning the program’s input domain using static analysis. Be-
cause [35] does not rely on abstraction (program simplifications),
it can be more precise than [8], but it still suffers from the cost and
imprecision of static analysis compared to DART.

There is a rich literature on test-vector generation using sym-
bolic execution (e.g., see [21, 27, 10, 3, 36, 38, 9]). Symbolic ex-
ecution is limited in practice by the imprecision of static analysis
and of theorem provers. As illustrated by the examples in Section 2,
DART is able to alleviate some of the limitations of symbolic exe-
cution by exploiting dynamic information obtained from a concrete
execution matching the symbolic constraints, by using dynamic test
generation, and by instrumenting the program to check whether the
input values generated next have the expected effect on the pro-
gram. The ability of DART to handle complex or unknown code
segments (including library functions) as black-boxes by simply
executing these makes it unique compared to standard symbolic-
execution based frameworks, which require some knowledge (min-
imally regarding termination) about all program parts or are incon-
clusive otherwise. Since most C code usually contains a system or
library call every 10 lines or so on average, this distinguishing fea-
ture of DART is a significant practical advantage.

The directed search algorithm introduced in Section 2 is closely
related to prior work on dynamic test generation (e.g., [23, 15]).
The algorithms discussed in these papers generate test inputs to
exercise a specific program path or branch (to determine if its exe-
cution is feasible), starting with some (possibly random) execution

path. In contrast, DART attempts to cover all executable program
paths, in a style similar to systematic testing and model checking
(e.g., [12]). It therefore does not use branch/predicate classification
techniques as in [23, 15]. Also, prior work on dynamic test gener-
ation does not deal with functions calls, unknown code segments
(such as library functions), how to check at run-time whether pre-
dictions about new test inputs are matched in the next run, and does
not discuss completeness. Finally, to the best of our knowledge, dy-
namic test generation has never been implemented previously for a
full-fledged programming language like C nor applied to large ex-
amples like the Needham-Schroeder protocol and the oSIP library.

DART is also more loosely related to the following work.
QuickCheck [7] is a tool for random testing of Haskell programs
which supports a test specification language where the user can
assign probabilities to inputs. Korat [5] is a tool that can analyze
a Java method’s precondition on its input and automatically gener-
ate all possible non-isomorphic inputs up to a given (small) size.
Continuous testing [34] uses free cycles on a developer’s machine
to continuously run regression tests in the background, providing
feedback about test failures as source code is edited. Random in-
terpretation [14] is an approximate form of abstract interpretation
where code fragments are interpreted over a probabilistic abstract
domain and their abstract execution sampled via random testing.

6. Conclusions
With DART, we have turned the conventional stance on the role of
symbolic evaluation upside-down: symbolic reasoning is an adjunct
to real execution. Randomization helps us where automated rea-
soning is impossible or difficult. For example, when we encounter
’malloc’s we use randomization to guess the result of the alloca-
tion. Thus symbolic execution degrades gracefully in the sense that
randomization takes over, by suggesting concrete values, when au-
tomated reasoning fails to suggest how to proceed.

DART’s ability to execute and test any program that compiles
without writing any test driver/harness code is a new powerful
paradigm, we believe. Running a program for the first time usu-
ally brings interesting feedback (detects bugs), and DART makes
this step almost effortless. We wrote “almost” because in prac-
tice, the user is still responsible for defining what a suitable self-
contained unit is: it makes little sense to test in isolation functions
that are tightly coupled; instead, DART should be applied to pro-
gram/application interfaces where pretty much any input can be ex-
pected and should be dealt with. The user can also restrict the most
general environment or test for functional correctness by adding
interface code to the program in order to filter inputs (i.e., enforce
pre-conditions) and analyze outputs (i.e., test post-conditions). We
plan to explore how to effectively present to the user the interface
identified by DART and let him/her specify constraints on inputs or
outputs in a modular way.

Acknowledgments
We thank Dennis Dams, Cormac Flanagan, Alan Jeffrey, Rupak
Majumdar, Darko Marinov, Kedar Namjoshi and Vic Zandy for
helpful comments on this work. We are grateful to the anonymous
reviewers for their comments on a preliminary version of this paper.
This work was funded in part by NSF CCR-0341658. The work
of Koushik Sen was done mostly while visiting Bell Laboratories,
and we thank his advisor, Gul Agha, for the additional time and
resources needed to complete this work.

References
[1] R. Alur, P. Cerny, G. Gupta, P. Madhusudan, W. Nam, and A. Sri-

vastava. Synthesis of Interface Specifications for Java Classes. In
Proceedings of POPL’05 (32nd ACM Symposium on Principles of
Programming Languages), Long Beach, January 2005.

[2] T. Ball and S. Rajamani. The SLAM Toolkit. In Proceedings
of CAV’2001 (13th Conference on Computer Aided Verification),
volume 2102 of Lecture Notes in Computer Science, pages 260–264,
Paris, July 2001. Springer-Verlag.

[3] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar.
Generating Test from Counterexamples. In Proceedings of ICSE’2004
(26th International Conference on Software Engineering). ACM, May
2004.

[4] D. Bird and C. Munoz. Automatic Generation of Random Self-
Checking Test Cases. IBM Systems Journal, 22(3):229–245, 1983.

[5] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated
testing based on Java predicates. In Proceedings of ISSTA’2002
(International Symposium on Software Testing and Analysis), pages
123–133, 2002.

[6] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding
dynamic programming errors. Software Practice and Experience,
30(7):775–802, 2000.

[7] K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of ICFP’2000,
2000.

[8] C. Colby, P. Godefroid, and L. J. Jagadeesan. Automatically
Closing Open Reactive Programs. In Proceedings of PLDI’98 (1998
ACM SIGPLAN Conference on Programming Language Design and
Implementation), pages 345–357, Montreal, June 1998. ACM Press.

[9] C. Csallner and Y. Smaragdakis. Check’n Crash: Combining
Static Checking and Testing. In Proceedings of ICSE’2005 (27th
International Conference on Software Engineering). ACM, May
2005.

[10] J. Edvardsson. A Survey on Automatic Test Data Generation.
In Proceedings of the 2nd Conference on Computer Science and
Engineering, pages 21–28, Linkoping, October 1999.

[11] J. E. Forrester and B. P. Miller. An Empirical Study of the Robustness
of Windows NT Applications Using Random Testing. In Proceedings
of the 4th USENIX Windows System Symposium, Seattle, August
2000.

[12] P. Godefroid. Model Checking for Programming Languages using
VeriSoft. In Proceedings of POPL’97 (24th ACM Symposium on
Principles of Programming Languages), pages 174–186, Paris,
January 1997.

[13] P. Godefroid and S. Khurshid. Exploring Very Large State Spaces
Using Genetic Algorithms. In Proceedings of TACAS’2002 (8th
Conference on Tools and Algorithms for the Construction and
Analysis of Systems), Grenoble, April 2002.

[14] S. Gulwani and G. C. Necula. Precise Interprocedural Analysis using
Random Interpretation. In To appear in Proceedings of POPL’05
(32nd ACM Symposium on Principles of Programming Languages),
Long Beach, January 2005.

[15] N. Gupta, A. P. Mathur, and M. L. Soffa. Generating test data for
branch coverage. In Proceedings of the 15th IEEE International
Conference on Automated Software Engineering, pages 219–227,
September 2000.

[16] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A System and Language
for Building System-Specific Static Analyses. In Proceedings
of PLDI’02 (2002 ACM SIGPLAN Conference on Programming
Language Design and Implementation), pages 69–82, 2002.

[17] R. Hastings and B. Joyce. Purify: Fast Detection of Memory Leaks
and Access Errors. In Proceedings of the Usenix Winter 1992
technical Conference, pages 125–138, Berkeley, January 1992.

[18] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction.
In Proceedings of the 29th ACM Symposium on Principles of
Programming Languages, pages 58–70, Portland, January 2002.

[19] S. Johnson. Lint, a C program checker, 1978. Unix Programmer’s
Manual, AT&T Bell Laboratories.

[20] Junit. web page: http://www.junit.org/.
[21] J. C. King. Symbolic Execution and Program Testing. Communica-

tions of the ACM, 19(7):385–394, 1976.
[22] Klocwork. web page: http://klocwork.com/index.asp.
[23] B. Korel. A dynamic Approach of Test Data Generation. In IEEE

Conference on Software Maintenance, pages 311–317, San Diego,
November 1990.

[24] G. Lowe. An Attack on the Needham-Schroeder Public-Key
Authentication Protocol. Information Processing Letters, 1995.

[25] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-
Key Protocol using FDR. In Proceedings of TACAS’1996 ((Second
International Workshop on Tools and Algorithms for the Construction
and Analysis of Systems), volume 1055 of Lecture Notes in Computer
Science, pages 147–166. Springer-Verlag, 1996.

[26] lp solve. web page: http://groups.yahoo.com/group/lp solve/.
[27] G. J. Myers. The Art of Software Testing. Wiley, 1979.
[28] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:

Intermediate Language and Tools for Analysis and transformation of
C Programs. In Proceedings of Conference on compiler Construction,
pages 213–228, 2002.

[29] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-Safe
Retrofitting of Legacy Code. In Proceedings of POPL’02 (29th
ACM Symposium on Principles of Programming Languages), pages
128–139, Portland, January 2002.

[30] R. Needham and M. Schroeder. Using Encryption for Authentication
in Large Networks of Computers. Communications of the ACM,
21(12):993–999, 1978.

[31] The economic impacts of inadequate infrastructure for software
testing. National Institute of Standards and technology, Planning
Report 02-3, May 2002.

[32] J. Offut and J. Hayes. A Semantic Model of Program Faults. In
Proceedings of ISSTA’96 (International Symposium on Software
Testing and Analysis), pages 195–200, San Diego, January 1996.

[33] Polyspace. web page: http://www.polyspace.com.
[34] D. Saff and M. D. Ernst. Continuous testing in Eclipse. In

Proceedings of 2nd Eclipse Technology Exchange Workshop (eTX),
Barcelona, March 2004.

[35] S. D. Stoller. Domain Partitioning for Open Reactive Programs. In
Proceedings of ACM SIGSOFT ISSTA’02 (International Symposium
on Software Testing and Analysis), 200.

[36] W. Visser, C. Pasareanu, and S. Khurshid. Test Input Generation
with Java PathFinder. In Proceedings of ACM SIGSOFT ISSTA’04
(International Symposium on Software Testing and Analysis), Boston,
July 2004.

[37] J. Whaley, M. C. Martin, and M. S. Lam. Automatic Extraction
of Object-Oriented Component Interfaces. In Proceedings of ACM
SIGSOFT ISSTA’02 (International Symposium on Software Testing
and Analysis), 2002.

[38] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework
for generating object-oriented unit tests using symbolic execution. In
Proceedings of TACAS’05 (11th Conference on Tools and Algorithms
for the Construction and Analysis of Systems), volume 3440 of LNCS,
pages 365–381. Springer, 2005.

