
ACM International Symposium on Software Testing and Analysis (ISSTA), July 2002. Winner of anACM SIGSOFT Distinguished Paper Award.

Korat: Automated Testing Based on Java Predicates

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov
MIT Laboratory for Computer Science

200 Technology Square
Cambridge, MA 02139 USA

{chandra,khurshid,marinov}@lcs.mit.edu

ABSTRACT
This paper presents Korat, a novel framework for automated testing
of Java programs. Given a formal specification for a method, Korat
uses the method precondition to automatically generate all (noni-
somorphic) test cases up to a given small size. Korat then executes
the method on each test case, and uses the method postcondition as
a test oracle to check the correctness of each output.

To generate test cases for a method, Korat constructs a Java predi-
cate (i.e., a method that returns a boolean) from the method’s pre-
condition. The heart of Korat is a technique for automatic test case
generation: given a predicate and a bound on the size of its inputs,
Korat generates all (nonisomorphic) inputs for which the predicate
returns true. Korat exhaustively explores the bounded input space
of the predicate but does so efficiently by monitoring the predicate’s
executions and pruning large portions of the search space.

This paper illustrates the use of Korat for testing several data struc-
tures, including some from the Java Collections Framework. The
experimental results show that it is feasible to generate test cases
from Java predicates, even when the search space for inputs is very
large. This paper also compares Korat with a testing framework
based on declarative specifications. Contrary to our initial expec-
tation, the experiments show that Korat generates test cases much
faster than the declarative framework.

1. INTRODUCTION
Manual software testing, in general, and test data generation, in
particular, are labor-intensive processes. Automated testing can
significantly reduce the cost of software development and main-
tenance [4]. This paper presents Korat, a novel framework for au-
tomated testing of Java programs. Korat uses specification-based
testing [5, 13, 15, 25]. Given a formal specification for a method,
Korat uses the method precondition to automatically generate all
nonisomorphic test cases up to a given small size. Korat then exe-
cutes the method on each test case, and uses the method postcondi-
tion as a test oracle to check the correctness of each output.

To generate test cases for a method, Korat constructs a Java predi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’02,July 22-24, 2002, Rome, Italy.
Copyright 2002 ACM 1-58113-562-9 ...$5.00

cate (i.e., a method that returns a boolean) from the method’s pre-
condition. One of the key contributions of Korat is a technique for
automatic test case generation: given a predicate, and a bound on
the size of its inputs, Korat generates all nonisomorphic inputs for
which the predicate returnstrue . Korat uses backtracking to sys-
tematically explore the bounded input space of the predicate. Korat
generatescandidateinputs and checks their validity by invoking
the predicate on them. Korat monitors accesses that the predicate
makes to all the fields of the candidate input. If the predicate returns
without reading some fields of the candidate, then the validity of the
candidate must be independent of the values of those fields—Korat
uses this observation to prune large portions of the search space.
Korat also uses an optimization to generate only nonisomorphic test
cases. (Section 3.4 gives a precise definition of nonisomorphism.)
This optimization reduces the search time without compromising
the exhaustive nature of the search.

Korat lets programmers write specifications in any language as long
as the specifications can be automatically translated into Java predi-
cates. We have implemented a prototype of Korat that uses the Java
Modeling Language (JML) [20] for specifications. Programmers
can use JML to write method preconditions and postconditions, as
well as class invariants. JML uses Java syntax and semantics for
expressions, and contains some extensions such as quantifiers. A
large subset of JML can be automatically translated into Java pred-
icates. Programmers can thus use Korat without having to learn a
specification language much different than Java. Moreover, since
JML specifications can call Java methods, programmers can use the
full expressiveness of the Java language to write specifications.

To see an illustration of the use of Korat, consider a method that
removes the minimum element from a balanced binary tree. The
(implicit) precondition for this method requires the input to satisfy
its class invariant: the input must be a binary tree and the tree must
be balanced. Korat uses the code that checks the class invariant
as the predicate for generating all nonisomorphic balanced binary
trees bounded by a given size. Good programming practice [21]
suggests that implementations of abstract data types provide predi-
cates (known as therepOk or checkRep methods) that check class
invariants—Korat then generates test cases almost for free. Korat
invokes the method on each of the generated trees and checks the
postcondition in each case. If a method postcondition is not (explic-
itly) specified, Korat can still be used to test partial correctness of
the method. In the binary tree example, Korat can be used to check
the class invariant at the end of the remove method, to see that the
tree remains a balanced binary tree after removing the minimum
element from it.

123

import java.util.*;
class BinaryTree {

private Node root; // root node
private int size; // number of nodes in the tree
static class Node {

private Node left; // left child
private Node right; // right child

}
public boolean repOk() {

// checks that empty tree has size zero
if (root == null) return size == 0;
Set visited = new HashSet();
visited.add(root);
LinkedList workList = new LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

Node current = (Node)workList.removeFirst();
if (current.left != null) {

// checks that tree has no cycle
if (!visited.add(current.left))

return false;
workList.add(current.left);

}
if (current.right != null) {

// checks that tree has no cycle
if (!visited.add(current.right))

return false;
workList.add(current.right);

}
}
// checks that size is consistent
if (visited.size() != size) return false;
return true;

}
}

Figure 1: BinaryTree example

We have used Korat to test several data structures, including some
from the Java Collections Framework. The experimental results
show that it is feasible to generate test cases from Java predicates,
even when the search space for inputs is very large. In particular,
our experiments indicate that it is practical to generate inputs to
achieve complete statement coverage, even for intricate methods
that manipulate complex data structures. This paper also compares
Korat with the Alloy Analyzer [16], which can be used to generate
test cases [22] from declarative predicates. Contrary to our initial
expectation, the experiments show that Korat generates test cases
much faster than the Alloy Analyzer.

The rest of this paper is organized as follows. Section 2 illustrates
the use of Korat on two examples. Section 3 presents the algorithm
that Korat uses to explore the search space. Section 4 describes
how Korat checks method correctness. Section 5 presents the ex-
perimental results. Section 6 reviews related work, and Section 7
concludes.

2. EXAMPLES
This section presents two examples to illustrate how programmers
can use Korat to test their programs. These examples, a binary tree
data structure and a heap1 data structure, illustrate methods that
manipulate linked data structures and array-based data structures,
respectively.

2.1 Binary tree
This section illustrates the generation and testing of linked data
structures using simple binary trees. The Java code in Figure 1
declares a binary tree and defines itsrepOk method, i.e., a Java
1The term “heap” refers to the data structure (priority queues) and
not to the garbage-collected memory.

public static Finitization finBinaryTree(int NUM_Node) {
Finitization f = new Finitization(BinaryTree.class);
ObjSet nodes = f.createObjects("Node", NUM_Node);

// #Node = NUM_Node
nodes.add(null);
f.set("root", nodes); // root in null + Node
f.set("size", NUM_Node); // size = NUM_Node
f.set("Node.left", nodes); // Node.left in null + Node
f.set("Node.right", nodes); // Node.right in null+ Node
return f;

}

Figure 2: Finitization description for the BinaryTree example

left rightleft

left

right

right

right

left

left

right

N0

N1 N2

N0

N1

N2

N0

N1

N2

N0

N2

N1

N0

N1

N2

Figure 3: Trees generated forfinBinaryTree(3)

predicate that checks the representation invariant (or class invari-
ant) of the corresponding data structure [21]. In this case,repOk
checks if the input is a tree with the correctsize .

Each object of the classBinaryTree represents a tree. Thesize
field contains the number of nodes in the tree. Objects of the in-
ner classNode represent nodes of the trees. The methodrepOk
first checks if the tree is empty. If not,repOk traverses all nodes
reachable fromroot , keeping track of the visited nodes to detect
cycles. (The methodadd from java.util.Set returnsfalse if
the argument already exists in the set.)

To generate trees that have a given number of nodes, the Korat
search algorithm uses thefinitizationdescription shown in Figure 2.
The statements in the finitization description specify bounds on the
number of objects to be used to construct instances of the data struc-
ture, as well as possible values stored in the fields of those objects.
Most of the finitization description shown in the figure is automat-
ically generated from the type declarations in the Java code. In
Figure 2, the parameterNUMNode specifies the bound on number
of nodes in the tree. Each reference field in the tree is eithernull or
points to one of theNode objects. Note that the identity of these ob-
jects is irrelevant—two trees areisomorphicif they have the same
branching structure, irrespective of the actual nodes in the trees.

Korat automatically generates all nonisomorphic trees with a given
number of nodes. For example, forfinBinaryTree(3) , Korat
generates the five trees shown in Figure 3. As another example, for
finBinaryTree(7) , Korat generates 429 trees in less than one
second.

We next illustrate how programmers can use Korat to check correct-
ness of methods. The JML annotations in Figure 4 specify partial
correctness for the exampleremove method that removes from a
BinaryTree a node that is in the tree. Thenormal behavior an-
notation specifies that if the precondition (requires) is satisfied
at the beginning of the method, then the postcondition (ensures)
is satisfied at the end of the method and the method returns with-
out throwing an exception. (The helper methodhas checks that
the tree contains the given node.) Implicitly, the classinvariant
is added to the precondition and the postcondition. Korat uses the
JML tool-set to translate annotations into runtime Java assertions.

124

//@ public invariant repOk(); // class invariant
// for BinaryTree

/*@ public normal_behavior // specification for remove
@ requires has(n); // precondition
@ ensures !has(n); // postcondition
@*/

public void remove(Node n) {
// ... method body

}

Figure 4: Partial specification for BinaryTree.remove

public class HeapArray {
private int size; // number of elements in the heap
private Comparable[] array; // heap elements
//@ public invariant repOk();
public boolean repOk() {

// checks that array is non-null
if (array == null) return false;
// checks that size is within array bounds
if (size < 0 || size > array.length)

return false;
for (int i = 0; i < size; i++) {

// checks that elements are non-null
if (array[i] == null) return false;
// checks that array is heapified
if (i > 0 &&

array[i].compareTo(array[(i-1)/2]) > 0)
return false;

}
// checks that non-heap elements are null
for (int i = size; i < array.length; i++)

if (array[i] != null) return false;
return true;

}
}

Figure 5: HeapArray example

To test a method, Korat first generates test inputs. Forremove , each
input is a pair of a tree and a node. The precondition defines valid
inputs for the method: the tree must be valid and the node must
be in the tree. Given a finitization for inputs (which can be written
reusing the finitization description for trees presented in Figure 2),
Korat generates all nonisomorphic inputs. Forremove , the number
of input pairs is the product of the number of trees and the number
of nodes in the trees. After generating the inputs, Korat invokes
the method (with runtime assertions for postconditions) on each
input and reports a counterexample if the method fails to satisfy
the correctness criteria.

2.2 Heap array
This section illustrates the generation and checking of array-based
data structures, using the heap data structure [8]. The (binary)heap
data structure can be viewed as a complete binary tree—the tree is
completely filled on all levels except possibly the lowest, which is
filled from the left up to some point. Heaps also satisfy theheap
property—for every noden other than the root, the value ofn’s
parent is greater than or equal to the value ofn. The Java code in
Figure 5 declares an array-based heap and defines the correspond-
ing repOk method that checks if the input is a validHeapArray .

The elements of the heap are stored inarray . The elements imple-
ment the interfaceComparable , providing the methodcompareTo
for comparisons. The methodrepOk first checks for the special
case whenarray is null . If not, repOk checks that thesize of
the heap is within the bounds of thearray . Then,repOk checks
that the array elements that belong to the heap are notnull and
that they satisfy the heap property. Finally,repOk checks that the
array elements that do not belong to the heap arenull .

public static Finitization finHeapArray(int MAX_size,
int MAX_length,
int MAX_elem) {

Finitization f = new Finitization(HeapArray.class);
// size in [0..MAX_size]
f.set("size", new IntSet(0, MAX_size));
f.set("array",

// array.length in [0..MAX_length]
new IntSet(0, MAX_length),
// array[] in null + Integer([0..MAX_elem])
new IntegerSet(0, MAX_elem).add(null));

return f;
}

Figure 6: Finitization description for the HeapArray example

size = 0, array = []
size = 0, array = [null]
size = 1, array = [Integer(0)]
size = 1, array = [Integer(1)]

Figure 7: Heaps generated forfinHeapArray(1,1,1)

To generate heaps, the Korat search algorithm uses the finitization
description shown in Figure 6. Again, most of the finitization de-
scription shown in the figure is automatically generated from the
type declarations in the Java code. In Figure 6, the parameters
MAXsize , MAXlength , andMAXelem bound the size of the heap,
the length of the array, and the elements of the array, respectively.
The elements of the array can either benull or containInteger
objects where the integers can range from0 to MAXelem .

Given values for the finitization parameters, Korat automatically
generates all heaps. For example, forfinHeapArray(1,1,1) ,
Korat generates the four heaps shown in Figure 7. As another ex-
ample, in less than one second, forfinHeapArray(5,5,5) , Ko-
rat generates 1919 heaps. Note that Korat requires only therepOk
method (which can use the full Java language) and finitization to
generate all heaps. Writing a dedicated generator for complex data
structures [2] is much more involved than writingrepOk .

We next illustrate how programmers can use Korat to check par-
tial correctness of theextractMax method that removes and re-
turns the largest element from aHeapArray . The JML annota-
tions in Figure 8 specify partial correctness for theextractMax
method. Thenormal behavior specifies that if the input heap is
valid and non-empty, then the method returns the largest element
in the original heap and the resulting heap after execution of the
method is valid. The JML keywords\result and\old denote,
respectively, the object returned by the method and the expressions
that should be evaluated in the pre-state. JML annotations can also
express exceptional behavior of methods. The exampleexcep-
tional behavior specifies that if the input heap is empty, the
method throws anIllegalArgumentException .

To check the methodextractMax , Korat first uses a finitization
to generate all nonisomorphic heaps that satisfy either thenor-
mal behavior precondition or theexceptional behavior pre-
condition. Next, Korat invokes the method (with runtime assertions
for postconditions) on each input and reports a counterexample if
any invocation fails to satisfy the correctness criteria.

3. TEST CASE GENERATION
The heart of Korat is a technique for test case generation: given
a Java predicate and a finitization for its input, Korat automati-
cally generates all nonisomorphic inputs for which the predicate

125

/*@ public normal_behavior
@ requires size > 0;
@ ensures \result == \old(array[0]);
@ also public exceptional_behavior
@ requires size == 0;
@ signals (IllegalArgumentException e) true;
@*/

public Comparable extractMax() {
// ... method body

}

Figure 8: Partial specification for HeapArray.extractMax

void koratSearch(Predicate p, Finitization f) {
intialize(f);
while (hasNextCandidate()) {

Object candidate = nextCandidate();
try {

if (p.invoke(candidate))
output(candidate);

} catch (Throwable t) {}
backtrack();

}
}

Figure 9: Pseudo-code of the Korat search algorithm

returnstrue . Figure 9 gives an overview of the Korat search algo-
rithm. The algorithm uses afinitization (described in Section 3.1)
to bound thestate space(Section 3.2) of predicate inputs. Korat
uses backtracking (Section 3.3) to exhaustively explore the state
space. Korat generatescandidateinputs and checks their validity
by invoking the predicate on them. Korat monitors accesses that the
predicate makes to all the fields of the candidate input. To monitor
the accesses, Korat instruments the predicate and all the methods
that the predicate transitively invokes (Section 3.5). If the predicate
returns without reading some fields of the candidate, the validity of
the candidate must be independent of the values of those fields—
Korat uses this observation to prune the search. Korat also uses
an optimization that generates only nonisomorphic test cases (Sec-
tion 3.4).

This section first illustrates how Korat generates valid inputs for
predicate methods that take only the implicitthis argument. Sec-
tion 3.6 shows how Korat generates valid inputs for Java predicates
that take multiple arguments.

3.1 Finitization
To generate a finite state space of a predicate’s inputs, the search
algorithm needs afinitization, i.e., a set of bounds that limits the
size of the inputs. Since the inputs can consist of objects from sev-
eral classes, the finitization specifies the number of objects for each
of those classes. A set of objects from one class forms aclass do-
main. The finitization also specifies for each field the set of classes
whose objects the field can point to. The set of values a field can
take forms itsfield domain. Note that a field domain is a union of
some class domains.

In the spirit of using the implementation language (which program-
mers are familiar with) for specification and testing, Korat provides
a Finitization class that allows finitizations to be written in
Java.2 Korat automatically generates a finitizationskeletonfrom the
type declarations in the Java code. For theBinaryTree example
presented in Figure 1, Korat automatically generates the skeleton
shown in Figure 10.

2The initial version of Korat provided a special-purpose language
for more compact descriptions of finitizations, sketched in the com-

public static Finitization finBinaryTree(int NUM_Node,
int MIN_size,
int MAX_size) {

Finitization f = new Finitization(BinaryTree.class);
ObjSet nodes = f.createObjects("Node", NUM_Node);
nodes.add(null);
f.set("root", nodes);
f.set("size", new IntSet(MIN_size, MAX_size));
f.set("Node.left", nodes);
f.set("Node.right", nodes);
return f;

}

Figure 10: Generated finitization description for BinaryTree

In Figure 10, thecreateObjects method specifies that the in-
put contains at mostNUMNode objects from theNode. The set
method specifies the field domain for each field. In the skeleton, the
fields root , left , andright are specified to contain eithernull
or a Node object. Thesize field is specified to range between
MIN size andMAXsize using the utility classIntSet . The Korat
package provides several additional classes for easy construction of
class domains and field domains.

Once Korat generates a finitization skeleton, programmers can fur-
ther specialize or generalize it. For example, the skeleton shown in
Figure 10 can be specialized by settingMIN size to0 andMAXsize
to NUMNode. We presented another specialized finitization in Fig-
ure 2. Note that programmers can use the full expressive power of
the Java language for writing finitization descriptions.

3.2 State space
We continue with theBinaryTree example to illustrate how Korat
constructs the state space for the input torepOk using the finitiza-
tion presented in Figure 2. Consider the case when Korat is invoked
for finBinaryTree(3) , i.e.,NUMNode = 3. Korat first allocates
the specified objects: oneBinaryTree object and threeNode ob-
jects. The threeNode objects form theNode class domain. Korat
then assigns a field domain and a unique identifier to each field.
The identifier is the index into thecandidate vector. In this exam-
ple, the vector has eight elements; there are total of eight fields: the
singleBinaryTree object has two fields,root andsize , and the
threeNode objects have two fields each,left andright .

For this example, acandidateBinaryTree input is a sample valu-
ation of those eight fields. The state space of inputs consists of all
possible assignments to those fields, where each field gets a value
from its corresponding field domain. Since the domain for fields
root , left , andright has four elements (null and threeNodes
from theNode class domain), the state space has4 ∗ 1 ∗ (4 ∗ 4)3 =
214 potential candidates. ForNUMNode= n, the state space has
(n + 1)2n+1 potential candidates. Figure 11 shows an example
candidate that is a valid binary tree on three nodes. Not all valua-
tions are valid binary trees. Figure 12 shows an example candidate
that is not a tree;repOk returnsfalse for this input.

3.3 Search
To systematically explore the state space, Korat orders all the el-
ements in every class domain and every field domain (which is a
union of class domains). The ordering in each field domain is con-
sistent with the orderings in the class domains, and all the values
that belong to the same class domain occur consecutively in the
ordering of each field domain.

ments in the examples in Figures 2 and 6.

126

left right

N1N0BinaryTree

root size left right left right rightleft

N2

N0 3 N1 N2

N0

N1 N2null null null null

Figure 11: Candidate input that is a valid BinaryTree .

N1N0BinaryTree

root size left right left right rightleft

N2

N0 3 N1 N1

left
right

null null null null

N0

N1 N2

Figure 12: Candidate input that is not a valid BinaryTree .

Each candidate input is a vector offield domain indicesinto the cor-
responding field domains. For our running example withNUMNode
= 3, assume that theNode class domain is ordered as [N0,N1,N2],
and the field domains forroot , left , andright are ordered as
[null ,N0,N1,N2]. (null by itself forms a class domains.) The do-
main of thesize field has a single element,3. According to this
ordering, the candidate inputs in Figures 11 and 12 have candidate
vectors[1, 0, 2, 3, 0, 0, 0, 0] and[1, 0, 2, 2, 0, 0, 0, 0], respectively.

The search starts with the candidate vector set to all zeros. For
each candidate, Korat sets fields in the objects according to the val-
ues in the vector. Korat then invokesrepOk to check the validity of
the current candidate. During the execution ofrepOk , Korat mon-
itors the fields thatrepOk accesses. Specifically, Korat builds a
field-ordering: a list of the field identifiers ordered by the first time
repOk accesses the corresponding field. Consider the invocation of
repOk from Figure 1 on the candidate shown in Figure 12. In this
case,repOk accesses only the fields [root ,N0.left ,N0.right] (in
that order) before returningfalse . Hence, the field-ordering that
Korat builds is[0,2,3] .

After repOk returns, Korat generates the next candidate vector back-
tracking on the fields accessed byrepOk . Korat first increments the
field domain index for the field that is last in the field-ordering. If
the domain index exceeds the domain size, Korat resets that index
to zero, and increments the domain index of the previous field in
the field-ordering, and so on. (The next section presents how Korat
generates only nonisomorphic candidates by resetting a domain in-
dex for a field to zero even when the index does not exceed the size
of the field domain.)

Continuing with our example, the next candidate takes the next
value forN0.right , which is N2 by the above order, whereas the
other fields do not change. This prunes from the search all44 can-
didate vectors of the form[1, ,2,2, , , ,] that have the (par-
tial) valuation: root =N0, N0.left =N1, N0.right =N1. This prun-
ing does not rule out any valid data structure becauserepOk did not
read the other fields, and it could have returnedfalse irrespective
of the values of those fields.

Continuing further with our example, the next candidate is the valid
tree shown in Figure 11. Before executingrepOk on this candi-
date, Korat also initializes the field-ordering to[0,2,3] . Note
that, if repOk accesses fields in a deterministic order, this is con-
sistent with the first three fields thatrepOk is going to access, be-
cause the values of the first two fields in the field-ordering were not
changed when constructing this candidate from the previous candi-

date. WhenrepOk executes on this candidate,repOk returnstrue
and the field-ordering that Korat builds is[0,2,3,4,5,6,7,1] . If
repOk returnstrue , Korat outputs all (nonisomorphic) candidates
that have the same values for the accessed fields as the current can-
didate. (Note thatrepOk may not access all reachable fields before
returningtrue .) The search then backtracks to the next candidate.

Recall that Korat orders the values in the class and field domains.
Additionally, each execution ofrepOk on a candidate imposes an
order on the fields in the field-ordering. Together, these orders in-
duce a lexicographic order on the candidates. The search algorithm
described here generates inputs in the lexicographical order. More-
over, for non-deterministicrepOk methods, our algorithm provides
the following guarantee: all candidates for whichrepOk always re-
turns true are generated; candidates for whichrepOk always re-
turnsfalse are never generated; and candidates for whichrepOk
sometimes returnstrue and sometimesfalse may or may not be
generated.

In practice, our search algorithm prunes large portions of the search
space, and thus enables Korat to explore very large state spaces.
The efficiency of the pruning depends on therepOk method. An
ill-written repOk , for example, might always read the entire in-
put before returning, thereby forcing Korat to explore almost every
candidate. However, our experience indicates that naturally written
repOk methods, which returnfalse as soon as the first invariant
violation is detected, induce very effective pruning.

3.4 Nonisomorphism
To further optimize the search, Korat avoids generating multiple
candidates that are isomorphic to one another. Our optimization is
based on the following definition of isomorphism.

Definition: LetO1, . . . , On be some sets of objects fromn classes.
Let O = O1 ∪ . . . ∪ On, and suppose that candidates consist only
of objects fromO. (Pointer fields of objects inO can either be
null or point to other objects inO.) Let P be the set consisting
of null and all values of primitive types (such asint) that the
fields of objects inO can contain. Further, letr ∈ O be a special
root object, and letOC be the set of all objects reachable from
r in C. Two candidates,C andC′, are isomorphiciff there is a
permutationπ on O, mapping objects fromOi to objects fromOi

for all 1 ≤ i ≤ n, such that:

∀o, o′ ∈ OC . ∀f ∈ fields(o). ∀p ∈ P .
o.f==o′ in C iff π(o).f==π(o′) in C′ and
o.f==p in C iff π(o).f==p in C′.

The operator== is Java’s comparison by object identity. Note that
isomorphism is defined with respect to a root object. Two candi-
dates are defined to be isomorphic if the parts of their object graphs
reachable from the root object are isomorphic. In case ofrepOk ,
the root object is thethis object that is passed as an implicit argu-
ment torepOk .

Isomorphism between candidates partitions the state space intoiso-
morphism partitions. Recall the lexicographic ordering induced
by the ordering on the values in the field domains and the field-
orderings built byrepOk executions. For each isomorphism parti-
tion, Korat generates only the lexicographically smallest candidate
in that partition.

Conceptually, Korat avoids generating multiple candidates from the
same isomorphism partition by incrementing field domain indices

127

class SomeClass {
boolean somePredicate(X x, Y y) {...}
...

}

Figure 13: Predicate method with multiple arguments

by more than one: while backtracking on a fieldf in the field-
ordering, Korat checks for how much to increment the field domain
index off as follows. Suppose thatf contains a pointer to an ob-
ject of that belongs to a class domaincf . Recall that all objects
in a class domain are ordered. Letif be the index ofof in cf .
For instance, in the example ordering used above forfinBinary-
Tree(3) , field domain index2 for right corresponds to the class
domainNode and class domain index1.

Further, Korat finds all fieldsf ′ such thatf ′ occurs beforef in the
field-ordering andf ′ contains a pointer to an objecto′f of the same
class domaincf . Let i′f be the index ofo′f in cf , and letmf be
the maximum of all such indicesi′f . (If there is no such fieldf ′

beforef in the field-ordering,mf =-1 .) In the example candidate
for Figure 12, backtracking onf =N0.right givesmf =1.

Then, during backtracking onf , Korat checks ifif is greater than
mf . If if ≤ mf , Korat increments the field domain index off by
one. If if > mf , Korat increments the field domain index off
so that it contains a pointer to an object of the class domain after
cf . If no such domain exists, i.e.,cf is the last domain for the field
f , Korat resets the field domain index off to zero and continues
backtracking on the previous field in the field-ordering. The actual
Korat implementation uses caching to speed up the computation of
mf .

For example, Korat forfinBinaryTree(3) generates only the
five trees shown in Figure 3. Each tree is a representative from
an isomorphism partition that has six distinct trees, one for each of
3! permutations of nodes.

3.5 Instrumentation
To monitorrepOk ’s executions, Korat instruments all classes whose
objects appear in finitizations by doing a source to source transla-
tion. For each of the classes, Korat adds a special constructor. For
each field of those classes, Korat adds an identifier field and special
get and set methods. In the code forrepOk and all the meth-
ods thatrepOk transitively invokes, Korat replaces each field ac-
cess with an invocation of the correspondingget or set method.
Arrays are similarly instrumented, essentially treating each array
element as a field.

To monitor the field accesses and build a field-ordering, Korat uses
an approach similar to theobserverpattern [11]. Korat uses the
special constructors to initialize all objects in a finitization with
an observer. The search algorithm initializes each of the identifier
fields to a unique index into the candidate vector. Specialget and
set methods first notify the observer of the field access using the
field’s identifier and then perform the field access (return the field’s
value or assign to the field).

3.6 Predicates with multiple arguments
The discussion so far described how Korat generates inputs that sat-
isfy a repOk method. This section describes how Korat generalizes
this technique to generate inputs that satisfy any Java predicate, in-
cluding predicates that take multiple arguments. Figure 13 shows

class SomeClass_somePredicate {
SomeClass This;
X x;
Y y;
boolean repOk() {

return This.somePredicate(x, y);
}

}

Figure 14: Equivalent repOk method

a Java predicate that takes two arguments (besidesthis). In order
to generate inputs for this predicate, Korat generates an equivalent
repOk method shown in Figure 14. Korat then generates inputs to
therepOk method using the technique described earlier.

4. TESTING METHODS
The previous section focused on automatic test case generation
from a Java predicate and a finitization description. This section
presents how Korat builds on this technique to check correctness of
methods. Korat uses specification-based testing: to test a method,
Korat first generates test inputs from the method’s precondition,
then invokes the method on each of those inputs, and finally checks
the correctness of the output using the method’s postcondition.

The current Korat implementation uses the Java Modeling Lan-
guage (JML) [20] for specifications. Programmers can use JML
annotations to express method preconditions and postconditions, as
well as class invariants; these annotations use JML keywordsre-
quires , ensures , andinvariant , respectively. Each annotation
contains a boolean expression; JML uses Java syntax and semantics
for expressions, and contains some extensions such as quantifiers.
Korat uses a large subset of JML that can be automatically trans-
lated into Java predicates.

JML specifications can express severalnormalandexceptional be-
haviorsfor a method. Each behavior has a precondition and a post-
condition: if the method is invoked with the precondition being
satisfied, the behavior requires that the method terminate with the
postcondition being satisfied. Additionally, normal behaviors re-
quire that the method return without an exception, whereas excep-
tional behaviors require that the method return with an exception.
Korat generates inputs for all method behaviors using thecomplete
method precondition that is a conjunction of: 1) the class invariant
for all objects reachable from the input parameters and 2) a disjunc-
tion of the preconditions for all behaviors. In the text that follows,
we refer to complete precondition simply as precondition.

4.1 Generating test cases
Valid test cases for a method must satisfy its precondition. To gen-
erate valid test cases, Korat uses a class that represents method’s
inputs. This class has one field for each parameter of the method
(including the implicitthis parameter) and arepOk predicate that
uses the precondition to check the validity of method’s inputs. Given
a finitization, Korat then generates all inputs for which thisrepOk
returnstrue ; each of these inputs is a valid input to the original
method.

We illustrate generation of test cases using theremove method for
BinaryTree from Section 2. For this method, each input consists
of a pair ofBinaryTree this and aNode n, and the precondi-
tion is this.has(n) . Figure 15 shows the class that Korat uses
for the method’s inputs. For this class, Korat creates the finitization
skeleton that reuses the finitization forBinaryTree , as shown in

128

class BinaryTree_remove {
BinaryTree This; // the implicit "this" parameter
BinaryTree.Node n; // the Node parameter
//@ invariant repOk();
public boolean repOk() {

return This.has(n);
}

}

Figure 15: Class representingBinaryTree.remove

public static Finitization
finBinaryTree_remove(int NUM_Node) {

Finitization f =
new Finitization(BinaryTree_remove.class);

Finitization g = BinaryTree.finBinaryTree(NUM_Node);
f.includeFinitization(g);
f.set("This", g.getObjects(BinaryTree.class));
f.set("n", /***/);
return f;

}

Figure 16: Finitization skeleton for BinaryTree remove

Figure 16. The comment/***/ indicates that Korat cannot auto-
matically determine an appropriate field domain forn.

To create finitization forBinaryTree remove , the programmer
modifies the skeleton, e.g., by replacing/***/ with g.get("root")
or g.getObjects(BinaryTree.Node.class) to set the domain
for the parametern to the domain for the fieldroot or to the set
of nodes from the finitizationg, respectively. Given a value for
NUMNode, Korat then generates all valid test cases, each of which
is a pair of a tree (with the given number of nodes) and a node from
that tree.

4.1.1 Dependent and independent parameters
For the remove method, the precondition makes the parameters
This andn explicitly dependent. When the parameters are inde-
pendent, programmers can instruct Korat to generate all test cases
by separately generating all possibilities for each parameter and
creating all valid test cases as the Cartesian product of these possi-
bilities.

We next compare Korat with another approach for generating all
valid (nonisomorphic) test cases, which uses the Cartesian prod-
uct even for dependent parameters. Consider a methodm, with n
parameters and preconditionmpre. Suppose that a set of possibil-
ities Si, 1 ≤ i ≤ n, is given for each of the parameters. All
valid test cases fromS1 × . . . × Sn can be then generated by cre-
ating all n-tuples from the product, followed by filtering each of
them throughmpre. (This approach is used in the JML+JUnit test-
ing framework [6] that combines JML [20] and JUnit [3].) Note
that this approach requires manually constructing possibilities for
all parameters, some of which can be complex data structures.

Korat, on the other hand, constructs data structures from a simple
description of the fields in the structures. Further, in terms of Ko-
rat’s search ofrepOk ’s state space, the presented approach would
correspond to the search that tries every candidate input. Korat
improves on this approach by: 1) pruning the search based on the
accessed fields and 2) generating only one representative from each
isomorphism partition.

4.2 Checking correctness
To check a method, Korat first generates all valid inputs for the
method using the process explained above. Korat then invokes the

Testing framework
testing activity JUnit JML+JUnit Korat

generating test cases √
generating test oracle √ √

running tests √ √ √

Table 1: Comparison of several testing frameworks for Java.
Automated testing activities are indicated with “√”.

method on each of the inputs and checks each output with atest or-
acle. To check partial correctness of a method, a simple test oracle
could just invokerepOk in thepost-state(i.e., the state immediately
after the method’s invocation) to check if the method preserves its
class invariant. If the result isfalse , the method under test is
incorrect, and the input provides a concrete counterexample. Pro-
grammers could also manually develop more elaborate test oracles.
Programmers can also check for properties that relate the post-state
with the pre-state(i.e., the state just before the method’s invoca-
tion).

The current Korat implementation uses the JML tool-set to auto-
matically generate test oracles from method postconditions, as in
the JML+JUnit framework [6]. The JML tool-set translates JML
postconditions into runtime Java assertions. If an execution of a
method violates such an assertion, an exception is thrown to indi-
cate a violated postcondition. Test oracle catches these exceptions
and reports correctness violations. These exceptions are different
from the exceptions that the method specification allows, and Korat
leverages on JML to check both normal and exceptional behavior
of methods. More details of the JML tool-set and translation can
be found in [20].

Korat also uses JML+JUnit to combine JML test oracles with JU-
nit [3], a popular framework for unit testing of Java modules. JUnit
automates test execution and error reporting, but requires program-
mers to provide test inputs and test oracles. JML+JUnit, thus, au-
tomates both test execution and correctness checking. However,
JML+JUnit requires programmers to provide sets of possibilities
for all method parameters: it generates all valid inputs by gener-
ating the Cartesian product of possibilities and filtering the tuples
using preconditions. Korat additionally automates generation of
test cases, thus automating the entire testing process. Table 1 sum-
marizes the comparison of these testing frameworks.

5. EXPERIMENTAL RESULTS
This section presents the performance results of the Korat pro-
totype. We used Java to implement the search for valid noniso-
morphic repOk inputs. For automatic instrumentation ofrepOk
(and transitively invoked methods), we modified the sources of the
Sun’s javac compiler. We also modifiedjavac to automatically
generate finitization skeletons. For checking method correctness,
we slightly modified the JML tool-set, building on the existing
JML+JUnit framework [6].

We first present Korat’s performance for test case generation, then
compare Korat with the test generation that uses Alloy Analyzer [16],
and finally present Korat’s performance for checking method cor-
rectness. We performed all experiments on a Linux machine with a
Pentium III 800 MHz processor using Sun’s Java 2 SDK1.3.1 JVM.

129

benchmark package finitization parameters

BinaryTree korat.examples NUM Node
HeapArray korat.examples MAX size, MAX length,

MAX elem
LinkedList java.util MIN size, MAX size,

NUM Entry, NUM Object
TreeMap java.util MIN size, NUM Entry,

MAX key, MAX value
HashSet java.util MAX capacity, MAX count,

MAX hash, loadFactor
AVTree ins.namespace NUM AVPair, MAX child,

NUM String

Table 2: Benchmarks and finitization parameters. Each bench-
mark is named after the class for which data structures are gen-
erated; the structures also contain objects from other classes.

5.1 Benchmarks
Table 2 lists the benchmarks for which we show Korat’s perfor-
mance.BinaryTree andHeapArray are presented in Section 2.
(Additionally, HeapArray s are similar to array-based stacks and
queues, as well asjava.util.Vector s.) LinkedList is the
implementation of linked lists in the Java Collections Framework,
a part of the standard Java libraries. This implementation uses
doubly-linked, circular lists that have asize field and aheader
node as a sentinel node. (Linked lists also provide methods that al-
low them to be used as stacks and queues.)TreeMap implements
the Map interface using red-black trees [8]. This implementation
uses binary trees withparent fields. Each node (implemented with
inner classEntry) also has akey and avalue . (Setting allvalue
fields to null corresponds to the set implementation injava.-
util.TreeSet .) HashSet implements theSet interface, backed
by a hash table [8]. This implementation builds collision lists for
buckets with the same hash code. TheloadFactor parameter de-
termines when to increase the size of the hash table and rehash the
elements.

AVTree implements theintentional nametrees that describe prop-
erties of services in the Intentional Naming System (INS) [1], an
architecture for service location in dynamic networks. Each node in
an intentional name has anattribute , avalue , and a set of child
nodes. INS uses attributes and values to classify services based on
their properties. The names of these properties are implemented
with arbitraryString s except that"*" is a wildcard that matches
all other values. The finitization bounds the number ofAVPair ob-
jects that implement nodes, the number of children for each node,
and the total number ofString s (including the wildcard).

5.2 Korat’s test case generation
Table 3 presents the results for generating valid structures with our
Korat implementation. For each benchmark, all finitization param-
eters are set to the same (size) value (except theloadFactor pa-
rameter forHashSet , which is set to default 0.75). For a range
of size values, we tabulate the time that Korat takes to generate all
valid structures, the number of structures generated, the number of
candidate structures checked byrepOk , and the size of the state
space.

Korat can generate all structures even for very large state spaces
because the search pruning allows Korat to explore only a tiny
fraction of the state space. The ratios of the number of candidate

benchmark size time structures candidates state
(sec) generated considered space

8 1.53 1430 54418 253

9 3.97 4862 210444 263

BinaryTree 10 14.41 16796 815100 272

11 56.21 58786 3162018 282

12 233.59 208012 12284830 292

6 1.21 13139 64533 220

HeapArray 7 5.21 117562 519968 225

8 42.61 1005075 5231385 229

8 1.32 4140 5455 291

9 3.58 21147 26635 2105

LinkedList 10 16.73 115975 142646 2120

11 101.75 678570 821255 2135

12 690.00 4213597 5034894 2150

7 8.81 35 256763 292

TreeMap 8 90.93 64 2479398 2111

9 2148.50 122 50209400 2130

7 3.71 2386 193200 2119

8 16.68 9355 908568 2142

HashSet 9 56.71 26687 3004597 2166

10 208.86 79451 10029045 2190

11 926.71 277387 39075006 2215

AVTree 5 62.05 598358 1330628 250

Table 3: Korat’s performance on several benchmarks. All fini-
tization parameters are set to the size value. Time is the elapsed
real time in seconds for the entire generation. State size is
rounded to the nearest smaller exponent of two.

structures considered and the size of the state spaces show that the
key to effective pruning is backtracking based on fields accessed
during repOk ’s executions. Without backtracking, and even with
isomorphism optimization, Korat would generate infeasibly many
candidates. Isomorphism optimization further reduces the number
of candidates, but it mainly reduces the number of valid structures.

ForBinaryTree , LinkedList , TreeMap , andHashSet (with the
loadFactor parameter of 1), the numbers of nonisomorphic struc-
tures appear in the Sloane’s On-Line Encyclopedia of Integer Se-
quences [30]. For all these benchmarks, Korat generates exactly
the actual number of structures.

5.2.1 Comparison with Alloy Analyzer
We next compare Korat’s test case generation with that of the Alloy
Analyzer (AA) [16], an automatic tool for analyzing Alloymodels.
Alloy [17] is a first-order, declarative language based on relations.
Alloy is suitable for modeling structural properties of software. Al-
loy models of several data structures can be found in [22]. These
models specify class invariants in Alloy, which correspond tore-
pOk methods in Korat, and also declare field types, which corre-
sponds to setting field domains in Korat finitizations.

Given a model of a data structure and ascope—a bound on the
number of atoms in the universe of discourse—AA can generate
all (mostly nonisomorphic)instancesof the model. An instance
valuates the relations in the model such that all constraints of the
model are satisfied. Setting the scope in Alloy corresponds to set-
ting the finitization parameters in Korat. AA translates the input
Alloy model into a boolean formula and uses an off-the-shelf SAT
solver to find a satisfying assignment to the formula. Each such
assignment is translated back to an instance of the input model.
AA adds symmetry-breaking predicates [29] to the boolean for-
mula so that different satisfying assignments to the formula repre-
sent (mostly) nonisomorphic instances of the input model.

130

Korat Alloy Analyzer
benchmark size struc. total first inst. total first

gen. time struc. gen. time inst.

3 5 0.56 0.62 6 2.63 2.63
4 14 0.58 0.62 28 3.91 2.78

BinaryTree 5 42 0.69 0.67 127 24.42 4.21
6 132 0.79 0.66 643 269.99 6.78
7 429 0.97 0.62 3469 3322.13 12.86
3 66 0.53 0.58 78 11.99 6.20

HeapArray 4 320 0.57 0.59 889 171.03 16.13
5 1919 0.73 0.63 1919 473.51 39.58
3 5 0.58 0.60 10 2.61 2.39
4 15 0.55 0.65 46 3.47 2.77

LinkedList 5 52 0.57 0.65 324 14.09 3.51
6 203 0.73 0.61 2777 148.73 5.74
7 877 0.87 0.61 27719 2176.44 10.51
4 8 0.75 0.69 16 12.10 6.35

TreeMap 5 14 0.87 0.88 42 98.09 18.08
6 20 1.49 0.98 152 1351.50 50.87
2 2 0.55 0.65 2 2.35 2.43

AVTree 3 84 0.65 0.61 132 4.25 2.76
4 5923 1.41 0.61 20701 504.12 3.06

Table 4: Performance comparison. For each benchmark, per-
formances of Korat and AA are compared for a range of fini-
tization values. For values larger than presented, AA does not
complete its generation within 1 hour. Korat’s performance for
larger values is given in Table 3.

Table 4 summarizes the performance comparison. Since AA can-
not handle arbitrary arithmetic, we do not generateHashSet s with
AA. For all other benchmarks, we compare the total number of
structures/instances and the time to generate them for a range of
parameter values. We also compare the time to generate the first
structure/instance.

Time presented is the total elapsed real time (in seconds) that each
experiment took from the beginning to the end, including start-up.3

Start-up time for Korat is approximately 0.5 sec. (That is why in
some cases it seems that generating all structures is faster than gen-
erating the first structure or that generating all structures for a larger
input is faster than generating all structures for a smaller input.)
Start-up time for AA is somewhat higher, approximately 2 sec, as
AA needs to translate the model and to start a SAT solver. AA uses
precompiled binaries for SAT solvers.

In all cases, Korat outperforms AA; Korat is not only faster for
smaller inputs, but it also completes generation for larger inputs
than AA. There are two reasons that could account for this differ-
ence. Since AA translates Alloy models into boolean formulas, it
could be that the current (implementation of the) translation gener-
ates unnecessarily large boolean formulas. Another reason is that
often AA generates a much greater number of instances than Ko-
rat, which takes a greater amount of time by itself. One way to
reduce the number of instances generated by AA is to add more
symmetry-breaking predicates.

Our main argument for developing Korat was simple: for Java pro-
grammers not familiar with Alloy, it is easier to write arepOk
method than an Alloy model. (From our experience, for researchers
familiar with Alloy, it is sometimes easier to write an Alloy model
than arepOk method.) Before conducting the above experiments,
we expected that Korat would generate structures slower than AA.

3We include start-up time, because AA does not provide generation
time only for generating all instances. We eliminate the effect of
cold start by executing each test twice and taking the smaller time.

benchmark method max. test cases gen. test
size generated time time

BinaryTree remove 3 15 0.64 0.73
HeapArray extractMax 6 13139 0.87 1.39

LinkedList reverse 2 8 0.67 0.76
TreeMap put 8 19912 136.19 2.70
HashSet add 7 13106 3.90 1.72
AVTree lookup 4 27734 4.33 14.63

Table 5: Korat’s performance on several methods. All upper-
limiting finitization parameters for method inputs are set to the
given maximum size. These sizes give complete statement cov-
erage. Times are the elapsed real times in seconds for the entire
generation of all valid test cases and testing of methods for all
those inputs. These times include writing and reading of files
with test cases.

Our intuition was that Korat depends on the executions ofrepOk
to “learn” the invariants of the structures, whereas AA uses a SAT
solver that can “inspect” the entire formula (representing invari-
ants) to decide how to search for an assignment. The experimental
results show that our assumption was incorrect—Korat generates
structures much faster than AA. We are now exploring a translation
of Alloy models into Java (or even C) and the use of Korat (or a
similar search) to generate instances.

5.3 Checking correctness
Table 5 presents the results for checking methods with Korat. For
each benchmark, a representative method is chosen; the results
are similar for other methods. Methodsremove and extract-
Max are presented in Section 2. Methodreverse , from java.-
util.Collections , uses list iterators to reverse the order of list
elements; this method is static. Methodput , from java.util.-
TreeMap , inserts a key-value pair into the map; this method has
three parameters (this , key , andvalue) and invokes several helper
methods that rebalance the tree after insertion. Methodadd in-
serts an element into the set. Methodlookup , from INS, searches
a database of intentional names for a givenquery intentional
name. The correctness specifications for all methods specify sim-
ple containment properties (beside preservation of class invariants).

For each method, theMIN finitization parameters are set to zero
and theMAXandNUMparameters to the same size value. Thus, the
methods are checked for all valid inputs up to the maximum size,
not only for the maximum size. The results show that it is practical
to use Korat to exhaustively check correctness of intricate methods
that manipulate complex data structures.

AA can also be used to check correctness of Java methods by writ-
ing method specifications as Alloy models and defining appropriate
translations between Alloy instances and Java objects, as demon-
strated in the TestEra framework [22]. However, the large number
of instances generated by AA makes TestEra less practical to use
than Korat. For example, maximum sizes six and eight forex-
tractMax andput methods, respectively, are the smallest that give
complete statement coverage. As shown in Table 4, for these sizes,
AA cannot in a reasonable time even generate data structures that
are parts of the inputs for these methods.

6. RELATED WORK
6.1 Specification-based testing
There is a large body of research on specification-based testing. An
early paper by Goodenough and Gerhart [13] emphasizes its impor-

131

tance. Many projects automate test case generation from specifica-
tions, such as Z specifications [15, 31], UML statecharts [25, 26],
or ADL specifications [5,28]. These specifications typically do not
consider linked data structures, and the tools do not generate Java
test cases.

The TestEra framework [22] generates Java test cases from Al-
loy [17] specifications of linked data structures. TestEra uses the
Alloy Analyzer (AA) [16] to automatically generate method inputs
and check correctness of outputs, but it requires programmers to
learn a specification language much different than Java. Korat gen-
erates inputs directly from Java predicates and uses the Java Mod-
eling Language (JML) [20] for specifications. The experimental re-
sults also show that Korat generates test cases faster and for larger
scopes than AA.

Cheon and Leavens [6] describe automatic translation of JML spec-
ifications into test oracles for JUnit [3]. This framework automates
execution and checking of methods. However, the burden of test
case generation is still on programmers: they have to provide sets of
possibilities for all method parameters. Korat builds on this frame-
work by automating test case generation.

6.2 Static analysis
Several projects aim at developing static analyses for verifying pro-
gram properties. The Extended Static Checker (ESC) [10] uses a
theorem prover to verify partial correctness of classes annotated
with JML specifications. ESC has been used to verify absence of
such errors as null pointer dereferences, array bounds violations,
and division by zero. However, tools like ESC cannot verify prop-
erties of complex linked data structures.

There are some recent research projects that attempt to address this
issue. The Three-Valued-Logic Analyzer (TVLA) [27] is the first
static analysis system to verify that the list structure is preserved
in programs that perform list reversals via destructive updating of
the input list. TVLA has been used to analyze programs that ma-
nipulate doubly linked lists and circular lists, as well as some sort-
ing programs. The pointer assertion logic engine (PALE) [24] can
verify a large class of data structures that can be represented by a
spanning tree backbone, with possibly additional pointers that do
not add extra information. These data structures include doubly
linked lists, trees with parent pointers, and threaded trees. While
TVLA and PALE are primarily intraprocedural, Role Analysis [19]
supports compositional interprocedural analysis and verifies simi-
lar properties.

While static analysis of program properties is a promising approach
for ensuring program correctness in the long run, the current static
analysis techniques can only verify limited program properties. For
example, none of the above techniques can verify correctness of
implementations of balanced trees, such as red-black trees. Testing,
on the other hand, is very general and can verify any decidable
program property, but for inputs bounded by a given size.

Jackson and Vaziri propose an approach [18] for analyzing meth-
ods that manipulate linked data structures. Their approach is to
first build an Alloy model of bounded initial segments of compu-
tation sequences and then check the model exhaustively with AA.
This approach provides static analysis, but it is unsound with re-
spect to both the size of input and the length of computation. Korat
not only checks the entire computation, but also handles larger in-
puts and more complex data structures than those in [18]. Further,

Korat does not require Alloy, but JML specifications, and more im-
portantly, unlike [18], Korat does not require specifications for all
(helper) methods.

6.3 Software model checking
There has been a lot of recent interest in applying model checking
to software. JavaPathFinder [32] and VeriSoft [12] operate directly
on a Java, respectively C, program and systematically explore its
state to check correctness. Other projects, such as Bandera [7] and
JCAT [9], translate Java programs into the input language of ex-
isting model checkers like SPIN [14] and SMV [23]. They handle
a significant portion of Java, including dynamic allocation, object
references, exceptions, inheritance, and threads. They also provide
automated support for reducing program’s state space through pro-
gram slicing and data abstraction.

However, most of the work on applying model checking to software
has focused on checking event sequences and not linked data struc-
tures. Where data structures have been considered, the purpose has
been to reduce the state space to be explored and not to check the
data structures themselves. Korat, on the other hand, checks cor-
rectness of methods that manipulate linked data structures.

7. CONCLUSIONS
This paper presented Korat, a novel framework for automated test-
ing of Java programs. Given a formal specification for a method,
Korat uses the method precondition to automatically generate all
nonisomorphic test cases up to a given small size. Korat then exe-
cutes the method on each test case, and uses the method postcondi-
tion as a test oracle to check the correctness of each output.

To generate test cases for a method, Korat constructs a Java predi-
cate (i.e., a method that returns a boolean) from the method’s pre-
condition. The heart of Korat is a technique for automatic test case
generation: given a predicate and a finitization for its inputs, Korat
generates all nonisomorphic inputs for which the predicate returns
true . Korat exhaustively explores the input space of the predicate,
but does so efficiently by: 1) monitoring the predicate’s executions
to prune large portions of the search space and 2) generating only
nonisomorphic inputs.

The Korat prototype uses the Java Modeling Language (JML) for
specifications, i.e., class invariants and method preconditions and
postconditions. Good programming practice suggests that imple-
mentations of abstract data types should already provide methods
for checking class invariants—Korat then generates test cases al-
most for free.

This paper illustrated the use of Korat for testing several data struc-
tures, including some from the Java Collections Framework. The
experimental results show that it is feasible to generate test cases
from Java predicates, even when the search space for inputs is very
large. This paper also compared Korat with the Alloy Analyzer,
which can be used to generate test cases from declarative predi-
cates. Contrary to our initial expectation, the experiments show that
Korat generates test cases much faster than the Alloy Analyzer.

Acknowledgements
We would like to thank Michael Ernst, Daniel Jackson, Alexandru
Sălcianu, and the anonymous referees for their comments on this
paper. We are also grateful to Viktor Kuncak for helpful discussions
on Korat and Alexandr Andoni for helping us with experiments.
This work was funded in part by NSF grant CCR00-86154.

132

8. REFERENCES
[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and

J. Lilley. The design and implementation of an intentional
naming system. InProc. 17th ACM Symposium on Operating
Systems (SOSP), Kiawah Island, Dec. 1999.

[2] T. Ball, D. Hoffman, F. Ruskey, R. Webber, and L. J. White.
State generation and automated class testing.Software
Testing, Verification & Reliability, 10(3):149–170, 2000.

[3] K. Bech and E. Gamma. Test infected: Programmers love
writing tests.Java Report, 3(7), July 1998.

[4] B. Beizer.Software Testing Techniques. International
Thomson Computer Press, 1990.

[5] J. Chang and D. J. Richardson. Structural specification-based
testing: Automated support and experimental evaluation. In
Proc. 7th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE), pages 285–302, Sept. 1999.

[6] Y. Cheon and G. T. Leavens. A simple and practical
approach to unit testing: The JML and JUnit way. Technical
Report 01-12, Department of Computer Science, Iowa State
University, Nov. 2001.

[7] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,
S. Laubach, and H. Zheng. Bandera: Extracting finite-state
models from Java source code. InProc. 22nd International
Conference on Software Engineering (ICSE), June 2000.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction
to Algorithms. The MIT Press, Cambridge, MA, 1990.

[9] C. Demartini, R. Iosif, and R. Sisto. A deadlock detection
tool for concurrent Java programs.Software - Practice and
Experience, July 1999.

[10] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended static checking. Research Report 159, Compaq
Systems Research Center, 1998.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements od Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series.
Addison-Wesley Publishing Company, New York, NY, 1995.

[12] P. Godefroid. Model checking for programming languages
using VeriSoft. InProc. 24th Annual ACM Symposium on the
Principles of Programming Languages (POPL), pages
174–186, Paris, France, Jan. 1997.

[13] J. Goodenough and S. Gerhart. Toward a theory of test data
selection.IEEE Transactions on Software Engineering, June
1975.

[14] G. Holzmann. The model checker SPIN.IEEE Transactions
on Software Engineering, 23(5), May 1997.

[15] H.-M. Horcher. Improving software tests using Z
specifications. InProc. 9th International Conference of Z
Users, The Z Formal Specification Notation, 1995.

[16] D. Jackson, I. Schechter, and I. Shlyakhter. ALCOA: The
Alloy constraint analyzer. InProc. 22nd International
Conference on Software Engineering (ICSE), Limerick,
Ireland, June 2000.

[17] D. Jackson, I. Shlyakhter, and M. Sridharan. A
micromodularity mechanism. InProc. 9th ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(FSE), Vienna, Austria, Sept. 2001.

[18] D. Jackson and M. Vaziri. Finding bugs with a constraint
solver. InProc. International Symposium on Software Testing
and Analysis (ISSTA), Portland, OR, Aug. 2000.

[19] V. Kuncak, P. Lam, and M. Rinard. Role analysis. InProc.
29th Annual ACM Symposium on the Principles of
Programming Languages (POPL), Portland, OR, Jan. 2002.

[20] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for
Java. Technical Report TR 98-06i, Department of Computer
Science, Iowa State University, June 1998. (last revision:
Aug 2001).

[21] B. Liskov. Program Development in Java: Abstraction,
Specification, and Object-Oriented Design. Addison-Wesley,
2000.

[22] D. Marinov and S. Khurshid. TestEra: A novel framework
for automated testing of Java programs. InProc. 16th IEEE
International Conference on Automated Software
Engineering (ASE), San Diego, CA, Nov. 2001.

[23] K. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[24] A. Moeller and M. I. Schwartzbach. The pointer assertion
logic engine. InProc. SIGPLAN Conference on
Programming Languages Design and Implementation,
Snowbird, UT, June 2001.

[25] J. Offutt and A. Abdurazik. Generating tests from UML
specifications. InProc. Second International Conference on
the Unified Modeling Language, Oct. 1999.

[26] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified
Modeling Language Reference Manual. Addison-Wesley
Object Technology Series, 1998.

[27] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis
problems in languages with destructive updating.ACM
Trans. Prog. Lang. Syst., January 1998.

[28] S. Sankar and R. Hayes. Specifying and testing software
components using ADL. Technical Report SMLI TR-94-23,
Sun Microsystems Laboratories, Inc., Mountain View, CA,
Apr. 1994.

[29] I. Shlyakhter. Generating effective symmetry-breaking
predicates for search problems. InProc. Workshop on Theory
and Applications of Satisfiability Testing, June 2001.

[30] N. J. A. Sloane, S. Plouffe, J. M. Borwein, and R. M.
Corless. The encyclopedia of integer sequences.SIAM
Review, 38(2), 1996.http://www.research.att.
com/˜njas/sequences/Seis.html .

[31] J. M. Spivey.The Z Notation: A Reference Manual. Prentice
Hall, second edition, 1992.

[32] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. InProc. 15th IEEE International
Conference on Automated Software Engineering (ASE),
Grenoble, France, 2000.

133

