
Functional Reactive AnimationConal ElliottMicrosoft ResearchGraphics Groupconal@microsoft.com Paul HudakYale UniversityDept. of Computer Sciencepaul.hudak@yale.eduAbstractFran (Functional Reactive Animation) is a collection of datatypes and functions for composing richly interactive, multi-media animations. The key ideas in Fran are its notions ofbehaviors and events. Behaviors are time-varying, reactivevalues, while events are sets of arbitrarily complex condi-tions, carrying possibly rich information. Most traditionalvalues can be treated as behaviors, and when images arethus treated, they become animations. Although these no-tions are captured as data types rather than a programminglanguage, we provide them with a denotational semantics,including a proper treatment of real time, to guide reason-ing and implementation. A method to e�ectively and ef-�ciently perform event detection using interval analysis isalso described, which relies on the partial information struc-ture on the domain of event times. Fran has been imple-mented in Hugs, yielding surprisingly good performance foran interpreter-based system. Several examples are given, in-cluding the ability to describe physical phenomena involvinggravity, springs, velocity, acceleration, etc. using ordinarydi�erential equations.1 IntroductionThe construction of richly interactive multimedia anima-tions (involving audio, pictures, video, 2D and 3D graph-ics) has long been a complex and tedious job. Much ofthe di�culty, we believe, stems from the lack of su�cientlyhigh-level abstractions, and in particular from the failureto clearly distinguish between modeling and presentation, orin other words, between what an animation is and how itshould be presented. Consequently, the resulting programsmust explicitly manage common implementation chores thathave nothing to do with the content of an animation, butrather its presentation through low-level display librariesrunning on a sequential digital computer. These implemen-tation chores include:� stepping forward discretely in time for simulation andfor frame generation, even though animation is con-ceptually continuous;To appear the International Conference on FunctionalProgramming, June 1997, Amsterdam.

� capturing and handling sequences of motion input events,even though motion input is conceptually continuous;� time slicing to update each time-varying animation pa-rameter, even though these parameters conceptuallyvary in parallel; andBy allowing programmers to express the \what" of aninteractive animation, one can hope to then automate the\how" of its presentation. With this point of view, it shouldnot be surprising that a set of richly expressive recursivedata types, combined with a declarative programming lan-guage, serves comfortably for modeling animations, in con-trast with the common practice of using imperative lan-guages to program in the conventional hybrid modeling/-presentation style. Moreover, we have found that non-strictsemantics, higher-order functions, strong polymorphic typ-ing, and systematic overloading are valuable language prop-erties for supporting modeled animations. For these reasons,Fran provides these data types in the programming languageHaskell [9].Advantages of Modeling over PresentationThe bene�ts of a modeling approach to animation are similarto those in favor of a functional (or other declarative) pro-gramming paradigm, and include clarity, ease of construc-tion, composability, and clean semantics. But in additionthere are application-speci�c advantages that are in someways more compelling, painting the picture from a softwareengineering and end-user perspective. These advantages in-clude the following:� Authoring. Content creation systems naturally con-struct models, because the end users of such systemsthink in terms of models and typically have neither theexpertise nor interest in programming presentation de-tails.� Optimizability. Model-based systems contain a presen-tation sub-system able to render any model that can beconstructed within the system. Because higher-levelinformation is available to the presentation sub-systemthan with presentation programs, there are many moreopportunities for optimization.� Regulation. The presentation sub-system can also moreeasily determine level-of-detail management, as wellas sampling rates required for interactive animations,based on scene complexity, machine speed and load,etc.

2 Functional Reactive Animation� Mobility and safety. The platform independence ofthe modeling approach facilitates the construction ofmobile applications that are provably safe in WorldWide Web applications.The Essence of Modeling Our goal in this paperis to convey the essence of a modeling approach to reac-tive animations as captured in Fran, as summarized in thefollowing four concepts:1. Temporal modeling. Values, called behaviors, thatvary over continuous time are the chief values of inter-est. Behaviors are �rst-class values, and are built upcompositionally; concurrency (parallel composition) isexpressed naturally and implicitly. As an example, thefollowing expression evaluates to an animation (i.e., animage behavior) containing a circle over a square. Attime t, the circle has size sin t, and the square has sizecos t.bigger (sin time) circle `over`bigger (cos time) square2. Event modeling. Like behaviors, events are �rst-class values. Events may refer to happenings in thereal world (e.g. mouse button presses), but also topredicates based on animation parameters (e.g. prox-imity or collision). Moreover, such events may be com-bined with others, to an arbitrary degree of complexity,thus factoring complex animation logic into semanti-cally rich, modular building blocks. For example, theevent describing the �rst left-button press after timet0 is simply lbp t0; one describing time squared beingequal to 5 is just:predicate (time^2 == 5) t0and their logical disjunction is just:lbp t0 .|. predicate (time^2 == 5) t03. Declarative reactivity. Many behaviors are natu-rally expressed in terms of reactions to events. Buteven these \reactive behaviors" have declarative se-mantics in terms of temporal composition, rather thanan imperative semantics in terms of the state changesoften employed in event-based formalisms. For ex-ample, a color-valued behavior that changes cyclicallyfrom red to green with each button press can be de-scribed by the following simple recurrence:colorCycle t0 =red `untilB` lbp t0 *=> \t1 ->green `untilB` lbp t1 *=> \t2 ->colorCycle t2(In Haskell, identi�ers are made into in�x operatorsby backquotes, as in b `untilB` e. Also, in�x opera-tors can be made into identi�ers by enclosing them inparentheses, as in (+) x y. Lambda abstractions arewritten as \n vars -> exp".)

4. Polymorphic media. The variety of time-varyingmedia (images, video, sound, 3D geometry) and pa-rameters of those types (spatial transformations, col-ors, points, vectors, numbers) have their own type-speci�c operations (e.g. image rotation, sound mixing,and numerical addition), but �t into a common frame-work of behaviors and reactivity. For instance, the\untilB" operation used above is polymorphic, apply-ing to all types of time-varying values.Our Contributions We have captured the four fea-tures above as a collection of recursive data types, functions,and primitive graphics routines in a system that we callFran, for Functional Reactive Animation. Although thesedata types and functions do not form a programming lan-guage in the usual sense, we provide them with a formaldenotational semantics, including a proper treatment of realtime, to allow precise, implementation-independent reason-ing. This semantics includes a CPO of real time, whose ap-proximate elements allow us to reason about events beforethey occur. As would be true of a new programming lan-guage, the denotational semantics has been extremely usefulin designing Fran. All of our design decisions begin with anunderstanding of the formal semantics, followed by reect-ing the semantics in the implementation. (The semantics isgiven in Section 2.)Perhaps the most novel aspect of Fran is its implicit treat-ment of time. This provides a great deal of expressivenessto the multimedia programmer, but also presents interestingchallenges with respect to both formal semantics and imple-mentation. In particular, events may be speci�ed in termsof boolean functions of continuous time. These functionsmay become true for arbitrarily brief periods of time, eveninstantaneously, and so it is challenging for an implemen-tation to detect these events. We solve this problem witha robust and e�cient method for event detection based oninterval analysis. (Implementation issues are discussed inSection 4.)Speci�cally, the nature of an event can be exploited toeliminate search over intervals of time in which the eventprovably does not occur, and focus intead on time inter-vals in which the event may occur. In some cases, such as acollection of bouncing balls, exact event times may be deter-mined analytically. In general and quite frequently, however,analytic techniques fail to apply. We describe intead an al-gorithm for event detection based on interval analysis andrelate it to the partial information structure on the CPO ofevent times.2 The Formal Semantics of FranThe two most fundamental notions in Fran are behaviorsand events. We treat them as a pair of mutually recursivepolymorphic data types, and specify operations on them viaa denotational semantics. (The \media types" we often usewith events and behaviors will be treated formally in a laterpaper; but see also [7].)2.1 Semantic DomainsThe abstract domain of time is called Time. The abstractdomains of polymorphic behaviors (�-behaviors) and poly-morphic events (�-events) are denoted Behavior� and Event�,respectively.

Conal Elliott and Paul Hudak 3Most of our domains (integers, booleans, etc.) are stan-dard, and require no explanation. The Time domain, how-ever, requires special treatment, since we wish values of timeto include partial elements. In particular, we would like toknow that a time is \at least" some value, even if we don'tyet know exactly what the �nal value will be. To make thisnotion precise, we de�ne a domain (pointed CPO) of timeas follows:Denote the set of real numbers as <, and include in thatset the elements 1 and �1. This set comes equipped withthe standard arithmetic ordering �, including the fact that�1 � x � 1 for all x 2 <.Now de�ne Time = < + <, where elements in the sec-ond \copy" of < are distinguished by pre�xing them with�, as in �42, which should be read: \at least 42." Thende�ne ?Time = �(�1), and the domain (i.e. information)ordering on Time by:x v x; 8x 2 <�x v y if x � y; 8x; y 2 <�x v �y if x � y; 8x; y 2 <It is easy to see that ?Time is indeed the bottom element.Also note that a limit point y is just the LUB of the set ofpartial elements (\pre-times") that approximate it:y =G f �x j x � y gSince the ordering on the domain Time is chain-like, andevery such chain has a LUB (recall that < has a top element1), the domain Time is a pointed CPO. This fact is neces-sary to ensure that recursive de�nitions are well de�ned.Elements of Time are most useful for approximating thetime at which an event occurs. That is, an event whose timeis approximately �t is one whose actual time of occurrenceis greater than t. Note that the time of an event that neveroccurs is just 1, the LUB of <.Finally, we extend the de�nition of arithmetic � to allof Time by de�ning its behavior across the subdomains asfollows: x � �y if x � yThis can be read: \The time x is less than or equal to a timethat is at least y, if x � y." (�x � y and �x � �y areunde�ned.) We can easily show that this extended functionof type Time! Time! Bool is continuous with respect tov. It is used in various places in the semantics that follows.Semantic Functions We de�ne an interpretation of�-behaviors as a function from time to �-values, producingthe value of a behavior b at a time t.at : Behavior� ! Time! �Next, we de�ne an interpretation on �-events as simply non-strict Time � � pairs, describing the time and informationassociated with an occurrence of the event.occ : Event� ! Time � �Now that we know the semantic domains we are workingwith, we present the various behavior and event combinatorswith their formal interpretations.

2.2 Semantics of BehaviorsBehaviors are built up from other behaviors, static (non-time-varying) values, and events, via a collection of con-structors (combinators).Time. The simplest primitive behavior is time, whosesemantics is given by:time : BehaviorTimeat[[time]]t= tThus at[[time]] is just the identity function on Time.Lifting. We would like to have a general way of \lifting"functions de�ned on static values to analogous functions de-�ned on behaviors. This lifting is accomplished by a (con-ceptually in�nite) family of operators, one for each arity offunctions.liftn : (�1 ! : : :! �n ! �)!Behavior�1 ! : : :! Behavior�n ! Behavior�at[[liftn f b1 : : : bn]]t = f (at[[b1]]t) : : : (at[[bn]]t)Note that constant value lifting is just lift0.Notational aside: In practice, lifting is needed quite fre-quently, so it would be inconvenient to make lifting expliciteverywhere. It is more desirable to use familiar names like\sin", \cos", \+", \�", and even literals like \3" and \blue",to refer to lifted versions of their standard interpretations.For instance, a literal such as 42 should behave as the con-stant behavior \lift0 42," and a summation on behaviorssuch as \b1 + b2" should behave as \lift2 (+) b1 b2", where\(+)" is curried addition. In our implementation of Fran inHaskell, type classes help considerably here, since the Numclass provides a convenient implicit mechanism for liftingnumerical values. In particular, with a suitable instancedeclaration, we achieve exactly the interpretations above,even for literal constants.Time transformation. A time transform allows theuser to transform local time-frames. It thus supports whatwe call temporal modularity for behaviors of all types. (Sim-ilarly, 2D and 3D transforms support spatial modularity inimage and geometry behaviors.)timeTransform : Behavior� ! BehaviorTime ! Behavior�at[[timeTransform b tb]] = at[[b]] � at[[tb]]Thus note that time is an identity for timeTransform:timeTransform b time = bAs examples of the use of time transformation in Fran,the expression: timeTransform b (time=2)slows down the animation b by a factor of 2, whereas:timeTransform b (time� 2)delays it by 2 seconds.

4 Functional Reactive AnimationIntegration. Integration applies to real-valued as wellas 2D and 3D vector-valued behaviors, or more generally, tovector-spaces (with limits). Borrowing from Haskell's typeclass notation to classify vector-space types:integral : VectorSpace �) Behavior� ! Time! Behavior�at[[integral b t0]]t= R tt0 at[[b]]Integration allows the speci�cation of velocity behaviors,and, if used twice, acceleration behaviors. For example, ifthe velocity of a moving ball is given by behavior b (perhapsa constant velocity, perhaps not), then its position relativeto starting time t0 is given by integral b t0. This provides anatural means to express physics-based animations, exam-ples of which are given in Section 3.Reactivity. The key interplay in Fran is that betweenbehaviors and events, and is what makes behaviors reactive.Speci�cally, the behavior b untilB e exhibits b's behavioruntil e occurs, and then switches to the behavior associatedwith e. More formally:untilB : Behavior� ! EventBehavior� ! Behavior�at[[b untilB e]]t= if t � te then at[[b]]t else at[[b0]]twhere (te; b0) = occ[[e]]Note that the inequality used here, t � te, is the one de�nedin Section 2.1. In the next section examples of reactivity aregiven for each of the various kinds of events.2.3 Semantics of EventsEvent handling. In order to give examples using spe-ci�c kinds of events, we �rst describe the notion of eventhandlers, which are applied to the time and data associatedwith an event using the following operator:(+)) : Event� ! (Time! �! �)! Event�occ[[e +) f]] = (te; f te x)where (te; x) = occ[[e]]For convenience, we will also make use of the followingderived operations, which ignore the time or the data orboth: (=)) : Event� ! (�! �)! Event�(�)) : Event� ! (Time! �)! Event�(�)) : Event� ! � ! Event�ev =) g = ev +) �t x: g xev �) h = ev +) �t x: h tev �) x0 = ev +) �t x: x0These di�erent operator symbols are somewhat neumonic:(+)) receives all of the parameters, (�)) receives noneof the parameters, (�)) receives only the time, and (=))receives only the data.Constant events. The simplest kind of event is onespeci�ed directly by its time and value.constEv : Time! �! Event�occ[[constEv te x]] = (te; x)Thus, for example, the behavior:b1 untilB (constEv 10 x)�) b2exhibits behavior b1 until time 10, at which point it beginsexhibiting behavior b2 (x is ignored in this example, but ofcourse needn't be).

External events. For this paper we only consider onekind of external event|mouse button presses|which canbe from either the left or right button. The value associatedwith a button press event is the corresponding button releaseevent, which in turn yields a unit value (() is the unit type):lbp; rbp : Time! EventEvent()The meaning of an event lbp t0, for example, is the pair(te; e), such that te is the time of the �rst left button pressafter t0, and e is the event corresponding to the �rst leftbutton release after te. Thus the behavior:b1 untilB (lbp t0) =) �e:b2 untilB e�)b3exhibits behavior b1 until the left button is pressed, at whichpoint it becomes b2 until the left button is released, at whichpoint it becomes b3.Predicates. It is natural to want to specify certain eventsas the �rst time that a boolean behavior becomes true aftera given time.predicate : BehaviorBool! Time! Event()occ[[predicate b t0]] = (inf ft > t0 j at[[b]]tg; ())That is, the time of a predicate event is the in�mum of theset of times greater than t0 at which the behavior is true.Note that this time could be equal to t0.The behavior:b1 untilB (predicate (sin time = 0:5) t0)�) b2thus exhibits b1 until the �rst time t after t0 that sin t is0.5, after which it exhibits b2.If the boolean behavior argument to predicatewere an ar-bitrarily complex computable function, then predicatewouldnot be computable. To cope with this problem, we re-strict behaviors somewhat, to make predicate not only com-putable, but also e�cient. We will return to this issue inSection 4.2.Choice. We can choose the earlier of two events with the:j: operator:(:j:) : Event� ! Event� ! Event�occ[[e :j: e0]] = (te; x); if te � t0e= (t0e; x0); otherwisewhere (te; x) = occ[[e]](t0e; x0) = occ[[e0]]For example, this behavior:b1 untilB (lbp t0 :j: predicate (time > 5) t0)�) b2waits for either a left button press or a timeout of 5 secondsbefore switching from behavior b1 to behavior b2. As analternative, the following example switches to a di�erentbehavior, b3, upon timeout.b1 untilB (lbp t0 �) b2 :j: predicate (time > 5) t0 �) b3)

Conal Elliott and Paul Hudak 5Snapshot. At the moment an event occurs it is oftenconvenient to take a \snapshot" of a behavior's value atthat point in time.snapshot : Event� ! Behavior� ! Event���occ[[e snapshot b]] = (te; (x; at[[b]]te))where (te; x) = occ[[e]]For example, the behavior:b1 untilB (lbp t0 snapshot (sin time)) =) �(e; y): b2grabs the sine of the time at which the left button is pressed,binds it to y, and continues with behavior b2 which pre-sumably depends on y. Although this example could alsobe achieved by grabbing the time of the left button pressevent and computing its sine, in general the behavior be-ing snapshot can be arbitrarily complex, and may in fact bedependent on external events.Event sequencing. It is sometimes useful to use oneevent to generate another. The event joinEv e is the eventthat occurs when e0 occurs, where e0 is the value part of e.joinEv : EventEvent� ! Event�occ[[joinEv e]] = occ[[snd (occ[[e]])]](This function is so named because it is the \join" operatorfor the Event monad [22].)For example, the eventjoinEv (lbp t0�) predicate (b = 0))occurs the �rst time that the behavior b has the value zeroafter the �rst left button press after time t0.3 Some Larger ExamplesThe previous section presented the primitive combinatorsfor behaviors and events, along with their formal semantics.The following examples illustrate the use of some of thesecombinators. The examples are given as Haskell code, whosecorrespondence to the formal semantics should be obvious.(All values in these examples are behaviors, though we donot explicitly say so.)To begin, let's de�ne a couple of simple utility behaviors.The �rst varies smoothly and cyclically between -1 and +1.wiggle = sin (pi * time)Using wiggle we can de�ne a function that smoothly variesbetween its two argument values.wiggleRange lo hi =lo + (hi-lo) * (wiggle+1)/2Now let's create a very simple animation: a red, pulsat-ing ball.pBall = withColor red(bigger (wiggleRange 0.5 1) circle)The function bigger scales its second argument by the amountspeci�ed by its �rst argument; since the �rst argument is abehavior, the result is also a behavior, in this case a ballwhose size varies from full size to half its full size.A key attribute of Fran is that behaviors are composable.For example, pBall can be further manipulated, as in:

rBall = move (vectorPolar 2.0 time)(bigger 0.1 pBall)which yields a ball moving in a circular motion with radius2.0 at a rate proportional to time. The ball itself is the sameas pBall (red and pulsating), but 1/10 the original size.Certain external phenomena can be treated as behaviors,too. For example, the position of the mouse can naturallybe thought of as a vector behavior. Thus to cause an imageto track exactly the position of a mouse, all we need to dois:followMouse im t0 = move (mouse t0) im(The function move shifts an image by an o�set vector.)Another natural way to de�ne an animation is in termsof rates. For example, we can expand on the mouse-followeridea by having the image follow the mouse at a rate that isdependent on how far the image is from the current mouseposition.followMouseRate im t0 = move offset imwhere offset = integral rate t0rate = mouse t0 .-. pospos = origin2 .+^ offsetNote the mutually recursive speci�cation of offset, rate,and pos: The o�set starts out as the zero vector, and growsat a rate called rate. The rate is de�ned to be the dif-ference between the mouse's location (mouse is a primitivebehavior that represents mouse position) and our anima-tion's position pos. pos, in turn, is de�ned in terms of theo�set relative to the origin. As a result, the given image al-ways pursues the mouse, but moves faster when the distanceis greater. (The operation .+^ adds a point and a vector,yielding a point, and .-. subtracts two points, yielding avector.)As a variation, we can virtually attach the image to themouse cursor using a spring. The de�nition is very similar,with position de�ned by a starting point and a growing o�-set. This time, however, the rate is itself changing at a ratewe call accel. This acceleration is de�ned in part by thedi�erence between the mouse position and the image's posi-tion, but we also add some drag that tends to slow down theimage by adding an acceleration in the direction opposite toits movement. (Increasing or decreasing the \drag factor"of 0.5 below creates more or less drag.)followMouseSpring im t0 = move offset imwhere offset = integral rate t0rate = integral accel t0accel = (mouse t0 .-. pos) - 0.5 *^ ratepos = origin2 .+^ offset(The operator *^multiplies a real number by a vector, yield-ing a vector.)As an example of event handling, the following behaviordescribes a color that changes between red and blue eachtime the left button is pressed. We accomplish this changewith the help of a function cycle that takes two colors, c1and c2, and gives an animated color that starts out as c1.When the button is pressed, it swaps c1 and c2 and repeats(using recursion).anim12 t0 = withColor (cycle red blue t0) circlewhere cycle c1 c2 t0 =c1 `untilB` lbp t0 *=> cycle c2 c1

6 Functional Reactive Animationbounce minVal maxVal y0 v0 g t0 = pathwhere path = start t0 (y0,v0)start t0 (y0,v0) = y `untilB` doBounce +=> startwhere y = lift0 y0 + integral v t0v = lift0 v0 + integral g t0reciprocity = 0.8doBounce :: Event (RealVal, RealVal) -- returns new y and vdoBounce = (collide `snapshot` pairB y v) ==> snd ==> \ (yHit,vHit) ->(yHit, - reciprocity * vHit)collide = predicate (y <=* lift0 minVal &&* v<=*0 ||*y >=* lift0 maxVal &&* v>=*0) t0Figure 1: One-Dimensional BounceNote that the Time argument in the recursive call to cycleis supplied automatically by *=>.The next example is a number-valued behavior that startsout as zero, and becomes -1 while the left button is pressedor 1 while the right button is pressed.bSign t0 =0 `untilB` lbp t0 ==> nonZero (-1) .|.rbp t0 ==> nonZero 1where nonZero r stop =r `untilB` stop *=> bSignWe can use the function bSign above to control the rateof growth of an image. Pressing the left (or right) buttoncauses the image to shrink (or grow) until released. Putanother way, the rate of growth is 0, -1, or 1, according tobSign.grow im t0 = bigger size imwhere size = 1 + integral rate t0rate = bSign t0A very simple modi�cation to the grow function abovecauses the image to grow or shrink at the rate of its ownsize (i.e. exponentially).grow' im t0 = bigger size imwhere size = 1 + integral rate t0rate = bSign t0 * sizeHere's an example that demonstrates that even colorscan be animated. Using the function rgb, a color behavioris created by �xing the blue component, but allowing thered and green components to vary with time.withColor (rgb (abs (cos time))(abs (sin (2*time)))0.5)circleAs a �nal example, let's develop a modular program todescribe \bouncing balls." First note that the physical equa-tions describing the position y and velocity v at time t of anobject being accelerated by gravity g are:y = y0 + R tt0 v dtv = v0 + R tt0 g dt

where y0 and v0 are the initial position and velocity, respec-tively of the object at time t0. In Fran these equations aresimply:y = lift0 y0 + integral v t0v = lift0 v0 + integral g t0Next we de�ne a function bounce that, in addition tocomputing the position of an object based on the aboveequations, also determines when the ball has hit either theoor or the ceiling, and if so reverses the direction of theball while reducing its velocity by a certain reciprocity, toaccount for loss of energy during the collision. The code forbounce is shown in Figure 1. Note that collision is de�nedas the moment when either the position has exceeded theminVal and the velocity is negative, or the position has ex-ceeded the maxVal and the velocity is positive. When sucha collision is detected, the current position and velocity aresnapshot, and the cycle repeats with the velocity negatedand scaled by the reciprocity factor. (The various opera-tors with * after them are lifted versions of the underlyingoperators.)Now that bounce is de�ned, we can also use it to de-scribe horizontal movement, using 0 for acceleration. Thusto simulate a bouncing ball in a box, we can simply write:moveXY x y(withColor green circle)wherex = bounce xMin xMax x0 vx0 0 t0y = bounce yMin yMax y0 vy0 g t0where xMin, xMax, yMin, and yMax are the dimensions of thebox.4 ImplementationThe formal semantics given in Section 2 could almost serveas an implementation, but not quite. In this section, we de-scribe the non-obvious implementation techniques used inFran. One relatively minor item is integration. While sym-bolic integration could certainly be used for simple behav-iors, we have instead adapted standard textbook numericaltechniques. (We chiey use fourth order Runge Kutta [17].)

Conal Elliott and Paul Hudak 74.1 Representing BehaviorsAn early implementation of Fran represented behaviors asimplied in the formal semantics:data Behavior a = Behavior (Time -> a)This representation, however, leads to a serious ine�ciency.To see why, consider a simple sequentially recursive reactivebehavior like the following.b = toggle True 0where toggle val t0 =lift0 val `untilB` lbp t0 *=>toggle (not val)This behavior toggles between true and false whenever theleft button is pressed. Suppose b is sampled at a time t1 afterthe �rst button press, and we then need to sample b at atime t2 > t1. Then b needs to notice that t2 is after the �rstbutton press, and then see whether it is also beyond thesecond button press. After n such events, sampling mustverify that their given times are indeed past n events, sothe running time and the (lazily expanded) representationwould be O(n). One could try to eliminate this \space-time leak" by switching to a stateful implementation, butdoing so would interfere with a behavior's ability to supportmultiple simultaneously time-transformed versions of itself.We solve this problem by having behavior sampling gen-erate not only a value, but also a new, possibly simpler,behavior.data Behavior a =Behavior (Time -> (a, Behavior a))(In fact, we use a slightly more complex representation, asexplained in Section 4.2 below.) Once an event is detectedto be (te; b0), the new behavior is sampled and the resultingvalue and possibly an even further simpli�ed version are re-turned. In most cases (ones not involving time transform),the original untilB behavior is then no longer accessible, andso gets garbage collected. Note that this optimization im-plies some loss of generality: sampling must be done withmonotonically non-decreasing times.These same e�ciency issues apply as well to integration,eliminating the need to re-start integration for each sam-pling. (In fact, our formulation of numerical integration isas sequentially recursive reactive behaviors.)4.2 Implementing EventsThere are really two key challenges with event detection:(a) how to avoid trying too soon to catch events, and (b)how to catch events e�ciently and robustly when we needto. We use a form of laziness for the former challenge, anda technique called interval analysis for the latter.Representing events lazily. Recall the semanticsof reactivity:untilB : Behavior� ! EventBehavior� ! Behavior�at[[b untilB e]]t= if t � te then at[[b]]t else at[[b0]]twhere (te; b0) = occ[[e]]Note that values of an untilB-based behavior at t � tedo not depend on the precise value of te, just the partialinformation about te that it is at least t. This observation

is crucial, because it may be quite expensive or, in the case ofuser input, even impossible to know the value of te before thetime te arrives. Instead, we represent the time te by a chainof lower-bound time values increasing monotonically withrespect to the information ordering de�ned in Section 2.1.Because these chains are evaluated lazily, detection is doneprogressively on demand.Detecting predicate events. The second imple-mentation challenge raised by events is how to determinewhen predicate events occur. For instance, consider theevent that occurs when t e4t = 10:predicate (time * exp (4 * time) ==* 10) 0Any technique based solely on sampling of behaviors mustfail to detect events like this whose boolean behaviors aretrue only instantaneously. An alternative technique is sym-bolic equation solving. Unfortunately, except for very simpleexamples, equations cannot be solved symbolically.The technique we use to detect predicate events is in-terval analysis (IA) [20]. It uses more information from abehavior than can be extracted purely through sampling,but it does not require symbolic equation solving. Instead,every behavior is able not only to tell how a sample timemaps to a sample value, but also to produce a conservativeinterval bound on the values taken on by a behavior overa given interval I. More precisely, the operation during,mapping time intervals to � intervals, has the property thatat[[b]]t 2 during[[b]]I for any �-valued behavior b, time in-terval I, and time t 2 I.An interval is represented simply as a pair of values:data Ivl a = a `Upto` aFor instance, \3 `Upto` 10" represents the interval [3,10],i.e., the set of x such that 3 � x � 10. The implementa-tion of a behavior then contains both the time-sampling andinterval-sampling functions:data Behavior a =Behavior (Time -> (a, Behavior a))(Ivl Time -> (Ivl a, Behavior a))As an example, the behavior time maps times and timeintervals to themselves, and returns an unchanged behavior.time :: Behavior Timetime = Behavior (\ t -> (t, time))(\ iv -> (iv, time))\Lifting" of functions to the level of behaviors works sim-ilarly to the description in Section 2, but additionally mapsdomain intervals to range intervals, and re-applies the liftedfunctions to possibly altered behavior arguments. For in-stance, lift2 is implemented as follows.lift2 f fi b1 b2 = Behavior sample isamplewhere sample t = (f x1 x2, lift2 f fi b1' b2')where (x1, b1') = b1 `at` t(x2, b2') = b2 `at` tisample iv = (fi xi1 xi2, lift2 f fi b1' b2')where (xi1, b1') = b1 `during` iv(xi2, b2') = b2 `during` ivThe restriction on behaviors referred to in Section 2.3that makes event detection possible, is that behaviors arecomposed of functions f for which a corresponding fi is

8 Functional Reactive Animationknown in the liftn functions. (These fi are called \inclusionfunctions.")De�ning functions' behaviors over intervals is well-under-stood [20], and we omit the details here, other than to pointout that Haskell's type classes once again provide a conve-nient notation for interval versions of the standard arith-metic operators. For example, evaluating(2 `Upto` 4) + (10 `Upto` 30)yields the interval [12,34]. Also, a useful IA technique is toexploit intervals of monotonicity. For instance, the exp func-tion is monotonically increasing, while sin and cos functionschange between monotonically increasing and monotonicallydecreasing on intervals of width �.We can also apply IA to boolean behaviors, if we considerbooleans to be ordered with False < True. There are threenonempty boolean intervals, corresponding to the behaviorbeing true never, sometimes, or always. For example, theinterval form of equality checks whether its two interval ar-guments overlap. If not, the answer is uniformly false. Ifboth intervals are the same singleton interval, then the an-swer is uniformly true. Otherwise, IA only knows that theanswer may be true or false throughout the interval. Specif-ically:(lo1 `Upto` hi1) ==# (lo2 `Upto` hi2)| hi1 < lo2 || hi2 < lo1 =False `Upto` False| lo1==hi1 && lo2==hi2 && lo1==lo2 =True `Upto` True| otherwise =False `Upto` TrueSimilarly, it is straightforward to de�ne interval versions ofthe inequality operators and logical operators (conjunction,disjunction, and negation).With this background, detection of predicate events throughIA is straightforward. Given a start time t1, choose a timet2 > t1, and evaluate the boolean behavior over [t1; t2], yield-ing one of the three boolean intervals listed above. If theresult is uniformly false, then t2 is guaranteed to be a lowerbound for the event time. If uniformly true, then the eventtime is t1 (which is the in�mum of times after t1). Oth-erwise, the interval is split in half, and the two halves areconsidered, starting with the earlier half (because we arelooking for the �rst time the boolean behavior is true). Atsome point in this recursive search, the interval being di-vided becomes smaller than the desired degree of temporalaccuracy, at which point event detection claims a success.This event detection algorithm is captured in the def-inition of predicate given in Appendix A. This functionuses the above divide-and-conquer strategy in narrowingdown the interval, but also, a double-and-conquer strategyin searching the right-unbounded time interval. The ideathat if the event was not found in the next w seconds, thenperhaps we should look a bit further into the future|2wseconds|the next time around.It is also possible to apply IA to positional user input.The idea is to place bounds on the rate or acceleration ofthe positional input, and then make a worst-case analysisbased on these bounds. We have not yet implemented thisidea.

5 Related WorkHenderson's functional geometry [12] was one of the �rstpurely declarative approaches to graphics, although it doesnot deal with animation or reactivity. Several other re-searchers have also found declarative languages well-suitedfor modeling pictures. Examples include [15, 23, 3, 10].Arya used a lazy functional language to model 2D an-imation as lazy lists of pictures [1, 2], constructed usinglist combinators. While this work was quite elegant, theuse of lists implies a discrete model of time, which is some-what unnatural. Problems with a discrete model include thefact that time-scaling becomes di�cult, requiring throwingaway frames or interpolation between frames, and renderingan animation requires that the frame rate match the dis-crete representation; if the frames cannot be generated fastenough, the perceived animation will slow down. Our con-tinuous model avoids these problems, and has the pleasantproperty that animations run at precisely the same speed,regardless of how fast the underlying hardware is (slowerhardware will generate less smooth animations, but theywill still run at the same rate).The TBAG system modeled 3D animations as functionsover continuous time, using a \behavior" type family [8, 19].These behaviors are built up via combinators that are auto-matically invoked during solution of high level constraints.Because it used continuous time, TBAG was able to supportderivatives and integrals. It also used the idea of elevatingfunctions on static values into functions on behaviors, whichwe adopted. Unlike our approach, however, reactivity washandled imperatively, through constraint assertion and re-traction, performed by an application program.CML (Concurrent ML) formalized synchronous opera-tions as �rst-class, purely functional, values called \events"[18]. Our event combinators \.|." and \==>" correspondto CML's choose and wrap functions. There are substantialdi�erences, however, between the meaning given to \events"in these two approaches. In CML, events are ultimately usedto perform an action, such as reading input from or writingoutput to a �le or another process. In contrast, our eventsare used purely for the values they generate. These valuesoften turn out to be behaviors, although they can also benew events, tuples, functions, etc.Concurrent Haskell [14] extends the pure lazy functionalprogramming language Haskell with a small set of primitivesfor explicit concurrency, designed around Haskell's monadicsupport for I/O. While this system is purely functional inthe technical sense, its semantics has a strongly imperativefeel. That is, expressions are evaluated without side-e�ectsto yield concurrent, imperative computations, which are ex-ecuted to perform the implied side-e�ects. In contrast, mod-eling entire behaviors as implicitly concurrent functions ofcontinuous time yields what we consider a more declarativefeel.Haskore [13] is a purely functional approach to construct-ing, analyzing, and performing computer music, which hasmuch in common with Henderson's functional geometry, eventhough it is for a completely di�erent medium. The Haskorework also points out useful algebraic properties that suchdeclarative systems possess. Other computer music lan-guages worth mentioning include Canon [5], Fugue [6], and alanguage being developed at GRAME [16], only the latter ofwhich is purely declarative. Fugue also highlights the util-ity of lazy evaluation in certain contexts, but extra e�ort isneeded to make this work in its Lisp-based context, whereas

Conal Elliott and Paul Hudak 9in a non-strict language such as Haskell it essentially comes\for free."DirectX Animation is a library developed at Microsoft tosupport interactive animation. Fran and DirectX Animationboth grew out of the ideas in an earlier design called Ac-tiveVRML [7]. DirectX Animation is used from more main-stream imperative languages, and so mixes the functionaland imperative approaches.There are also several languages designed around a syn-chronous data-ow notion of computation. The general-purpose functional language Lucid [21] is an example of thisstyle of language, but more importantly are the languagesSignal [11] and Lustre [4], which were speci�cally designedfor control of real-time systems.In Signal, the most fundamental idea is that of a signal, atime-ordered sequence of values. Unlike Fran, however, timeis not a value, but rather is implicit in the ordering of valuesin a signal. By its very nature time is thus discrete ratherthan continuous, with emphasis on the relative ordering ofvalues in a data-ow-like framework. The designers of Signalhave also developed a clock calculus with which one canreason about Signal programs. Lustre is a language similarto Signal, rooted again in the notion of a sequence, andowing much of its nature to Lucid.6 ConclusionsWriting rich, reactive animations is a potentially tedious anderror-prone task using conventional programming method-ologies, primarily because of the attention needed for issuesof presentation. We have described a system called Fran thatremedies this problem by concentrating on issues of model-ing, leaving presentation details to the underlying implemen-tation. We have given a formal semantics and described animplementation in Haskell, which runs acceptably fast usingthe Hugs interpreter. Future work lies in improving perfor-mance through the use of standard compilation methods aswell as domain-speci�c optimization techniques; extendingthe ideas to 3D graphics and sound; and investigating otherapplications of this modeling approach to software develop-ment.Our implementation of Fran currently runs under theWindows '95/NT version of Hugs, a Haskell implementationbeing developed collaboratively by Yale, Nottingham, andGlasgow Universities. It is convenient for developing anima-tion programs, because of quick turn-around from modi�ca-tion to execution, and it runs with acceptable performance,for a byte-code interpreter. We expect marked performanceimprovement once Fran is running under GHC (the GlasgowHaskell Compiler). Even better, when these two Haskell im-plementations are integrated, Fran programs will be conve-nient to develop and run fast. The Hugs implementation,which includes the entire Fran system, may be retrieved fromhttp://www.haskell.org/hugs. Although this paper willgive the reader an understanding of the technical ideas un-derpinning Fran, its power as an animation engine (and howmuch fun it is to play with!) can only be appreciated by us-ing it.

Acknowledgements We wish to thank Jim Kajiyafor early discussions that stimulated our ideas for modelingreactivity; Todd Knoblock who helped explore these ideas aswell as many other variations; John Peterson and AlastairReid for experimental implementations; Philip Wadler forthoughtful comments that resulted in simplifying the seman-tic model; and Sigbj�rn Finne for helping with the imple-mentation of Fran. We also wish to acknowledge funding ofthis project from Microsoft Research, DARPA/AFOSR un-der grant number F30602-96-2-0232, and NSF under grantnumber CCR-9633390.

10 Functional Reactive AnimationReferences[1] Kavi Arya. A functional approach to animation. Com-puter Graphics Forum, 5(4):297{311, December 1986.[2] Kavi Arya. A functional animation starter-kit. Journalof Functional Programming, 4(1):1{18, January 1994.[3] Joel F. Bartlett. Don't �dget with widgets, draw! Tech-nical Report 6, DEC Western Digital Laboratory, 250University Avenue, Palo Alto, California 94301, US,May 1991.[4] P. Caspi, N. Halbwachs, D. Pilaud, and J.A. Plaice.Lustre: A declarative language for programming syn-chronous systems. In 14th ACM Symp. on Principlesof Programming Languages, January 1987.[5] R.B. Dannenberg. The Canon score language. Com-puter Music Journal, 13(1):47{56, 1989.[6] R.B. Dannenberg, C.L. Fraley, and P. Velikonja. Afunctional language for sound synthesis with behavioralabstraction and lazy evaluation. In Denis Baggi, editor,Computer Generated Music. IEEE Computer SocietyPress, 1992.[7] Conal Elliott. A brief introduction to ActiveVRML.Technical Report MSR-TR-96-05, Microsoft Re-search, 1996. ftp://ftp.research.microsoft.com/pub/tech-reports/Winter95-96/tr-96-05.ps.[8] Conal Elliott, Greg Schechter, Ricky Yeung, and SalimAbi-Ezzi. TBAG: A high level framework for interac-tive, animated 3D graphics applications. In AndrewGlassner, editor, Proceedings of SIGGRAPH '94 (Or-lando, Florida), pages 421{434. ACM Press, July 1994.[9] John Peterson et. al. Haskell 1.3: A non-strict, purely functional language. Technical ReportYALEU/DCS/RR-1106, Department of Computer Sci-ence, Yale University, May 1996. WWW version athttp://haskell.cs.yale.edu/haskell-report.[10] Sigbjorn Finne and Simon Peyton Jones. Pictures: Asimple structured graphics model. In Glasgow Func-tional Programming Workshop, Ullapool, July 1995.[11] Thierry Gautier, Paul Le Guernic, and Loic Besnard.Signal: A declarative language for synchronous pro-gramming of real-time systems. In Gilles Kahn, edi-tor, Functional Programming Languages and ComputerArchitecture, volume 274 of Lect Notes in ComputerScience, edited by G. Goos and J. Hartmanis, pages257{277. Springer-Verlag, 1987.[12] Peter Henderson. Functional geometry. In ACM Sym-posium on LISP and Functional Programming, pages179{187, 1982.[13] Paul Hudak, Tom Makucevich, Syam Gadde, andBo Whong. Haskore music notation { an algebra ofmusic, September 1994. To appear in the Journalof Functional Programming; preliminary version avail-able via ftp://nebula.systemsz.cs.yale.edu/pub/yale-fp/papers/haskore/hmn-lhs.ps.

[14] Simon Peyton Jones, Andrew Gordon, and SigbjornFinne. Concurrent Haskell. In ACM Symposium on thePrinciples of Programming Languages, St. PetersburgBeach, Florida, January 1996.[15] Peter Lucas and Stephen N. Zilles. Graphics in an ap-plicative context. Technical report, IBM Almaden Re-search Center, 650 Harry Road, San Jose, CA 95120-6099, July 8 1987.[16] O. Orlarey, D. Fober, S. Letz, and M. Bilton. Lambdacalculus and music calculi. In Proceedings of Inter-national Computer Music Conference. Int'l ComputerMusic Association, 1994.[17] William H. Press, Saul A. Teukolsky, William T. Vet-terling, and Brian P. Flannery. Numerical Recipes in C:The Art of Scienti�c Computing (2nd ed.). CambridgeUniversity Press, Cambridge, 1992. ISBN 0-521-43108-5.[18] John H. Reppy. CML: A higher-order concurrent lan-guage. Proceedings of the ACM SIGPLAN '91 Confer-ence on Programming Language Design and Implemen-tation, pages 293{305, 1991.[19] Greg Schechter, Conal Elliott, Ricky Yeung, and SalimAbi-Ezzi. Functional 3D graphics in C++ - withan object-oriented, multiple dispatching implementa-tion. In Proceedings of the 1994 Eurographics Object-Oriented Graphics Workshop. Eurographics, SpringerVerlag, 1994.[20] John M. Snyder. Interval analysis for computer graph-ics. In Edwin E. Catmull, editor, Computer Graphics(SIGGRAPH '92 Proceedings), volume 26, pages 121{130, July 1992.[21] W.W. Wadge and E.A. Ashcroft. Lucid, the DataowProgramming Language. Academic Press U.K., 1985.[22] Philip Wadler. Comprehending monads. In Proceedingsof Symposium on Lisp and Functional Programming,pages 61{78, Nice, France, June 1990. ACM.[23] S.N. Zilles, P. Lucas, T.M. Linden, J.B. Lotspiech, andA.R. Harbury. The Escher document imaging model. InProceedings of the ACM Conference on Document Pro-cessing Systems (Santa Fe, New Mexico), pages 159{168, December 5{9 1988.

Conal Elliott and Paul Hudak 11
Appendix A: Haskell Code for Predicate Event Detectiontype BoolB = Behavior Booltype TimeI = Ivl Timepredicate :: BoolB -> Time -> Event ()predicate cond t0 = predAfter cond t0 1wherepredAfter cond t0 width =predIn cond (t0 `Upto` t0+width) (\ cond' ->predAfter cond' (t0+width) (2*width))predIn :: BoolB -> TimeI -> (BoolB -> Event ()) -> Event ()predIn cond iv tryNext =case valI ofFalse `Upto` False -> -- no occurrence-- Note lower bound and try the next condition.timeIsAtLeast hi (tryNext cond')False `Upto` True -> -- found at least oneif hi-mid <= eventEpsilonthen constEv mid ()else predIn cond (lo `Upto` mid) (\ midCond ->predIn midCond (mid `Upto` hi) tryNext)True `Upto` True -> constEv lo () -- found exactly onewherelo `Upto` hi = ivmid = (hi+lo)/2ivLeftTrimmed = lo + leftSkipWidth `Upto` hi(valI,cond') = cond `during` ivLeftTrimmed-- Interval size limit for temporal subdivisioneventEpsilon = 0.001 :: Time-- Simulate left-open-ness via a small incrementleftSkipWidth = 0.0001 :: Time

